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ABSTRACT 

An arbitrated quantum signature (AQS) scheme is demonstrated via the improved quantum chaotic encryption algo-
rithm with the quantum one-time pad based on chaotic operation string. In this scheme, the signatory signs the message 
and the receiver verifies the signature's validity with the aid of the arbitrator who plays a crucial role when a dispute 
arises. Analysis shows that the signature can neither be forged nor disavowed by the malicious attacker. 
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1. Introduction 

Digital signature that enables to settle disputes about the 
authenticity of the message is an essential cryptographic 
primitive. It has been applied in secure electronic com-
merce, whose security depends much on the intractability 
of factoring large numbers or solving discrete logarithms. 
However, it would be broken via Shor's algorithm when 
a quantum computer would be available someday [1]. 
Consequently, quantum signature has been suggested to 
provide the authenticity and nonrepudiation of quantum 
states with unconditional security based on quantum me-
chanics [2,3]. There are usually two essential require-
ments in quantum signature, i.e., unforgeability and un-
deniability [4]. 

An arbitrated quantum signature (AQS) scheme [2] 
was proposed to sign the quantum message via quantum 
one-time pad [5] using the Greenberger-Horne-Zeilinger 
(GHZ) states with availability of the trusted arbitrator. 
The security depends on the secure keys shared among 
legal users. However, it could be repudiated by the dis-
honest receiver [6]. After that an improved AQS scheme 
was presented using Bell states instead of GHZ states 
while providing a higher efficiency in transmission and 
reducing the complexity of its implementation [7]. 
However, it was pointed out that the yielded signature 
could still be repudiated by the receiver as the original 
scheme did [6]. Although two AQS schemes were pro- 
posed to solve this problem, the receiver would actively 
negate the signature since he may get the benefits from 
the denial-of-service (DoS) attack strategy without being 
detected [8, 9]. 

  Actually, in an AQS scheme the entrusted arbitrator 
plays an important role when a dispute arises among par-
ticipants. Since the arbitrator may not solve a dispute 
when Bob claims that the verification of the signature is 
not successful, the previous AQS schemes are not always 
valid due to the contradiction to the undeniable require-
ment of signatures [2,3,7]. Recently, it has been pointed 
out [13,14] that those AQS schemes [2,3,7] provide se-
curity only against a total break attack and there is an 
existential forgery attack that can validly modify the sig-
nature. In order to conquer this shortcoming, we desig-
nate an AQS scheme using an improved quantum chaotic 
encryption algorithm with classical communications that 
are assumed to be susceptible to eavesdropping but not to 
the injection or alteration of the message [10-12]. The 
quantum chaotic encryption system has several interest-
ing characteristics, such as the sensitive dependence on 
initial conditions and system parameters, pseudo- random 
property, non-periodicity and topological transitivity, etc. 
These characteristics meet some secure requirements 
such as diffusion and mixing in quantum cryptosystem. 
The present scheme can not only avoid being disavowed 
by the receiver, but also can preserve all merits in the 
previous schemes. 

As far as we know, the chaos-based AQS scheme with 
diffusion quantum operations has not been reported. In 
this paper, we propose an AQS scheme via the improved 
quantum chaotic encryption algorithm. This paper is or-
ganized as follows. In section II, we designate a quantum 
chaotic encryption algorithm based on the quantum 
one-time pad depending on the chaotic operation string 
performed on quantum states. In section III, we develop 

Copyright © 2013 SciRes.                                                                                 JMP 



Y. GUO  ET  AL. 84 

an AQS scheme based on the improved quantum chaotic 
encryption algorithm. It involves three participants, in- 
cluding the signatory, the receiver and the arbitrator, in 
three phases, i.e., initializing phase, signing phase and 
verifying phase. In section IV we analyze the security of 
the AQS scheme according to the requirements of the 
quantum signature. It is shown that the present scheme is 
secure due to the implementation of the quantum chaotic 
encryption algorithm. Finally, conclusions are drawn in 
section IV. 

