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ABSTRACT 

We derive the collisionless Landau damping in a plasma by satisfying the causal requirement that the susceptibility 
function of the plasma for time t < 0 should be nil. The causality condition should be satisfied by the susceptibility 
function of a plasma no matter what equations we employ to describe the plasma. Thus we conclude that the fundamen-
tal reason of the collisionless damping can be traced to the causality. As an example, we derive the collisionless damp-
ing of ion acoustic wave in a plasma by employing fluid equations. 
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1. Introduction 

Landau damping discovered by L. Landau in his famous 
paper [1] is collisionless damping, i.e. damping irrelevant 
to particle-particle collisions in plasmas. Landau solved 
the Vlasov-Poisson equations as an initial value problem 
by means of Laplace transform. In the course of analysis, 
one has to deal with the singular integral in the expres- 
sion of the susceptibility function  
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where pe  is the electron plasma frequency,  0g v

i

 is 
the zero order equilibrium velocity distribution function. 
In the velocity integral in Equation (1), r i  

en

  is 
a complex frequency and v is a real variable. If the 
imaginary frequ cy i  becomes zero, and thus   
lands on somewhere on the real v-axis, the velocity inte- 
gral becomes undefined since the integrand is singular at 
v k . Landau evaluated this singular integral along 
his celebrated Landau contour by invoking the mathe- 
matical argument of analytic continuation in the complex 
-plane. The Landau contour for the integral of Equation 
(1) consists of the principal value part along the real 
v-axis plus the infinitesimal semi-circle around the sin-
gular point v k  in a concave-down shape. There-
fore, the value of the v-integral is the sum of the principal 
value and the value contributed by the infinitesimal semi- 
circle around the singular point v k  which can be 

expressed in terms of  -function. Thus, Equation (1) 
yields the real part   ,kRe    corresponding to the 
principal value of the integral as well as the imaginary 
part  Im ,k   obtained from the   -function part. 
Depending upon the slope of the distribution function, 

 Im ,k   can give rise to either damping or growing 
of the plasma wave. 

In this work, we show that the Landau damping can be 
derived from the causal requirement that must be satis- 
fied for the dielectric permittivity function. The causal 
requirement is mathematically expressed by Equation (3), 
and should be satisfied always in electrodynamics no 
matter what way it is derived. Its physical meaning is that 
the response of the medium must follow the cause; the 
cause cannot be precedent to the effect. By enforcing this 
causality condition, the velocity integral in Equation (1) 
is shown to be equivalent to the integral along the Lan-
dau contour. 

Recently Lim and Lee [2] derived the Landau damping 
from the Kramers-Kronig relations, and concluded that 
the fundamental reason of the collisionless damping of 
plasma waves can be traced to the causality. In this work, 
we derive the collisionless damping directly from the 
causal requirement without the aid of the Kramers- 
Kronig relations; thus, we show more directly that the 
collisionless damping is a consequence of the causality. 
It is emphasized that  Im ,k   is derived without the 
mathematical argument of the analytic continuation. As 
an example, we employ the fluid equations to derive the 
collisionless damping of an ion acoustic wave; this deri-*Corresponding author. 
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vation clearly shows that the causal requirement is re- 
sponsible for the collisionless damping. 

2. Evaluation of Susceptibility from the 
Causal Requirement 

In evaluation of plasma wave dispersion relation, one 
often encounters with the algebraic expression, the re-  

ciprocal of the Doppler-shifted frequency, 
1

kv 
kv

. This  

algebraic quantity is well defined if  
kv

, but it 
should be more defined when    because the de-
nominator gives a singularity. In this case, the expression 
should be rephrased so that the singularity can be dealt 
with without ambiguity. We can use:  
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where the symbol P denotes the principal value and   
is an undetermined constant. Equation (2) is correct be-
cause of the two identities:  
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In fact, Equation (2) was the mathematical motivation 
of the Van Kampen modes of plasma wave [3]. Here we 
use the causal requirement in electrodynamics to deter- 
mine the constant  . 

Causality in electrodynamics means that the response 
must always follow the cause; the cause cannot be prece- 
dent to the effect. Therefore, the future susceptibility 
should be irrelevant to the present field (displacement). 
This causal notion leads to the mathematical condition 
expressed by [4]  

  0  for  0t t                (3) 

where   is the susceptibility of the medium. 
As an application, we consider the susceptibility of 

electron plasma (ions are assumed to be immobile) gov- 
erned by the Vlasov-Poisson equation as given by Equa- 
tion (1). Using Equation (2) in Equation (1), the sus- 
ceptibility function takes the form  
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In order to determine the constant  , let us invert 
Equation (4):  
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The principal part integral is the step function [3,5]:  
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The causal requirement in Equation (3) is satisfied by 
  

 

, and therefore the plasma susceptibility in Equa- 
tion (4) becomes  
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which agrees with the susceptibility evaluated along the 
Landau contour. Therefore we conclude that the colli- 
sionless damping of plasma waves is fundamentally due 
to the causal requirement.  

