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Abstract 

The nitriding behavior of cold rolled Fe93Ni4Ti3 specimens was compared with that of hot rolled specimens 
of the same materials. Radio frequency (rf) nitriding was performed for 10 minutes in a 10-2 mbar nitrogen 
atmosphere. The continuous plasma power was varied from 300-550 W in steps 50 W or less. Results of op-
tical microscopy (OM), x-ray diffraction (XRD) and microhardness measurements (Hv) are presented and 
discussed with regard to the influence of kind rolling on the nitriding behavior, particularly nitride formation 
and nitride layer growth on mechanical properties. The results show a remarkable increase of nitrogen diffu-
sivity and microhardness of cold rolled nitride samples. These best results may be attributed to enhancement 
of the defect and/or a compressive stress. 

Keywords: Cold Rolled, Hot Rolled-Radio Frequency (Rf), Microhardness, Optical Microscopy (OM), 
X-Ray Diffraction (XRD) 

1. Introduction 

Surface plasma nitriding of steels is a well-established 
technique to produce a modified (hard) surface layer on 
steels or other iron based alloys with good anti-corrosive 
and wear resistance properties. Both the nitrogen case 
depth and the resulting nitride type commonly depend on 
the nitriding conditions as well as on the properties of 
material, such as composition, crystallographic structure 
and the density of various lattice defects. In particular, the 
thickness and the composition of the nitrided layer are 
strongly affected by the type of chemical reactions oc-
curring at the specimen’s surface as well as by the diffu-
sivity of nitrogen in the treated material. 

Nitrogen diffusivity in materials depends on many fa- 
ctors including lattice structure, grain size, chemical com- 
position and defect density. In ultrafine-grained materials, 
which can be fabricated by consolidation of nanopow-
ders [1,2], sever plastic deformation [3], hot rolling [4] 
and cold rolling [5], the increased grain boundary area 
and the dislocation density will promote the diffusion of 
alloying elements and nitrogen. Therefore, it can be ex-
pected that during a thermochemical treatment, e.g. pla- 
sma nitriding, such materials will develop a large thick-

ness of nitriding layer. Ferkel et al. [6] reported that 
sever deformation of X5CrNi1810 steel rf nitrided at 
350°C can enhance the nitrogen diffusion. This enhance- 
ment may be attributed to an increased grain boundary 
area and dislocation density. In the present investigation, 
an attempt has been made to evaluate the effect of kind 
rolling prior to rf plasma nitriding mainly on the proper-
ties of Fe93Ni4Ti3 samples. After rf plasma nitriding, the 
surface microhardness, nitrogen diffusion layer thickness, 
surface morphology and formed phases have been ana-
lyzed using a Vickers microhardness tester, optical mi-
croscopy (OM) and x-ray diffraction (XRD). 
 
2. Experimental Procedure 

The material studied was Fe93Ni4Ti3 iron-based alloy. 
Cupon-shaped specimens 1 cm × 2 cm in diameter and 2 
mm thick. The cupons were prepared by arc-melting pure 
metals with nominal purities of 99.99 wt.% in an induc-
tion furnace under an argon atmosphere (99.9999% pu-
rity). The produced castings were heated at 900ºC for 
two hours. The heated specimens were hot rolled with 
about 10% reduction each time at 800°C up to 2mm 
thickness. After the initial hot rolling, these specimens 
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were divided into to two groups. One was rolled at room 
temperature (cold rolled) and the other was rolled at 
900°C (hot rolled). Nitriding treatment of specimens was 
carried out using a radio frequency (rf) inductively cou-
pled glow discharge, with a continuous mode of opera-
tion at 13.56 MHz. The nitriding system consists of a 
quartz reactor tube with 500 mm in length and 41.5 mm 
in diameter evacuated by a two-stage rotary pump to a 
base pressure of 10-2 mbarr. Iron-based alloy samples 
were supported on copper sample holder fitted which 
were equipped with water cooling pipes. Nitrogen (N2) 
was introduced to establish a gas pressure of 8-8.4 × 10-2 
mbar, measured with a pirani gauge. The distance be-
tween the sample holder surface and the rf coil was 2.9 
cm and the water cooling rate for samples was 1500 
cm3/min. The discharge is generated by an induction 
copper coil energized by rf power generator (type HFS 
2.5 KW, 13.65 MHz) via a tunable matching network. 
The surface morphologies and cross-sectional micro-
graphs were examined using an optical microscope. The 
phase compositions of the surface region of the nitrided 
layer were studied by X-ray diffraction (XRD) using 
CuKα radiation in the Ө-2Ө gemoetry. The microhard-

ness was measured by using a Wetzlar microhardness 
tester with the load of 0.98 N (100 g). 
 
3. Results and Discussion 
 
3.1. Cross-Section Analysis by Optical  

Microscope 
 
An optical micrograph (OM) cross-section study was 
employed to determine the thickness of the nitrided 
cross-section layer (compound layer) of cold and hot (at 
900°C) rolled Fe93Ni4Ti3 samples. The typical cross sec-
tion views of nitrided samples treated for 10 minutes 
using different input plasma power levels of 300, 350, 
400, 425, 450, 475, 500, 525 and 550 W are shown in 
Figure 1 (for cold) and in Figure 2 (for hot at 900°C) 
rolled treatments, respectively. From Figures 1(a) and (b) 
and 2(a) and (b), it can be seen that in both types of roll-
ing, the two samples which were nitrided at 300 and 350 
W do not contain any observed compound layer. This 
behavior can be attributed to low plasma processing 
power (from 300 W to 350 W) where the mobility of ni- 

    
(a)                             (b)                               (c) 

    

 

 
(d)                             (e)                                (f) 

     
(g)                                (h)                             (i) 

53μm 

Figure 1. Optical micrographs of compound layer thickness of cold rolled samples Fe93Ni4Ti3 treated at various plasma proc-
essing power input: (a) 300 W; (b) 350 W; (c) 400 W; (d) 425 W; (e) 450 W; (f) 475 W; (g) 500 W; (h) 525 W; (i) 550 W. 
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(g)                                       (h)                                   (i) 

 
49μm 

Figure 2. Optical micrographs of compound layer thickness of hot rolled samples Fe93Ni4Ti3 at 900ºC treated at various 
plasma processing power input. (a) 300 W; (b) 350 W; (c) 400 W; (d) 425 W; (e) 450 W; (f) 475 W; (g) 500 W; (h) 525 W and 
(i) 550 W. 
 
trogen atoms is low and penetration is done more easily-
through grain boundaries [7]. When the plasma power 
input is increases with increasing the input plasma power 
from 400 W to 550 W for cold and hot rolled samples, 
respectively. The variation range of the layer thickness is 
15 μm to 79 μm for cold rolled while from 11 μm to 56 
μm for hot rolled at 900°C. This enhancement of thick-
ness for the cold rolled samples is probably due to the 
promotion of nitrogen ionization, leading to high con-
centrations of high-energy ions supplied onto the speci-
men. However, this result agrees with Mahboubi et al. 
[7]. Also, Ferkel et al. [8] reported that, the cold high 
pressure torsion (HPT) processed material shows a 
thicker and more homogeneous compound layer than the 
material not subjected to HPT; the nitrogen uptake is 
largest in the HPT-processed material.  
 
3.2. Compound Layer Thickness 
 
The variation of the compound layer thickness of cold 
rolled Fe93Ni4Ti3 and hot rolled Fe93Ni4Ti3 at 900°C ni-

trided samples for different input plasma power are 
shown in the Figures 3 and 4 respectively. However, 
these values of thickness are measured from the cross 
section morphology. From these figures, for both the 
kinds of rolling, one can see that the thickness increases 
continuously as the plasma power increases. The en-
hancement of thickness is probably due to the domina-
tion of lattice and the penetration of nitrogen atoms 
through the grains, which all enhance the formation of a 
more uniform compound layer [8]. 
 
3.3. Surface Morphology 
 
Figure 5 shows typical OM micrograph of the surface 
features of untreated and treated cold rolled Fe93Ni4Ti3 
samples for different plasma processing power. The mi-
crograph of the untreated sample is shown in Figure 5(a). 
This figure appears to be a relatively coarse-grained 
structure composed of iron α–phase. The micrographs of 
treated samples at 300 W and 350 W are shown in Fig-
ures 5(b) and (c), which reveal no observed change in  
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Figure 3. Thickness of compound layer as a function of 
plasma power for cold rolled samples of Fe93Ni4Ti3. 
 

 
Figure 4. Thickness of compound layer as a function of 
plasma power for hot rolled samples of Fe93Ni4Ti3 at 900ºC. 