2. Quantum Chaotic Encryption Algorithm 

We let Pauli matrices x , z  and y  denote Pauli-X, 
Pauli-Z and Pauli-Y gates respectively. Let P  be a 
quantum message described as 1 n  with P P P 

 0 1 1, ,P i n   ,i i i . Subsequently,   E  
denotes the conventional quantum one-time pad for a 
given string  of length 2n, i.e.,  1, , 2n 

  2 1 2

1
,i i

n

u v i
i

E P P 
  


 

,



         (1) 

with  where I denotes an iden-
tity operation. 

, , , ,u v x z yI    

Recall that for a given key  of 
length 2n there is a chaotic encryption algorithm ex-
pressed in a recursive fashion 

0 0,1 0,2, , nk k k 

  1 ,  1, , ,i T ik C k i r             (2) 

where  denotes the cryptogram string of length 
2n that is used for the quantum encrypting algorithm in 
Equation(1), and T  is a chaotic key-dependent trans-
formation. In detail, we write ,0 ,  for each a 
string  of length 2n in the  round, 

rk 

k

C

2 1, ,i ik k 
th

n

i i  0, , .i  r



    
The string  consists of r rounds of identical trans-

formations applied in a sequence to the initial key . 
The chaotic transformation CT is defined as 


0k

, 1 1, 1 1,1 1, 1 1, 1, , , ,i k i k k i i k i kk k f k k t              (3) 

where ,0 ,2 1  denotes a subkey that controls 
the  round, each function i

( , , )i i i nt t t  
thi f  is obtained via discretiza-

tion of a conventional nonlinear map with mixing prop-
erty and robust chaos, 0 ,0 ,2 ,0, ,i i n if t k k    1, ,i  l  
and  1, , 2 .k n 

k

 The decrypting structure undoes the 
transformations of the encrypting structure where r de-
crypting rounds are applied to the received vector r  to 
recover 0 . In each decrypting round, the inverse trans-
formation can be described as 

k

1, 1, 1 1 1,1 1, 1 1, 1, , , .i k i k k i i k i kk k f k k t               (4) 

We note that the afore-mentioned chaotic map f can be 
generated in a quadratic (logistic) chaotic map [20] given 
by 

 2 2 2

2 2

floor 2 / 2 ,if 2
( )

2 1,                               if 2

n n
j j j

j n n
j

y y y
f y

y

      
 





2n

    (5) 

with  2 2 2
,1floor 2 / 2 for  n n

j j j j jy y y y k      

, 1 , 1.j kt
 

j kk    It can be implemented in two steps [21]. 

In the first step, the logistic map is scaled so that input 

and output values are in the interval [0, 22n]. The second 

step is discretization of the newly derived map. 
In addition, this map can also be generated in an ex-

ponential chaotic map 

2 2

2

mod 2 +1,         if 2
( )

0,                              if 2

jy n n
j

j n
j

a y
f y

y

  





    (6) 

with 2mod 2 1,jy n
jy a 

2

 where the number a is a gen-
erator of the multiplicative group of nonzero elements of 
the Galois field of order . 2 1n 

In what follows, we consider an improved quantum 
chaotic encryption algorithm with a quantum one-time 
pad based on the chaotic string throughout this paper. 
Assume that the Hadamard gate can be defined as h   

 1 2 .x z   According to the algorithm in Equa-
tion(1) for a given chaotic string  of length 2n, we 
obtain the similar quantum chaotic encryption algorithm 
given by 



2 1 2

1
( ) i i

n

.x h i
i

E P P 
  


            (7) 

It is obvious that one can not obtain the exact relation-
ship x h x h      due to the properties of Pauliopera-
tions [1]. This feature can be well suitable for a particular 
purpose of the generation of the quantum signature that 
can not be forged or disavowed by the attacker. 

3. Prepare Arbitrated Quantum Signature 
Scheme with Chaotic Encryption 

As an AQS scheme, it should satisfy at least two con-
straints, i.e., one is that the signature should not be 
forged by the attacker and another is the impossibility of 
disavowal of the signatory and receiver. It usually in-
volves three participants, including the signatory Alice, 
the receiver Bob and the trusted arbitrator Charlie, in 
three signing phases, i.e., initializing phase, signing 
phase and verifying phase. In the previous AQS scheme 
[2,3], it has been stated that Bob can not disavow that he 
has obtained the signature. However, he can repudiate 
the integrality of the signature since he can reject the 
signature in verifying phase [6,8,9]. It means that Bob 
can admit receipt of the signature but deny its correctness. 
In order to conquer this shortcoming, we design an im-
proved AQS scheme based on the quantum chaotic en-
cryption algorithm with the prepared chaotic string using 
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the shared key and subkey. 
Suppose that Alice wants to sign the quantum message 

1 nP P P    and has at least three copies of 
P . In order to obtain a low error probability in verify-

ing phase, we can assume that n is large enough; other-
wise we can use m

P
  instead of P , where m is a 

large enough integer. Then the proposed AQS scheme 
goes as follows. 