3. Ion Landau Damping Derived from Fluid 
Equations 

An ion in the electric wave of a Fourier component with 
phasor   is subject to the equation of motion  
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In Equation (8), the Lagrangian equation of motion, 
 x x t

0 0

, the particle position at time t, and the sole 
independent variable is t. As the zero order solution, we 
use the unperturbed orbit  

x x v t   

where 0x  and 0  are the initial position and velocity, 
respectively, at the initial time . Then Equation (8) 
with the aforementioned boundary conditions is solved 
by  

v
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The terms 0  and 1 in the above equation are neces-
sary to have the initial condition satisfied. However, even 
without those terms, the rest of the terms in Equation (9) 
satisfies Equation (8). Equation (9) is the particular solu- 
tion of the differential Equation (8). The the first order 
homogeneous solution is meant by  
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which corresponds to the Fourier component with phasor 


0 0

. It is trivial to obtain Eulerian velocity corre- 
sponding to Equation (10); we simply put x x v t 

 

 
in Equation (10) to get  
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We immediately recognize that Equation (11) solves 
the Eulerian equation of motion  
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where x and t are now independent. The above Lagran- 
gian consideration clarifies the meaning of 0  which is 
the initial velocity, and v is the perturbed velocity. 

Proceeding from the above preliminary consideration 
of fluid equation, we derive the collisionless damping of 
ion acoustic wave via the fluid equations. We need both 
electron and ion equations. The plasma at hand is con- 
sidered to be a group of ion beams; each beam is charac- 
terized by the initial velocity v0 in the background of 
Boltzmann-distributed electrons. Modeling a plasma as a 
group of beams with varying beam velocities was earlier 
adopted by Bohm and Gross [6]. The ion equations read  
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where v0 is the zero order initial ion velocity, v is the 
perturbed ion velocity, 0  is the equilibrium ion 
number density of the v0-beam, n is the perturbation of 
the ion number density of the v0-beam, and   is the 
electric potential   E . 

We assume that the electrons are Boltzmann-distrib- 
uted in the background of the plasma. Thus, the perturb- 
ed electron number density in each beam can be written 
as  

 0
e

e
N v

T

e 1e

e

T
en N

 
  
 
 

        (15) 

The Poisson equation reads  
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Equations (13) and (14) yield, in terms of the Fourier 
amplitudes,  
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Substituting Equation (17) into the Fourier transform- 
ed equation of Equation (16) and integrating over the 
distribution of the initial velocities 0f v

   0 0 0df v v
 by putting 

, we obtain the dispersion relation,  N v

   
 

 
0 0

2

0

d1
1   0pi

D

k k

f v v

k kv

  


 





 

   


2
2 2

, 1 ,

   (18) 

where pi  is the ion plasma frequency and the Debye 
length of the plasma is defined by  
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Integrating by parts in Equation (18), the susceptibility 
is found to be  
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In order to enforce the causal requirement  
 , 0 0k t   , we take the steps parallel to Equations 

(3)-(7) by introducing Equation (2) for the quantity 
 0  in the above integral. We are led to the fol- 

lowing equation by the causal requirement.  
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The first term on the right side of Equation (20) comes 
from the Boltzmann-distributed electron density which 
replaces the electron Vlasov equation. Equation (20) 
agrees with the kinetic theory result. In summary, we 
derived the the susceptibility of ion acoustic wave via 
fluid equations and without resorting to the argument of 
analytic continuation; we used more direct condition of 
the causal requirement expressed by Equation (3). 

4. Discussion 

 Im We have shown that    as obtained by the Lan- 
dau contour follows from the causal requirement express- 
ed by Equation (3),  0 0t  

 0 0t  

. This derivation of the 
collisionless damping makes it transparent that the cau- 
sality is responsible for the collisionless damping. The 
collisionless damping of plasma waves appears to be uni- 
versal because the causality prevails regardless of the 
way of describing plasmas. 

The causal requirement, , is mathemati- 
cally equivalent to the analyticity of     in the upper 
half -plane; this analyticity is basic to the derivation of 
the Landau damping via the argument of the analytic 
continuation, as is read in standard text books. It can be 
also shown that the causality condition directly leads to 
the Kramers-Kronig relations [2]. 

We also showed that Landau damping can also be de- 
rived from the fluid equations by applying the causal 
requirement. Understanding the Landau damping in terms 
of causality might provide further insight for plasma 
electrodynamics.  

The Cerenkov radiation is emitted by a medium and is 
known to be the inverse process of Landau damping. The 
Cerenkov radiation may be also interpreted in the light of 
causality. 
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