         

(a)                             (b)                              (c) 

           
(d)                                 (e)                                (f) 

        
(g)                                   (h)                                (i) 

               53μm 
(j) 

Figure 5. Optical micrographs of the surface morphology of cold rolled samples Fe93Ni4Ti3 for plasma processing power input 
(a) 0.0 W; (b) 300 W; (c) 350 W; (d) 400 W; (e) 425 W; (f) 450 W; (g) 475 W; (h) 500 W; (i) 525 W; (j) 550 W. 
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the microstructure with respect to the native sample. It 
means that, this range of plasma processing power is not 
adequate to form a clear compound layer. Figures 5(d-j) 
shows a different microstructure with respect to the above 
samples as plasma power increases from 400 W to 550 
W. This microstructure is finer and finer in scale, as a 
result of the increased nitrogen solubility and diffusivity 
produced by the rf plasma process. This observation 
agrees with Pantazopoulos et al. [9], in which they re-
ported that the liquid nitrocarburised of cold work steel 
exhibits a very different microstructure with respect to 
native sample. 
 
3.4. Phase Analysis by XRD Diffraction  
 
The X-ray diffraction patterns with CuKα radiation was 
used to clarify the effect of kind rolling on the formed 
phases in the original and nitrided samples at different 
input plasma processing powers. Figures 6(a) and 7(a) 
show the diffraction patterns of the original samples of 
cold and hot (at 900°C) rolled Fe93Ni4Ti3, respectively. 
These figures reveal that all intense peaks are assigned to 
α-Fe-phase. The same diffractgrams can be seen in Fig-
ures 6(b) and 7(b) for the nitrided samples of cold and 
hot rolled Fe93Ni4Ti3 respectively, when the plasma 
power input is increased to 350 W. When plasma power 
input was increased to 450 W and 550 W for cold ni-
trided samples, the most intense peaks are assigned to ε- 
Fe2-3N and γ′-Fe4N phases while the peaks of α-phase are 
disappeared as shown in Figures 6(c-d). It is worth men-
tioning that hcp ε-nitride exhibits a higher hardness than 
fcc- γ′-nitride [10]. Figure 7(c) shows the diffraction 
peaks of the hot nitrided sample when plasma power 
input was adjusted to 450W. From this figure, only 
ε-phase can be detected while the peaks of α and γ′ phas-
es have disappeared. When plasma power input reached  
 

 

Figure 6. X-ray diffraction patterns for Fe93Ni4Ti3 samples 
(a) untreated cold rolled and treated for plasma processing 
powers; (b) 350 W; (c) 450 W; (d) 550 W. 

 

Figure 7. X-ray diffraction patterns for Fe93Ni4Ti3 samples 
(a) untreated hot rolled at 900ºC and treated for plasma 
processing powers; (b) 350 W; (c) 450 W; (d) 550 W. 
 
550W for the same sample in Figure 7(d), the intense 
peaks of γ′–phases emerge, while the peaks of ε-phase 
decrease significantly. From the above results, the fol-
lowing observations are made: 1) In both the types of 
rolled samples, the peaks of NiN and TiN cannot be de-
tected. 2) The peak ratio of ε-phase to γ′-phase increases 
by increasing plasma power input from 450W to 550W 
for cold rolled samples, while it decreases at the same 
condition for hot rolled samples. It can be concluded that 
this is the reason for continuous increase in the micro-
hardness for the cold rolled treated samples after nitrided 
for 450W, while the microhardness abruptly decreases 
for the hot rolled treated samples after nitrided for the 
same power (see the next paragraph). 3) The influence of 
the Ni present in the samples has not been considered, 
because the interaction of Ni with N that is even weaker 
than the interaction between N and Fe. However, these 
observations agree well with Chezan et al. [11], in which 
they reported that the severe deformation caused by cold 
rolling for Fe-Ni-Ti and Fe-Ni-Cr leads to formation of 
large density nucleation sites for new phases, i.e. γ′ and ε. 
 
3.5. Microhardness Measurements 
 
In order to clarify the influence of kind rolling on the 
mechanical properties of nitrided samples, microhard-
ness measurements of nitrided cold rolled and hot rolled 
(at 900°C) Fe93Ni4Ti3 samples were performed at a load 
of P = 100 g (0.89N).  

Figure 8 displays the variation of microhardness val-
-ues of untreated and nitrided cold rolled samples Fe93 

Ni4-Ti3 against the input plasma power. From this figure, 
one can notice that the microhardness value of the ni-
trided samples at 300, 350W equals nearly the same value 
of untreated sample 297 HV. This trend is probably due 
to the fact that at 350 W and below, there is not enough rf 
power to create precipitation, which would lead to sig-
nificant hard phases. This result is confirmed by XRD 
analysis and OM observations. When plasma power in 
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Figure 8. Microhardness values of untreated and treated 
cold rolled Fe93Ni4Ti3 samples for different plasma power 
input. 
 
put increases from 400 to 550W, the microhardness 
value increases exponentially to reach the value of 2098 
HV. This represents a 7-fold increase in the surface-
hardness comparing with the untreated sample (282 HV). 
The anomalously high microhardness values are due to 
the fact that high defect density in nitrided samples offers 
enough nucleation sites for nitrides and enough diffusion 
paths for nitrogen. In this case, a dense compound layer 
with high hardness can easily form [6]. Also, the dra-
matic increase of hardness is a result of compressive 
stresses, which is induced in the target surface by the 
cold rolling and a compound layer produced on the target 
surface by nitriding.  

Figure 9 depicts the variation of microhardness values 
of untreated and nitrided hot rolled (at 900ºC) samples 
Fe93Ni4Ti3 against the input plasma power. From this 
figure, one can notice that the microhardness values of 
the nitrided samples at 300 W and 350 W equal nearly 
the same value of untreated sample 274 HV. As plasma 
power input increases from 400 W to 450 W, the micro-
hardness value increases continuously to reach the value 
of 572 HV; this represents a 2-fold increase in the sur-
face hardness comparing with untreated sample. This 
trend may be credited to the formation of a compound 
layer thickness of 11 µm to 56 µm, which contains a 
high concentration of nitrogen [12]. Similar behavior has 
been observed by Devi and Mohanty [13], in which a 
microhardness value of 1478 HV in hot rolled D2 steel 
was achieved after plasma nitriding at 510ºC for 18 h. 
With the high input plasma power of 475 W or more, the 
microhardness value decreases. This reduction can be 
attributed to the decrease the ratio of ε-phase to γ'-phase 
[10]. However, this result agrees well with XRD analy-
sis.  

In light of the microhardness measurements, it can be 
concluded that a general hardness increase for cold rolled 
treated samples can be associated with enhancement of  

 
Figure 9. Microhardness values of untreated and treated 
hot rolled Fe93Ni4Ti3 at 900°C samples for different plasma 
power input. 
 
defect density and/or a compressive stress. i.e., the hard-
ness of the plasma nitrided sample shows a kind of roll- 
ing dependent behavior. 
 
4. Conclusions 
 
The thickness, hardness and phase composition of the 
modified layer formed on cold and hot rolled nitrided 
Fe93Ni4Ti3 are investigated in this work. All of the sam-
ples were hardened by forming nitrided layers. The ad-
vantage of the pre-cold rolling is that a thicker nitrided 
layer with higher hardness is formed. The cold rolling 
process is a well-known technique applied to improve 
the mechanical properties of steel surfaces. Through this 
process, a large number of grain boundaries, dislocations 
and positive holes form through the surface of specimens, 
which all enhance the nitrogen diffusion. The surface 
hardness of nitrided cold-rolled Fe93Ni4Ti3 samples re- 
presents a 3.7-fold increase with respect to the nitrided 
hot-rolled samples. This trend may be credited to the 
high defect density of nitrided cold rolled samples, which 
offers enough nucleation sites for nitrides and enough 
diffusion paths for nitrogen [12]. The modified surface of 
nitrided cold rolled samples is characterized with a finer 
microstructure. The phase analysis dictates that the peak 
ratio of ε to γ′ phase increases by increasing plasma 
power input from 450 to 550 W for nitrided cold rolled 
samples, while it decreases at the same conditions for 
nitrided hot-rolled samples. This is the reason behind the 
continuous increase in the microhardness for the cold 
rolled treated samples after application of 450 W plasma 
power, with a decrease for the hot rolled treated samples 
after being nitrided for the same power. The most strik-
ing results of this work are the increased thickness of the 
nitrided cold rolled samples. Indeed, diffusion of nitro-
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gen by the microcracks mechanism could be expected to 
be significantly affected by an increase in grain boundary 
area as a result of cold rolling. However, the experimen-
tal evidence demonstrates that the microstructure of cold 
rolled material does have a significant influence on ni-
trogen diffusion. 
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where ݉ in (3) is an integer and ( )x y 
 

 in (4) is the 

angle made between the vector x y


 and the ݔ-axis; 

  represents anyon density. The effect of the operator 

phase transformation (3) is to attach m  flux quanta to 
each electron. Composite particles experience the effec-

tive magnetic field B ( )eff x


 described by the potential 

Α ( )j x


, where Α ( )j x


 depends on the external vector 

potential ( )ext
jA x


 and a field ( )kC x


, which is an aux-

iliary field determined solely by the density ( )x


, 

( ) ( ) ( )ext
j jA x A x C x 
  

.           (5) 

Therefore, from (5), it follows that 

( ) ( ) ( )eff ij i j DB x A x B m x    
  

 ,      (6) 

and so the effective magnetic flux is the sum of the real 
magnetic flux and a term which can be regarded as a 
Chern-Simons flux. 