3.1. Initializing Phase 

Step I1. Alice shares an initial secret key 0  of length 
2n with Charlie through quantum key distribution (QKD) 
protocol [10,11]. Then she selects another private subkey 

ak

 1, ,at t t 

0
b

r  of length 2n kept by herself. Implement-
ing the chaotic encrypting algorithm in Equation (2), she 
achieves a string a  of length 2n. Similarly, Bob gen-
erates another sequence  using his initially secret key 

 and subkey  shared beforehand with Charlie. 



bt
b

Step I2. Charlie generates n Bell states 1( ,   

, n )  with    1
00 11 , 1, , ,

2
i ab ab

i     n  

where the subscripts a and b denote the photons that are 
transmitted to Alice and Bob via the authenticated quan-
tum channel [15,16]. 

3.2. Signing Phase 

Step S1. Alice transforms the message P  into the ran-
dom qubit string  '

at
 using the quantum one- 

time pad algorithm expressed in Equation (7) with her 
subkey ta. For each resulting qubit, one obtains 

P E P

' ' '0 1i i iP    .  

Step S2. Alice performs a quantum chaotic encryption 
algorithm with the encrypted string  and generates  a
the chaotic qubit string  ' .P

aaS E   

Step S3. Alice combines each qubit '
iP  with Bell 

state .i  The combined system '
i iP i    

can be rewritten as 

   
  

' ' ' '

' ' ' '

1
[ ψ 0 1 ψ 0 1

2

       1 0 1 0 ],

i i i i

i i i i

    

   

 

 

   

      
i

  (8) 

After implementing Bell state measurements on her 
photon pairs, she obtains   ( ) : 1, ,i

a aM M i n     

where ( )i
aM  denotes one of Bell states performed on 

the ith photon pair.  
Step S4. Alice transforms aM  into another random 

qubit string '

aa t aM E M  using the quantum one-  

time pad algorithm with her subkey   .at

Step S5. Alice transmits  ' ', ,a aS P M S  to 

Bob via the authenticated quantum channels. 

3.3. Verifying Phase 

Step V1. Bob performs the quantum chaotic encryption 

algorithm on 'P  and aS  using his chaotic string 

b .Then he obtains  ' ,
bbT E P S a

, which is sent 

to Charlie. 
Step V2. Charlie decrypts bT  using the calculated 

string b  with parameters  and , and obtains 0
bk bt

'P  and aS . Similarly, he performs a quantum chaotic 

encryption algorithm on 'P  using another string a  

with parameters  and , and obtains 0
ak at  ' ,P

acS E   

which should be consistent with aS . After comparing 
two unknown states 

aS  and 
cS  [17-19], he sets the 

verification parameter 1V   if aS S c ; otherwise 
he sets V = 0. 

Step V3. Charlie performs another quantum chaotic 
encryption algorithm on ' , aP S  and V using the chaotic  
string b , and achieves  ' , ,

bc aT E P S V . Then 

he sends cT  back to Bob. 
Step V4. Bob decrypts cT  using  and obtains b
'P , 

aS  and V. If 0V  , then it shows that the sig-  

nature has been obviously forged; otherwise Bob informs 
Alice to publish her subkey ta and goes on to the next 
verification. 

Step V6. Alice publishes the subkey ta by the secure 
public channel. 

Step V7. After Bob receives ta, he recovers Alice's en-
crypted qubit string aM  from '

aM . After that he 

obtains '
bP  on his photons after implementing some  

suitable unitary operation based on the yielded states  

aM  [1]. Then he makes a comparison between '
bP  

and 'P . If '
b

'P P , he gives it up; otherwise he 

restores the initial message P  from 'P  with . He 

holds 

at

aS  as Alice's signature for the message P . 