Now suppose that ( )jA x


 in (4) satisfies the Coulomb 

gauge condition 

( ) 0j jA x 


.               (7) 

It is possible to express ( )jA x


 in terms of a scalar 

field ( )A x


 as 

( ) A( )j jk kA x x
e

  
 

 .          (8) 

This conclusion is only possible in a planar geometry. 

Substituting (8) into ( )effB x


, the field A( )x


 can be 

regarded as the scalar potential of the effective magnetic 
field, 

2( ) A( )effB x x
e

  
 

.           (9) 

This is basically the type of constraint we would like 
to apply in order to solve (2); that is, by taking a particu-

lar reasonable form for ( )effB x


. 

The state vector Ψ  is assumed to fully or very nearly 
characterize the electronic state of the system. The total 
free charge is given by 

2 2

s
Q e d x  .           (10) 

The steady state time-independent wavefunction is 
given by 

/iEte
   , 

where 0Ψ  is time-independent and will have to satisfy 

the time-independent Schrödinger equation 

H E    .               (11) 

Let us incorporate an additional assumption into the 

construction of this model here. Let us suppose that we 

can write ( ) ( )effB x B x
 

 in the following form  

2
( )B x k 


,              (12) 

where k  is related to the total magnetic flux through 
the surface; that is, the number of flux quanta of the 
magnetic field and other constants. The magnetic flux 
density affects the electronic states as it modifies the 
Hamiltonian. Of course, the Hamiltonian is modified by 
the vector potential, which in a simply-connected domain 
is given by the usual formula  A B x  . For exam-

ple, suppose we write and use (12) in the form 
2

0( )B x a 


,              (13) 

and a  is a constant which satisfies 

2 2
0Φ = ( )

s s

Q
B x d x a d x a aN

e
    


     (14) 

In (14), N  is the number of relevant current carrying 
charge quanta. Moreover, let M  denote the number of 
magnetic flux quanta, which means the total flux can be 
written as 

Φ
2

h
M

e
 .              (15) 

When the flux and charge are quantized, these results 
imply that a  is a fraction which can be expressed in 
terms of the flux quantum 

2

M h
a

N e
 .               (16) 

On a simply connected region, the vector potential can 
be represented as a one-form given in terms of a single 
function  , which stands for A  here, as  

x yA dy dx   .            (17) 

Using (17), the magnetic field can be calculated and 
then (13) yields a constraint equation 

2

0Φxx yy a   .           (18) 

 
3. Solution of the Schrödinger Equation 

 
The main objective here is to solve the time-independent 
Schrödinger equation coupled with Equation (18) to ob-
tain Ψ . Of course, vector potential (17) appears in the 
Schrödinger equation, as can be clearly seen from (2). 
This procedure will lead to a nonlinear equation; howev-
er, it will be found that solutions with the correct physi-
cal properties can be determined in closed form. Keeping 
the first term in (2), the left hand side without the overall 
multiplicative constant applying (17) leads to  

     
2

2 2 2 2
0 0,x 0,y 02

2ix y y x x y

e e              
 
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Therefore (11) written out in full takes the form, 

     
2

2 2 2 2 2
0 0,x 0,y 02

0

2i

2 .

x y y x x y

e e

mE

   
 

            
 








   

(19) 
Now the problem takes the form of finding solutions 

to (19) subject to the condition (18) This will not be done 
in a completely general way, but with some assumptions 
which will lead to a physically relevant result. 

Suppose the electron system describes a rectangular 
geometry in the xy  plane. Moreover, let 0Ψ  have a 

plane wave dependence in the x  direction, so solutions 
which have the structure 

   0Ψ , .ikxx y e y            (20) 

is sought where  y  is a real function of y . Let us 

take the function in the vector potential to be indepen-
dent of x , 

( )y                    (21) 

The derivatives of 0Ψ  can be calculated based on (20) 

and then substituted into (19), 

          
 

2 2 2 2
yy 2e

2 .

yk y y k y y e y

mE y

    



    

 

 
 

(22) 
This takes the form of a second order equation for 
 y , but it is coupled to  y  in (17), 

       2
yy 2 .yy k e y mE y              (23) 

If   is assumed to have the form (21), then 0xx   

and (18) assumes the simple form 

 2
yy .a y                (24) 

Since the right-hand side of (24) depends only on y , 

(24) can be integrated once to obtain y , which appears 

in (23), in terms of  y  as 

   
0

2
y .

y

y
y a d               (25) 

Imposing   00y y  . Substituting (25) into (23), this 

coupled system is reduced to the following nonlinear 
eigenvalue problem 

       
0

2 2
yy 2

2
( ) .

y

y

e mE
y k a d y y         

(26) 

Therefore, the dependent variable in (26) is  y . In 

addition to (26), it is useful to write down a decoupled 
version which is obtained by introducing a new variable 

 y  given by 

   
0

2 .
y

y

e
y k a d    

      (27) 

Equation (26) can be written in the form of a pair of 
equations as follows, 

           2 2
y yy 2

2
, .

e mE
y a y y y y y         

 
(28) 

The Hall resistance for this two-dimensional system 
can be calculated based on (28), in fact it can be written 
in terms of  y . The geometry is that of a rectangular 

plate with edges which are parallel to the x  and ݕ-axes. 
To be consistent with (20), where the x -dependence in 
Φ଴ is assumed to be a plane wave, only the y  dimen-

sion will be of significance here. The terminations for 
integration localized at fixed ݕ-coordinates, are termed 
the left (L) and right (R) edges of the geometry. The Hall 
potential is defined as the difference of potentials be-
tween these two edges of the rectangle. In fact, the Hall 
potential can be obtained from (26), or better in terms of 
the solution for  y  by means of 

    
2

2 2
H ,

2
V R L

me
  


       (29) 

where R and L refer to right and left. Only the longitu-
dinal x  or plane wave component of the current density 
contributes 

     
0

2 2
x 0 0Re A .

y

y

e e e
j i e k a d y

m m
         

  


 

(30) 
The potential HV  is transverse to the current. From 

(28), since 2  can be related to y , the current density 

can be represented entirely in terms of the variable   
as 

 
2 2

2 2
x y .

2 y

eh
j

m am am
       

 
 

Integrating xj  and using the definition of HV  given 

in (29), xI  can be related to HV  as follows, 

      
2 2

2 2 2
x x H .

2 2

L L

y
R R

e
I j dy dy R L V

am am a
        

 

(31) 
By means of (16), the quantity a can be eliminated 

from (31) to produce the following remarkable formula, 
2

x H

2
.

N e
I V

M h
               (32) 

The result in (32) immediately implies the Hall resis-
tance is quantized according to, 

H
H 2

x

.
2

V M h
R

I N e
               (33) 
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Finally, it will be shown that a wavefunction ߰଴ can 
be determined based on the coupled system (28). In fact, 
the coupled equations in (28) can be combined into a 
single nonlinear differential equation for the function 

 y , from which  y  can be determined. To begin 

to do this, differentiate the first equation in (28) and then 
divide this by y  to obtain 

yy y

y

2 .
 
 

                 (34) 

Differentiating both sides of this, there follows 
2 2

yy yyy

2 2
2 2 .y yy

y

   
  

             (35) 

Squaring both sides of (34), an additional expression 

for 2 2/y   is obtained. Substituting this into the right 

hand side of (35), 
2

yy yyy yy

y y

1
.

2 4

  
  

 
    

 
          (36) 

From the second equation in (28), upon dividing by  , 
it follows that 

yy 2
2

2mE
.





 


              (37) 

Substituting (37) into (36), a third order nonlinear eq-
uation in terms of the independent variable   results, 

2

yyy yy 2

y y

1
2 2 ,

2
E

 


 

 
    

 


        (38) 

where we put 

2

2mE
.E  




              (39) 

A general solution to (38) may not be possible, how-
ever, something can be done. Note that upon omitting 

2(2 2 )E 


 from (38), the equation can be integrated. 

Thus, we have      yy y

1
ln ln 0

2y y
   , and inte-

grating gives ൫ߪ୷୷൯
ଶ
െ ฎܿ ୷ߪ ൌ 0. This can be integrated 

as well to give    3

1 2 3
1

1
y y

3
c c c

c
    . A specific 

physically realistic solution to the general form of (38) 
can be approached as follows. The first equation in (28) 
implies that the sign of  y  is determined by a , 

therefore, when   does not vanish,   must be a mo-
notonic function. Consequently, one way in which a 
class of solution can be obtained is to consider the case 
in which y  is only a function of  , 

 y .w                  (40) 

In fact,  g   can be determined explicitly. Diffe-

rentiating both sides of (40) with respect to ݕ, we get 

 2
yy y yyyw , w .w w w w w            (41) 

Substituting (40) and (41) into (38) gives rise to the 
following equation for w , 

2 21
w 2 ,

2
w w E      

 


          (42) 

Clearly (42) is nonlinear, however, there is a way to 
produce a solution which is physically reasonable. There 
exists a quadratic polynomial solution for w which can 
be expressed in terms of   as 

2w( )        

These constants can be specified upon substitution in 
(42), and it will constitute a solution provided that 

0   and 

  21
w 2 .

2
E   


         (43) 

Taking (43) and replacing the result in (40), it is clear 
the resulting equation can be separated to give 

2

2
y c.

2

d

E




 

 
           (44) 

The negative sign gives a tangent function solution 
which will be prone to have poles and can be written 

    2 tan 2 y c .y E   


 

However, the other choice of sign in (44) gives rise to 
the result,  

1
arctan( ) y c.

2E E


  

 
 

This can be solved explicitly for the function  y ,  

   
2 y

2 y

1 C
2 tanh y c 2 .

1 C

E

E

e
y E E E

e






  
     

  





  

(45) 

By differentiating (45), an expression for  2 y is 

obtained. The function  y  which we need to write 

the wavefunction (20) is found from the square root of 
this, namely 

 

1

21 y
4

1
2 y

1

2 2 C .

1 C

E

E

E e
y

ea
e






 
   
 

 








     (46) 

The wavefunction is then determined using (46) by 
means of,  
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 /Ψ .iEt ikxe e y   

This is a bounded function on any right half axis and 
square integrable over the rectangular area. Thus there 
exists a solution with the desired physical properties. 

Therefore, it has been seen how (1) emerges and that 
physical classes of solutions to (2) can be investigated. 
Most importantly, a link between the wavefunctions im-
plied by the model and the calculation of a corresponding 
resistence for the model has been shown. 

4. Conclusions 
 
An elementary model for the quantum Hall effect has 
been developed. It is known in this field that simple 
models based on Schrödinger equations can be very use-
ful in studying the effect. For example, the equation is 
solved with the harmonic oscillator potential to describe 
and obtain the energies of Landau levels. The model 
emphasizes several aspects of the geometry of the system 
in obtaining the results (32,33). It is quite interesting that 
a single particle Schrödinger equation can be obtained 
and solved in closed form, and which incorporates a sig-

nificant amount of the physics involved. 
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Abstract 

The scattering of resonant radiation on an excited atom is considered. It is shown that the scattering cross 
section calculated with the help of quantum theory of radiation is five times larger than the one calculated 
using semi-classical theory. The quantum theory predicts, in general, the change in internal quantum statisti-
cal properties of light due to the scattering processes on excited atoms. 

Keywords: Quantum Theory, Semi-Classical Theory, Resonant Radiation 

1. Introduction 

The quantum excited systems possess remarkable prop-
erties. They manifest themselves most prominently in 
lasers and masers, which were created in the middle of 
the last century. The theory of these devices was elabo-
rated by W. Lamb [1] on the base of a semi classical 
theory of radiation which deals with classical electro-
magnetic field. Later the quantum theory was proposed 
[2]. It is possible to state omitting the fluctuations prop-
erties that both the semi classical and the quantum theo-
ries result practically in the same results for quantum 
means values. Such a fact resulted in overestimation of 
the applicability of the semi-classical theory. In 1966 
year, Ch. Koester predicted the effect of light enhance-
ment [3] by selective reflection of resonant radiation 
from excited media. All efforts of quantitative explaining 
this effect on the base of semi-classical theory of radia-
tion discussed in monograph [4] were unsuccessful [5,6]. 
It was shown later that quantum field theory should be 
used instead [7], but the mathematically problems on this 
way occurred very difficult [8]. The consequences of 
such a theory manifest themselves on a macroscopic 
level. The correct description of stimulated radiation 
plays an especial role when the resonant reflection of 
light from excited media is considered. Nevertheless, 
there are recent works [9] which make use the semi- 
classical theory and Fresnel’s formulae to describe the 
reflection of light from enhanced media. 

Much attention has been paid recently to the effect of 
the enhanced transmission of light through the metallic 
films [10,11]. There is no agreement between theory and 
experiment. It is believed that the enhancement of radia-
tion may be explained through the interaction of light 

with induced standing surface—plasmon waves. Thus we 
deal with effects of stimulate radiation, which means that 
one should use the quantum field theory. 

Examples shown above made us revise the theory of 
resonant radiation scattering on excited systems. The 
conventional perturbation technique is not adequate to 
describe the resonant scattering and it is necessary to 
sum up (Dyson summation) the infinitely long subsets of 
Feynman’s ladder diagrams. It was V. Weisskopff and E. 
Wigner who constructed such a theory for the first time 
by considering the interaction of resonant radiation with 
atomic systems [12]. Such a summation of Feynman’s 
diagram proved to be useful for the shape of spectrum 
line of resonant radiation and effects of resonant light 
scattering on non excited systems. The difficulties 
emerge in the theory of combined resonant scattering 
processes when one of the photons after stimulation emi- 
ssion of excited atom undergoes of elastic scattering on 
the ground state of the same atom. Such combined scat-
tering is non-analytic in charge. The summation of the 
Feynman’s diagrams like this one is not performed up to 
now [8]. We propose indirect way to estimate this sum. 

Present work demonstrates insufficiency Weisskopff- 
Wigner’s method and Dyson’s method of summation 
Feynman’s ladder diagrams for the calculations the 
cross-sections of light scattering on resonant excited 
systems and failure of semi-classical theory of radiation.  

Let the resonant radiation scatters on some system the 
initial state of which in interaction representation is de-
scribed by wave function 0 . The total wave function 

of electromagnetic field and scattering system is denoted 
as  . The expansion of such function over a base of 
scattering system wave function i  is  
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 0 0 0 0 0 0
0

i i
i

f f f f   


       . 

The term containing 0  is written separately. The 

scalar product due to orthogonality of scatter’s wave 
functions  

0 0 0 0 0f f     

is equal to zero. Assume that the incident light is in 
quantum coherent state [13] and its quantum mean elec-

trical strength is not equal to zero ˆ ( , ) 0t rE in all 

space points r  at arbitrary instant of time t . We are 

interesting in quantum mean value of operator ˆE  of 
the reflected light 

0 0 0 0 0 0 0 0

( ) ( )

ˆ ˆ( , ) ( , )

ˆ ˆ( , ) ( , )

c n

t t

f t f f t f

 

 

 

   

   

    

 

r r

r r

E E

E E

E E

(1) 

We state that the first term of the right hand side of 
Equation (1) describes the so-called coherent scattering 
channel with medium returning to the initial quantum 
state after scattering (e.g. elastic scattering). The second 
term of the right hand side of Equation (1) describes the 
non-coherent scattering processes with the medium 
changing initial quantum state (Compton scattering, Ra-
man scattering and induced radiation of light). The latter 
is very important. We stress once again that the coherent 
Heisenber-Kramers scattering and induced radiation of 
light are described by different scattering channels. It 
means that if the scattering media consisted only of the 
non-excited atoms the first term of Equation (1) would 
describe the coherent Heisenberg-Kramers scattering 
while the second one would describe the diffusion scat-
tering. If the excited atoms are present in the medium 
then due to the induced radiation processes it is impossi-
ble to avoid the presence of the non-coherent channel 
even if only the selective scattering is under our investi-

gation. The total measured electrical strength ˆ ( , )t rE , 

that is the left hand part of Equation (1), may be evalu-
ated separately using the semi-classical theory of radia-
tion if one neglects the fluctuation optical processes and 

their influence on ˆ ( , )t rE . The region of validity of 

the semi-classical theory of radiation is very large but it 

does not mean that ˆ ( , )t rE  describes the bilinear 

field characteristics.  
Let us consider the energy characteristics of electro-

magnetic field described by normal operator product 

 2ˆ ˆN E . Such value should be estimated from below 

using the following procedure. One takes into account 
that 

 ˆ ˆ ˆ( , )
2

i ickt i icktck
t i e e e

V
 

  


      kr kr
k k k

k

r


E , 

where ˆ k  and ˆ  
k  are the annihilation and creation 

photon operators in states describing by wave vector k  
and polarization index  . These operators obey the 
conventional commutation relations  