We note that in this AQS scheme it can achieve a 
function of the signature. Actually, in verifying phase 
Charlie can obtain a  that depends on parameters 0

aK  
and ta, and hence he can judge whether the equation  

aR R c  holds or not. When it holds, the signed  

message has really come from Alice since others do not 
know  and ta and hence generate the chaotic string 0

ak
a  [20,21]. After Charlie's verification, the message is 

transm to Bob, and hence he does not know the content itted 
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of the message excepts for his judgment V that shows its 
authenticity. Actually, it provides a potential approach 
for Charlie to resolve a dispute between Alice and Bob. 
Otherwise it is an exact message authentication instead 
of a signature. For example, Bob says that Alice signed 
for the message ,P  but Alice announces that she did not 
sign such a message (maybe she indeed signed another 
message P ). In this condition, Charlie requires 
Bob to provide 'P  and 

aS , encrypts 'P  to obtain 

cS  with the chaotic string a , and n verifies 
her 

 the
whet aS  equals to cS  o ot. If the comparison 
result is p ive, it implie t Alice is disavowing her 
signature. Otherwise, the signature is forged by Bob. 

In addition, this AQS scheme can be similarly exten

r n

rgery Attack 

osit s tha

ded 
on

4. Security Analysis 

eme based on an 

4.1. Impossibility of Fo

gnature 

 the basis of the quantum chaotic encryption algorithm 
in terms of the GHZ triplet states or the single-qubit 
states without being entangled. As the aforementioned 
statements, it can also strengthen the security of the cor-
responding signature in a small-scale quantum computa-
tion network. 

So far we have proposed an AQS sch
improved quantum chaotic encryption algorithm. In this 
section, what we are concerned is the security of this 
scheme. 

If an attacker Eve tries to forge Alice's si aS  
for her own sake, she should know the initially s  
secret key 0

ak  and subkey at . However, it is impossi-
ble due to  unconditional ecurity of quantum key 
distribution (QKD) [10,11]. In addition, the usage of the 
chaotic encryption algorithm enhances the security of the 
present scheme [20,21]. In a worse case that 0

ak  is ex-
posed to Eve, she can not succeed in forging t  signa-
ture since she can not create the appropriate Bell state 
measurement 

hared

the  s

he

aM  related to the transformed mes-
sage 'P . A , Bob would completely find the 
forger ing the correlation of Bell states since the fur-
ther verification about the condition 

ctually
y us

' '
bP P  could 

not be hold without the correct measur t ement resul aM . 
Consequently, the forgery of Eve is impossible. 

If the malicious Bob attempts to counterfeit Alice's 
signature 

aS  in verifying phase, he also has to know 
Alice's secret key 0

ak  to generate aS . However, the 
information that he can achieve betrays nothing about 

0
ak  from aS  due to the properties of the chaotic op-

ion strin erformed in quantum chaotic encryption 
algorithm [20,21]. Therefore, Bob can not forge Alice's 
signature. 

Furtherm

erat g p

ore, in the previous AQS schemes [13,14], the 

security is mostly ensured against the distillation of the 
secret key from the transmitted signature. Unfortunately, 
there are some security flaws due to the usage of quan-
tum one-time pad with Pauli operations x  and z  
that have a relation x z z x     . Therefor there is  
possible forgery atta es a dishonest user to 
modify the signature even without any knowledge of the 
secret key. Without loss of generality, we consider a case 
that the malicious Bob is an attacker. The goal of Bob's 
forgery attack is to change the message and signature 

e,  a
ck that enabl

 , aP S  to  , aS  by performing operation 
 with wledge of 

ak  and at  and 1
n
i iQ U 

hence b

out any kno 0
 , 

on, 
where iU  denotes a sing qubit u itary 

operati i.e., 
le- n

   , .a aQ P S S   In this attack, 
Bob does not c  message but 
how to use the relation of the message and signature. It 
has been shown that the previous schemes may be cracked 
by this forgery attack because all operations performed 
for random rotation and encryption are only Pauli opera-
tions that commute or anticommute with each other. 
Namely, taking a message 