ˆ ˆ;     
      k k kk  

Consider electromagnetic field as a transverse 

one ( 1, 2)  , ke  denotes the unite linear polarization 

vectors, V  is the quantization volume. Since the op-

erators ˆ k  and ˆ  
k  are mutual conjugate than 

    ( ) ( )ˆ ˆ ˆ ˆ 0i ic k k te k e k e 
     

 
         

     
 

     k k r
k k k k k k

k k

 

  Now 

( ) ( )ˆ ˆ i ic k k tkk e e e 
   


      

   
 

  k k r
k k k k

kk

( ) ( )ˆ ˆ i ic k k tkk e e e 
   


      

   
 

 k k r
k k k k

kk

 

If the electromagnetic field possesses the characteristic 
frequency 0  and characteristic wave length 0  and 

we are interesting in time and space values much larger 
then 01/  and 0  the following inequality occurs 

( ) ( )ˆ ˆ i ic k k tkk e e e 
   


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( ) ( )ˆ ˆ i ic k k tkk e e e 
   


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( ) ( )ˆ ˆ i ic k k tkk e e e 
   


     

   
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  k k r
k k k k
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 

 k k r
k k k k
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Now it is non difficult to see that 

 2ˆ ˆ ( , )N t rE  

( ) ( )ˆ ˆ i ick t tc
kk e e e

V
 
   


       

   
 
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k k k k

kk


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i ick t tc
kk e e e

V

t
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   




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

 k k r
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k
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

E

  (2) 

Thus ˆE  proposes the opportunity to estimate 
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 2ˆ ˆN E from below. The validity of obtained ine-

quality does not depend on particular quantum state on 
which the averaging is performed and does nothing to do 
with perturbation theory. But if such inequality is applied 
to each term of right hand site of  

2 2
0 0 0 0

2
0 0 0 0

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ( )

N f N f

f N f

 



 

 

 

   

E E

E
      (3) 

We find that 

2

2 2

0 0 0 0 0 0 0 0

ˆ ˆ( )   

ˆ ˆ

N

f f f f



    



    

E

E E
 

The last formula can be rewritten in as 

 

2

22

0 0 0 0 0 0 0 0

ˆ ˆ( )   

ˆ ˆ ˆ

N

f f f f



     



   

E

E E E
 (4) 

That stresses the importance of the coherent scattering 
channel when the scattered light is not classical and. 

2
2ˆ ˆ ˆ( )   N  E E . 

Inequality (4) allows to estimate 2ˆ ˆ( )   N E in the 

semi-classical approximation. The value ˆ   E E  

can be calculated using the conventional semi-classical 
theory operating with non quantum electromagnetic field. 

The calculation ( )
0 0 0 0

ˆ cf f   E E  can be per-

formed using only the coherent scattering channel. Even 
in extensive media such procedure may be performed 
with the help of wave functions [14]. Thus one can avoid 
of matrix density formalism specific for non coherent 
scattering channel. 
 
2. Principal Equations 
 
Let the electromagnetic field scatters on an atom situated 
at a point with radius-vector R and for the sake of sim-
plicity possesses only one orbital electron with coordi-
nate r . Let the atom possesses only two energy levels. 
Zeeman`s sublevels with different magnetic numbers are 
possible. Let the frequency of incident radiation   is 
in a quasi resonance 

0 0       with the atom 

transition frequency 0 . Let Schroedinger equation for 

atom and radiation is as follows 

ˆ ˆ ˆ
a phi H H H

t
 
 
 

    


 , 

where  

2ˆˆ ˆ ˆ( ) ( ) ( )
2a

p
H U d

m
   

   
 

 rr r R r r  

ˆˆ ˆ ˆˆ( ) ( ) ( )
e

H p A d
mc

      rr r r r  

are the Hamiltonian of the non-interacting atoms and an 
interaction Hamiltonian in Schroedinger representation. 
Than 

ˆˆ ( ) ( )j j
j

b  r r R , ˆˆ ( ) ( )j j
j

b    r r R , 

p̂ i   r r . 

The following communitation relations are assumed  

ˆ ˆ;j j jjb b 
 

     

for the electron creation operator ˆ
jb  and annihilation 

operator ˆ
jb  in the state described by wave function j . 

The particular form of communication relations in our 
case of one electron in the atom does not play any role. 
By ( )U r R we denote the potential energy of atom 

electron. The Einstein summation rule is assumed over 
all repeating indices   throughout the paper. The Ham-
iltonian of free electromagnetic field and vector-potential 
operator are as follows 

ˆ ˆ ˆphH ck  


   k k
k



 ˆ ˆ ˆ( )
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 

  

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In order to realize the calculation project mentioned in 
introduction we switch to the interaction representation 
with the help of unitary operator  

1ˆ ˆ ˆ( ) exp ( )a phU t H H t
i

   
 

. 

In this picture 

 0 0
ˆ( ) ,t S t t   ,  0

1ˆ ˆ ˆ, exp ( )
t

S t t T H t dt
i 

 
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 
  (5) 

ˆˆ ˆ ˆˆ( ) ( ) ( ) ( )
e

H t x p A x x d
mc

      r r ,  ,x t r , 

ˆˆ ( ) ( )
j

i t

j j
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x e b


 


  r R   

ˆˆ ( ) ( )
j

i t

j j
j

x e b


     r R  . 

where  0
ˆ ,S t t  is the scattering operator, j  is the 

atomic energy in state j , T̂  is the time-ordering op-

erator and  
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( ) ( )ˆ ˆ ˆ( ) ( ) ( )
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3. Coherent Scattering Channel 
 
Suppose that the initial state of the field was described 
by 0 0( , )k  and was in quantum coherent state [13] 

2
0 0

10
2

0

ˆ( )
0

!

n

n

f e
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 
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. 

The amplitude of initial radiation was 
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0 0 0 0 0 0
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c
a

kV k


.  

We are interested in the radiation amplitude after scat-
tering in second order of perturbation technique. The 
problem of Feynman’s diagrams summation will be dis-
cussed below. In Equation (5) it is sufficient to consider 
the sum 

(1) (2) (3)ˆ ˆ ˆ ˆ1S S S S    , 
where 

(1) 1ˆ ˆ ( )S H t dt
i

     

 2
(2)

2

ˆ
ˆ ˆ ( )

2( )

T
S H t dt

i
   

,  

 3
(3)

3

ˆ
ˆ ˆ ( )

3!( )

T
S H t dt

i
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. 

If the photon scatters in the coherent channel then the 
atom rests in initial state. So in second order of perturba-
tion technique we are interested in the construction 

( ) (2)
0 0

ˆ ˆ( ) ( ) . .c x A x S c c    A     (7) 

We change the time-ordering product of the atom op-
erators by the normal ordering one. For the scattering 

operator (2)Ŝ  we get  

1 21 2
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where ÂT is the time-ordering operator acting only on 

the electromagnetic field operators and 

  1 2
ˆ ˆ ˆ ˆ( ) ( ) ( , )rT N x x i G x x      , 

1 2

1 2

( )

1 2

( , )

( ) ( )
2

r

E
t t j

j j r
j

G x x

E dE
e G 


 



    
 

 r R r R 

 
 

1

0
j

r
j

E
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              (8) 

If the atom undergoes the action of external random 
fields the finite width of its energy levels can be taken 
into account by replacing the term 0i by / 2ji  

with the same sign because it is governed by the causal-
ity principle. The same result follows from summing up 
(Dyson summation) the ladder Feynman`s diagrams for 
excited atoms due to their interaction with electromag-
netic vacuum. For the same reason formula (8) can be 
written as  
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r
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. 

without specifying the value j . We take into account 

that,  
1 2

1 2 1 2

1 2

1 2 1 2

ˆ ˆˆ ( ) ( )

ˆ ˆˆ( , ) ( ) ( )
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where 1 2
1 2( , )D x x   is not the operator function. The 

first term in (9) does not play any role in electromagnetic 
field scattering process. Finitely 
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(10) 
The right hand side terms of this equality are respon-

sible on scattering processes of electromagnetic field by 
both the non excited atom and excited one.  
 
3.1. Scattering on Non-Excited Atom 
 
Substituting (6) and (8) into Equation (10) and taken the 
limit t  , we find  
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Through 0j  one denote here the quantum number of 

initial state of atom. In dipole approximation 

0 2 0
ˆ( ) ( )j j jp p d    ρρ ρ ρ . 

The limit t   is not necessary but it makes the 
calculations simpler. According to (7) we need to calcu-
late the construction 

0 0
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Let us use the following equalities connecting any 
smooth function ( )f k  and limits V ,   r R  
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where 
 

n


 



r R

r R
 

Here we take into account only the term describing 
diverge wave. The neglected term turns into zero by infi-
nitely small interval of integration over 0k  that is sup-

posed. Finitely  
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3.2. Scattering on Excited Atom The second term in Equation (10) after the same type of 

transformation shown in part 3.1 yields 
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If one takes into account the width of atom’s energy 

level in state described by 
0j

  than it is necessary to 

replace 
2 0 2j j j       in Equation (12). The va-

lidity of Equations (11) and (12) are restricted by domain 
/ 1r    where r  is the radiation width of excited 

state of atom.      
 

4. Non Coherent Scattering Channel 
 
The second order perturbation technique gets 

0 0
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we have in explicit form  
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Following the procedures described in part 3.1 we  have 
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If we take into account the finite width of atom energy  level than in formula (13) it is necessary to change 
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Let us find now the total amplitude of electromagnetic field scattered by excited atom 
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5. Semi-Classical Theory of Radiation 
 

The set equations for field operators ( )x
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in Heisenberg representation is the following 
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This set equations is equivalent to the one mentioned 
at part 3. Now 
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Here 0 ( )A x
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 is given by the formula (6) and 
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(16) 

We are interested in the second order perturbation ex-

pansion. This mean that the ( )x


 operator has be 

evaluated in the first order of perturbation technique  
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Substituting (16) and (17) into (15) we find  
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For the mean values, the same result can be obtained 

either by averaging (18) with subsequent breaking up the 
correlators, or using the semi-classical theory. After re-
alizing in (18) the substitution 
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for the scattered field we have 
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The upper sign describes the scattering of electroma- 

gnetic field on the non-excited atom while the low one 
describes the scattering on excited atom. One should take 
into account the width of atomic energy level by replac-
ing in dominator 0i  with 

0 2
/ 2 ( ) / 2j ji i      . 

By comparing Equation (19) with Equations (11) and 
(14) we find that in the approximation we used both the 
quantum theory and the semi-classical theory result in 

the same expressions for the scattered amplitude ( )xA . 

Namely the necessary coinciding in such results leads to 
the equality of constants   in Formulas (19), (11) and 

(14). 

6. Bilinear Field Charasteristics 
 
In this part we are interesting in the following construc-
tion shown in introduction 

ˆ ˆ ˆ( ) ( )N x x    E E . 

In order to calculate this value in forth order of per-
turbation expansion it should use the Formula (3). But it 
is not worth to do it. The strait calculation shows that for 
resonant field scattering 0( )   the construction 

(1) (3)
0 0

ˆ ˆ ˆ ˆˆ ( ) ( )S NA x A x S   , 
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which appears in such approximation at non-coherent 
channel results in negative value. This fact evidently 
contradicts with the positive definition of expression 

2
0 0 0 0

ˆ ˆ( ) 0f N f     E  

Such contradiction was found before in Reference [25] 
where different model has been considered. In order to 
reconstruct the positive definition of the non-coherent 
channel using perturbation set it is necessary to average 

the product ˆ ˆ( ) ( )x x E E  over the wave function 

 (1) (2) (3)
0

ˆ ˆ ˆ1 S S S    . But doing this we find the 

terms proportional to the sixth order of charge. It means 
that such reconstruction may be achieved only by using 
higher order terms of perturbation technique. Thus one  

can not restrict oneself here by the terms of lover order 
of perturbation technique. So the conventional perturba-

tion theory for ˆ ˆ ˆ( ) ( )N x x  E E  is problematic. 

For these reasons we estimate the contribution of 
non-coherent processes using inequality (2) 
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Then we use the same method to estimate the contri-
bution of coherent channel. Thus according to the quan-
tum theory using Equation (12), Equation (13) and Equa-
tion (20) one gets for the scattering by excited atom in 
two level approximation the following formula; 
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While according to the semi classical theory one gets 
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The ratio of results of these two calculation methods 

for the resonant scattering frequency 0   is equal 

to 

ˆ ˆ ˆ
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N
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 

 


E E

E E
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The same value characterizes the ratio of scattering 
cross sections /qu scl  . This result does not depend on 

 . We note that for the scattering of electromagnetic 

field on non-excited atoms this ratio is equal to one. The 
dependence of ratio /qu scl   for scattering on excited 

atom as a function of scattering frequency by 0   is 

shown in the Figure 1. 
 
7. Conclusions 
 
The evaluations the scattered field amplitude of reso-
nance scattering electromagnetic field on an excited atom 
can be performed equally well using both the Heisenberg 
representation and Schroedinger one. In our approxima-
tion the both calculations lead to the same results. The 
same results follow also from the semi-classical theory 
of radiation, which deals with classical electromagnetic 
field. In general, the perturbation technique is not suffi-

cient to describe the resonance scattering process and we 
need to sum up the ladder Feynman diagrams. Such pro-
cedure is not difficult to be performed using any of theo-
ries mentioned above.  

In the other case we deal with calculation of the quan-
tum mean values of bilinear products of the field opera-

tors ˆ ˆ E E . Here it is more convenient to deal with Sch- 
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Figure 1. The typical dependence of ratio /qu scl   for 

scattering of electromagnetic field on excited atom as a 
function of scattering frequency 0 0/ck  . 
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rödinger representation or with interaction representation, 
which give additional opportunities to sum up the Feyn-
man diagrams. The letter representations allow us to 
present the scattering process with the help of two com-
ponents: coherent (elastic) and non-coherent. Such com-
ponents could be evaluated independently. The analysis 
of non-coherent channel shows that the Dyson’s summa-
tion of ladder Fynman’s diagrams by scattering of reso-
nant electromagnetic field on excited atoms is not suffi-
cient. Other summation methods are very unwieldy [8]. 
In present work we propose the simple method of esti-
mation from below the results of the non-coherent scat-
tering channel. As a result we find that the semi-classical 
theory of radiation essentially underestimates the cross 
section of resonance scattering. The quantum theory in 
its turn shows the violation of equality ˆ ˆ ˆN   E E  

ˆ ˆ E E  in scattered radiation even if such equality 

took place in the incident electromagnetic field. So the 
quantum theory results in a change of quantum statistical 
structure of electromagnetic field due to scattering. This 
can not be obtained with the help of semi-classical theory 
of radiation. This change of internal quantum field stru- 
cture by its scattering on excited atom manifests itself on 
macroscopic level. Namely such effect makes impossible 
using here the semi-classical theory of radiation. 
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Abstract 

It is shown that electrons forming simple and multiple covalent bonds may have different contributions to the 
interatomic interactions due to the degeneracy of electron states. A simple relationship between the length of 
covalent bond, its order and atomic numbers of the interacting atoms is deduced. 
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Charges, Bond Length Ratio 

1. Introduction 

In the semiempirical methods describing interatomic 
interactions, the contribution to the interaction energy of 
-bond is assumed to be larger than that of -bond [1,2]. 
The ratio of - to -electron weight factors equal to 1.41 
was empirically determined in [3,4] and checked many 
times for the adsorption of unsaturated hydrocarbons. 
We will show that this ratio can be evaluated from the 
characteristics of covalent bonds (and vice versa). 

It follows from the theoretical and empirical equations 
found by London, Heitler, Lennard-Jones, and others that 
the parameters of atoms symmetrically enter the expres- 
sion for interatomic bond energy [5]. A quasi-classical 
method for describing the self-consistent field of multi-
component electron gas was developed in [6]. This 
method enables us to express the interatomic interaction 
energy. In particular it is shown that this energy is asso-
ciated with the volume V of each atom through a sym-
metrical operation – volumes product 

 

   

12 12 12

12 1 2 1 2

, ;

i ji j

E f X r

X V V v v



   
          (1) 

where 12r  is the internuclear distance; v  is a “volume” 

of one electron, or the elementary volume, which is equal 
to unity for a nondegenerate electron; V is the electronic 
volume of the atom equal to the sum of elementary vol-
umes of its electrons; the indices enumerate all electrons 
participating in bonding; and the figures at the summa-
tion symbol indicate summation over every electron of 
the corresponding atom. 

According to [6], the shielding radius, which is in-
versely proportional to the square root of the height of 

the potential barrier that the electron overcomes, can be 
used as a criterion of the participation of the electron in 
interatomic interactions. A sphere centered at the atomic 
nucleus with radius equal to the shielding radius of elec-
trons (the shielding sphere) bounds the electrons that 
participate in bonding. An electron contributes to the 
electronic volume of its atom only if the nucleus of the 
atom with which the interaction is considered is situated 
within the electron shielding sphere. 

It is very important to distinguish between the elec-
tronic volume, the key concept of the theory of general- 
ized charges developed in [6], and the corresponding 
number of electrons, though these characteristics often 
quantitatively coincide. It will be shown below that the 
elementary volume of a degenerate electron larger than 
that of a nondegenerate one, i.e. larger than unity.  

2. Theory 
 
Let us consider the sums in (1) in detail 
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    (2) 

where 1i jv v  . The summation is over all possible 

pairs of electrons. The coefficient ½ appears because 
there are no limitations on the permutation of indices.  