, Q
are about the content of the

P , the signature is in form 
of ER P , where R and E note a quantum random 
ope and a quantum one-time pad encryption, re-
spectively. If Bob implements a forgery attack by per-
forming an operation Q, then the resulting signature be-
comes 

 de
ration 

QER P . In the verifying phase, Charlie obtains 
† †R E Q Therefore, Bob could select a suitable 

hat commutes with E and R since the en-
cryption is based on the usage of Pauli operations 

ER
n 

P . 
operatio Q t

x  
and z  that commute or anticommute with each oth  
[1]. H ever, in the present scheme, the signing process 
is based on the quantum chaotic encryption algorithm that 
depends on the chaotic operation string including opera-
tions 

er
ow

x  and h , instead of x  and z . It is easy to 
prove that there is no nontrivial quantum operation Q that 
commutes with x  and h . It implies that Bob can not 
implement this f ery at k successfully, and his dis-
honest behaviors will be detected with high probability 
due to the composite chaotic character of the quantum 
chaotic encryption algorithm derived from a nonlinear 
system that makes the yielded qubit sequence in posses-
sion of a fantastic random [20, 21]. 

org tac

4.2. Impossibility of Disavowal Attack 

gnature for Suppose that Alice wants to disavow her si
her own benefits. In this case, Charlie is required to make 
a judgment. Actually, Charlie can confirm that Alice has 
signed the message since Alice's initial secret key 0

ak  

and subkey at  are both involved in the chaotic stri  

a

ng

  and henc in the signature e aS . Thus Alice can not 

y signing the message den P addition, Alice may 

not publish her correct sub  at  in the public board 
after Bob completes his compar n operations for the 

. In 

key
iso
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verification. This gives Alice an opportunity to send any 
subkey '

at  that may not be equal to at . However, Bob 

and Cha e can only accept Alice's signature rli '
aS  that 

contains '  instead of at aS  that embraces ore-

over, the correct subkey has been shared b orehand 

with Charlie. If Alice set '
a at t

at

ef

. M

at  

s  , it can be completely 

detected by Charlie since he  generate  has to cS  using 

the quantum chaotic encryption algorithm de ent on 
subkey '

at , which results in 
pend

c aS S  in verifying 

phase. I eans that Alice has ob the correct 
subkey at  if she wants to transmit the message with her 
real sign ure. Someone may worry about that the at-
tacker may change the published subkey ta in verifying 
phase so that Bob can not recover the message 

t m

at

to send B

P  

without at . We note that the deployed classic channe  
assumed  securely established, and the alteration of the 
subkey at  would not happen. 

In order to avoid disavowal 

l is

of Bob, we would not let 
B

 be

ob achieve the whole signature in verifying phase. Ac-
tually, Alice only sign the transformed message via the 
quantum chaotic encryption algorithm based on the chaotic  
operation string. To restore the initial message P , Bob 
has to require Alice to publish her subkey at   then 
recovers the measurement result 

and

aM  from the re-
ceived string '

aM . It implies that B as no chance to 

repudiate the received signature. Moreover, Bob can not  

ob h  

disavow the receipt of  ' , aP S  since he has trans-

mitted 
bT  that contain l secret key bs his initia 0  and 

subkey to Charlie for the verification of the si ture. 
For the urther verification, Charlie needs to decrypt 

at  
 f

gna

bT  to recover 'P  and aS  with 0
bk  and bt . Also, 

btains he o  'S E P  
ac 

. If
c aS S , then Bob's 

disavowal is
In addition, Bob wou

 detected. 
ld not repudiate the integrality of 

the signature. We consider a case that Bob claims 
' '

bP P  even when ' '
bP P  since Charlie would 

not check whether '
aM  is corr

rk on

ect or not. However,  

this attack can not wo  the present scheme due to the  
fact he has to recover the initial message P  with 

aM  that is obtained from '
aM  in verifyin phase. 

ly, if Bob claims 

g 

Name ' '
bP P  it means that he has  

not received the correct signature 

,

aS . It shows that 
Bob can not repudiate the integrality of the signature. 
Actually, in order to avoid being disavowed by Bob, this 
scheme utilizes the secure classic channel for the trans-
mission of the subkey at  that is assumed not be sus-

5. Conclusions 

We have investigated an AQS scheme

ceptible to be altered by an attacker [16]. 

 based on the 
cryption system in three phases, i.e., 
ning phase and verifying phase. The 
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