Let us apply (2) to pairs of - and -bond electrons. 
For a -bond, the orbital moment projection (m) of its 
electrons onto the internuclear axis has a single (zero) 
value. A pair of -electrons has therefore one state only 

        2
1 2 1 2

1
1

2 i j j iv v v v v    . 
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For -bond electrons, the orbital moment projections 
onto the same axis take equal values, either +1 or –1 
(depending on whether the right- or left-handed coordi-
nate system is used; here we use atomic units of mo-
ment). We therefore have four terms for -bond electrons 

           
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j i m
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
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This gives 2v  . It follows that the n-fold state of 

degeneracy corresponds to the n-fold increase in the sum 
of pair electronic products, that enhances the elementary 

volume of the pair of bond electrons, ev n . It is ne- 

cessary to bear in mind that the electron balance condi-
tion imposes the following restriction: if a aV Z  , 

then 1ev   and, vice versa, if at least one ev  value is 

larger than 1, then a aV Z  . 

The role of the product of volumes in describing the 
interaction of atoms is clarified by the following identity: 

  2
1 2 1 2 1 2

1

2
V V V V V V              (3) 

The appropriately normalized electronic volume of an 
atom corresponds to the probability of that its electrons 
belong to the bond under consideration. In terms of 
probability, the expression in brackets is the excess value, 
which appears as a result of bond formation. 

On the other hand, the covalent bond energy is a func-
tion of the excess electron density in the internuclear 
space 

   
   

     

   

12

12 1 2

1 2 12 12

* *

* ,

1
*

2

l r l

r Z Z d d

Z Z r r A

A

  

 

 

 

 
        

  
    

   

 

(4) 

where 1 2,Z Z  are the charges of nuclei in the elemen-

tary charge units; d  is the space volume element; l is 
the interatomic distance; and the bars denote the averag-
ing over the scale indicated in parentheses, which coin-
cides with one of the arguments of the functional relation. 
The first integral equals the probability for an atomic 
electron to occur between the planes passing through the 
nuclei normally to the interatomic axis at distance 12r  

from each other. The second integral gives the same 
probability at infinite interatomic distance. The integra-
tion in (4) is performed taking into account that the elec-
tronic wave function in the internuclear space depends 
on bond length. When atoms are infinitely separated, the 
excess electron density is zero, and exactly one-half of 

all the electrons occur in the internuclear space. 

We can therefore write   12 12E F r   12 12,f X r  

that gives 

   12 1 2r g V V                   (5) 

Comparing (3) and (4) by their sense and taking into 
account (5), we obtain 

       *
1 2 1 2 12 12 12

1

2
V V Z Z r r r       

 
  (6) 

According to (6), the excess density in the internuclear 
space is proportional to the geometric mean of the prob-
abilities for atomic electrons to take part in the bond un-
der consideration. 

To simplify (6), let us make the substitution 

     1 2
12 1 12 2 12

1 2 1 2

1 1

2 2

Z Z
r r r

Z Z Z Z
   

 
 

(7) 

where    12 exp ; 1,2a a ar i a     . We obtain: 

   * * 1 2
1 2 1 2 1 2

1 2

1
cos

2

V V

Z Z
              (8) 

Let us clear the combinatorial meaning of  : its 
square is the relative part of the cases when a pair of the 
particles belonging to two nonoverlapping sets of 1Z  

and 2Z  particles occurs among the set of 1 2V V  par-

ticles, where 1V  particles belong to the first set and 2V  

particles, to the second one. This interpretation suffers 
from the shortcoming that the electronic volume is a 
more complex concept that the number of electrons.  

The above-mentioned quantity  12a ar   is the 

characteristic of atom depending on bond length. In such 
a case the a  phase is a function of the scalar product 

of the wave vector of atomic electrons (ka) and the in-
ternuclear vector 

   ' ' ;

, ' 1, 2; ' ; 0, 1, 2,...

i
a a aa i a aa

i

A

a a a a i

  

    

k r k r
       (9) 

The presence of even exponents in expansion (9) is 
inessential because of their zero contribution to the dif-
ference of phases in (8) when the atoms are identical. For 
the same reason, at least one of the odd constants Ai in (9) 
is nonzero. When the internuclear distance in its tending 
to zero falls beneath a certain value, the number of elec-
trons forming the bond becomes nonzero. Negative ex-
ponents are therefore absent in (9). The absolute term (i 
= 0) in (8) is annulled and therefore does not play any 
role. Thus, we can keep in (9) only the linear term, and 
set, without loss of generality, the constant А1 equal to 
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unity 

 'a a aa  k r ;   1 2 12 1 2   r k k      (10) 

Rewrite expression (8) taking into account (10): 

    12 1 2 12cos cos rr k    r k k ,    (11) 

where rk is the sum of projections of the wave vec-

tors of bond electrons on the bond axis. Finding this sum 
from (11), we get 

1
12 arccosrk r               (12) 

The remarkable feature of rk  is its independence 

of  -electrons of the bond, because the limit value of 
 -electron moment projection on the bond axis corre-
sponds to the zero projection of its wave vector in this 
direction 

1 2 , 0r r r rk k k k           (13) 

Combining (11) with (12) and (13), we find the gen-
eral expression for a covalent bond 

  12
12

12

cos cos arccosr

r
r k

r
 

 
    

 
    (14) 

where primed and unprimed values relate to different 
cases of the bond between the same atoms. Note that (14) 
is valid for both double and triple bonds. Similar to (8), 
we can write 

1 2

1 2

V V

Z Z


 
  , 

where V   differs from the single bond property V  by 
the replacement of one or two electrons by -electrons of 
double or triple bond, correspondingly. Thus, the number 
of electrons forming a covalent bond is independent of 
its order and, due to the above-introduced normalization 
of electronic volume, is equal to the electronic volume of 
atom for the case of single bond ( aV ). Taking into ac-

count the value 2v   obtained above, we find 

  2 1 1a aV V n              (15) 

where 1, 2,3n   is the bond order. In particular, it fol-
lows from (14) that for homo-nuclear bonds 

12

12

cos arccos
r V

V Z
r Z

 
   

 
          (16) 

It is quite natural to assume that aV  can differ from 

aZ  by the number of closed shell electrons (for which 

the shielding radius is smaller than that for outer shell 
electrons), equal to two for the second-period atoms that 
yields 2a aV Z  . This expression in combination with 

(15) and (16) gives after simple transformations (see 

Appendix) 

  

  

12

12

2 2 1 1 1
arcsin arcsin (17)

2

2 1 1
1 (18)

2

nr

Z Zr

n

  
 

 
 

 

The last result valid for large atomic numbers is valu-
able due to its independence of the kind of atoms, dis-
playing only the dependence of the bond order.  

The calculation using (18) gives 12

12

0.890
r

r


  for 

double bond and 12

12

0.765
r

r


  for triple bond. Formula 

(18) is approximately valid for hetero-nuclear com-
pounds as well. 

The comparison of the theoretical result obtained with 
experimental data is given in the Table. 

For some possible compounds there is no information 
on bond length. This lack of knowledge can be elimi-
nated by theoretical forecast. For example, the triple 
bond of boron with carbon or nitrogen is possible in 
principle. Its length will be about 24% shorter than the 
corresponding single bond. 
 
3. Conclusions 
 
Thus, there is good compliance between experimental 
and theoretical values that confirms the necessity to dis-
tinguish in interatomic interactions the contributions of 
differently degenerated electrons. The contribution of 
 -electron to such an additive property of the interactive 

atom as its electronic volume is in 2  times larger than 
that of  -electron. This effect can be explained by dif-
ferent symmetries of the states with different degeneracy 
of - and -electrons. In present work, the simple ex-
pression (17, 18) for covalent bond length ratio which 
shows strong influence of bond orders and weak de-
pendence on atomic numbers is obtained. 

Table. Ratios of the bond lengths for compounds of the 
second-period elements: reference data [7,8] versus calcula-
tion results. 

Atoms bonded 
Bond length ratio:  
double to single 

Bond length ratio:  
triple to single 

C-C 0.865 0.778 
N-N 0.862 0.757 

O-O 
0.813(O2); 
0.861(O3) 

0.766(O2
+)[8] 

C-N 0.910 0.786 
C-O 0.852 0.791 
N-O 0.897 0.779(NO+)[8] 
Theory:  
formula (18) 0.890 0.765 
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5. Appendix 
 
Deduction of (17). 

Let us denote  

  
1

2 2 1 1

2

n
s

Z

  
 , 2

1
s

Z
 . 

It is necessary to transform the expression  

 
 

1

2

arccos 1 2

arccos 1 2

s
x

s





. 

Using the formula 2arccos arcsin 1t t   yields 

 
 

 
 

1 1 1 1

2 2 2 2

arcsin 2 2 2 arcsin 2 1

arcsin 2 2 2 arcsin 2 1

s s s s
x

s s s s

 
 

 
. 

Substitution of iis 2sin  leads to  

 
 

2 2
1 1 1

2 2
22 2

11

2 2

arcsin 2 sin cos arcsin sin 2

arcsin sin 2arcsin 2 sin cos

arcsin

arcsin

x

s

s

  
 




  

 

. 

The inverse substitutions of the expressions for 1 2,s s  
give formula (17).

 

 

 

 

 

 

 

 
 



J. Mod. Phys., 2010, 1, 175-184 
doi:10.4236/jmp.2010.13026 Published Online August 2010 (http://www.scirp.org/journal/jmp) 
 
 

Copyright © 2010 SciRes.                                                                               JMP 

The Phenomenon of Proton Dissolving in Vacuum and of 
Proton Condensation from Vacuum. Two Forms of  
Protons, Structure of Nuclei, Electrons and Atoms 

Kristina Zubow2, Anatolij Zubow1, Viktor A. Zubow2* 
1Department of Computer Science, Humboldt University Berlin, Johann von Neumann Haus, Berlin, Germany 

2A IST Handels- und Consulting GmbH, Department of Research & Development, Groß Gievitz, Germany 
E-mail: zubow@informatik.hu-berlin.de, aist@zubow.de  

Received April 18, 2010; revised May 15, 2010; accepted May 22, 2010 

Abstract 

It was investigated how react molecular clusters in water, starch, bio-matrices, polymers and in quartz on 
gravitation radiation from planets. Gravitation radiation (GR) was found to influence the proton jumping in 
hydrogen bonds that stabilize the cluster structure. There was given a method calculating parameters of GR 
as well as a mechanism of its resonance interaction with weak GR from molecular matter (WGR). WGR has 
been defined as the result of proton dissolving in vacuum connected with its simultaneous condensation in 
the nearest free space. Both dissolving and condensation proceed with super light velocity. The gravitation 
wave length has been determined experimentally and it depends on the planet masses (between Earth and 
Sun λ ≥ 62 km, between Earth and Milky Way center λ ≥ 330 km). GR has been characterized with super 
light velocity. After analyzing the Sun influence on water two forms of protons were found: in a condensed 
and dissolved state. A new model for the atomic nucleus has been suggested according to which the protons 
in the nucleus oscillate between condensed and dissolved state, where in the case of isotopes this state is par-
tially destroyed. The models for H2 and Be shall be given. Electron orbitals in atoms and molecules were 
found to be caused by a stationary front of shock waves from condensing protons. 

Keywords: Gravitation Waves, Proton, Dissolving, Vacuum, Planets, Electron, Form of Matter 

1. Introduction 

The proton jumping via hydrogen bridges (H-bonds) or 
via even a group of atoms in a molecule has been illus-
trated as follows: 

O

H

O

H

H

O

H

O

    

N SOH

HO SN  
Scheme 1 

The hydrogen atom that is linked with an oxygen atom 
builds simultaneously a H-bond (~0.2 nm) with an other 
molecule fragment or an other molecule and it is able to 

jump to the second oxygen atom. Instead of oxygen other 
atoms like nitrogen; sulfur etc. can be applied to this 
scheme. Inner molecular jumps in low molecular sub- 
stances can proceed at distances longer than 0.2 nm but in 
high molecular ones the talk is even on umpteen nm.  

This effect has been observed for many organic and 
inorganic substances and it is well described [1-3] though 
a proton jumping through electron orbitals of atoms and 
molecules seems to be more or less unprobably. Further- 
more, because of unavailable mechanism models and 
analysis methods it is difficult to understand this effect. 
On the other side hydrogen bridges were found important 
for the stabilisation of the conformation of synthetic 
macromolecules and biomolecule coils (proteins, starch). 
Destruction of hydrogen bridges leads to a change of the 
conformation of protein macromolecules, to changed di-
rections of biochemical reactions and finally to another 
behaviour of the organisms. In our earlier publications we 
informed on fields of unknown nature that are present in 
moleculare systems with hydrogen bridges. For instance, 
in [4] we described the “wall effect”: near the wall there 
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is a special gravitation excitation (water, salt solutions), 
that seems to be connected with hydrogen bonds and 
proton jumping. We developed the idea about the proton 
jumping via the vacuum to the nearest energy vacancy 
place in space. According to this hypothesis the proton 
jumping is connected with acceleration and breaking of 
masses in the proton leading to weak gravitation radiation. 
To identify a gravitation wave in a real time it is necess- 
ary to shift “the interference of the gravitation pair (mu-
tual compensation) at the time or to expand the events in 
the space. For that we have to look for the resonance of 
gravitation waves between micro and macro objects for 
example, in gravitation pairs—between clusters in the 
molecular matter and masses of planets. To proof this 
hypothesis we developed a gravitation mass spectrometer 
(GMS) by which help we registered molecular mass clus-
ters as well as their interaction with the surroundings 
[5,7]. 

It was the aim of the present work to understand the 
mechanism of proton jumping in molecular matter as 
well as to find out the reasons that cause unknown fields 
in it. 
 
2. Experimentally 
 
As investigation objects the following substances were 
chosen: water, agarose hydrogel (97 wt.% water), salt 
solutions (NaCl, 3.5 wt.%), starch, polyethylene, atactic 
polystyrene (aPS, average molecular mass of 15 kDa) as 
well as bio matrices of eggs and potato tubers. The 
GMS-sensor was placed directly in the bio-matrices, 
pressed (1-2 kPa) to powders or films or installed in aged  

for 6 month liquids. The GMS method is ascribed in 
[5-8]. Masses and oscillation frequencies of clusters in 
the samples were calculated by the Zubow equations 
using the Zubow constant 6.4 × 10-15 N/m for biomatrices, 
water and 6.8 × 10-15 N/m for starch and 5.2 × 10-15 N/m 
for aPS. Samples were placed in an iron (grounded) box 
that was isolated from light, anthropogeneous noises and 
heat/mechanical fields. The box itself was in a building 
far from industrial centers. Some curves, reflecting the 
energy flow (sum of cleaned signals) that achieves the 
GMS-sensor in the samples between August the 15th and 
16th 2008, are shown in Figure 1. The base line (dotted 
line) was obtained as follows. After noises were regis-
tered by GMS-sensor in vacuum (10-4 N/m2) the real 
signals (first) were extracted where an analogous proce-
dure was done for the sample without vacuum (second). 
The real sample signals were calculated by subtracting 
the second signals from the first ones [6]. 265784 repre-
sents the sum of all signals in the mass interval up to 4.3 
billion Da. 
 
3. Results and Discussion 
 
The existence of cluster ensembles in molecular matter 
showing both wave and corpuscle properties are undoub- 
tedly [9]. Clusters oscillate and noise. These oscillations 
e.g. in liquids are similar to “structure transfusion” and it 
is connected with a constant virtual mass jumping in the 
dynamic balance between noise energy stabilizing clus- 
ters [10] and heat (kT), that destroy clusters. 

In Figure 1, the planet influence on the energy of 
cluster ensembles in molecular matter shall be shown. As

-500000

-250000

0

250000

19:12 22:48 2:24 6:00 9:36 13:12 16:48 20:24 0:00
время с 15.08.08

Е
, у
сл

. е
д

.

I

II

III

1

2

3 4

5 6 7 8

CET until 15.08.2008

Erel 

CET, from 15.08.2008 
 

Figure 1. Energy flows in different substances: I—bio-matrix of fresh potato tuber, II—melted quartz (glass), III—water, 
methanol, bio-matrix of a hen’s egg (egg white), polymers (dotted line), water solution of 3.5 wt.% NaCl, 1—sundown, 2—full 
Moon before the moon was covered by Earth 24 h later (8), 3—Uranus culmination, 4—Sunrise, 5—Mars culmination, 
6—nearly simultaneous culmination of Mercury, Venus and Saturn, 7—Jupiter rise, 8—moon eclipse. By horizontal arrows 
the effects of interference of gravitation noises from Sun are given (dotted line: from 09:00 until 15:00) and Galaxy centre 
(dotted line: from 11:00 until 17:00). The curve is formed from points in which every point is a statistical value which isn't 
worse than 95%. The base horizontal line corresponds to 265,784 relative units (state, on August 15th, 2008, at 19:12). 
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visible the molecular cluster ensemble energy is sensitive 
to the planet constellation and this energy, for instance of 
gravitation nature, was found to be detectable by the 
GMS method. 

Let us discuss two pairs of peaks at 09:00 and 15:00, 
and at 11:00 and 17:00, both peaks are on a line, that is 
perpendicularly to the line connecting the centers of the 
Sun and the Earth, and of the Milky Way and the Earth, 
accordingly. The peaks can be interpreted as interference 
of gravitation waves and with the help of the Junge equa- 
tion the wave length can be calculated and compared with 
literature references. The calculation was made using  

λ ≥ D·S/R 
where λ – average gravitation wave length, R – distance 
from the gravitation source to sample (until Sun 150 mio 
km, until Milky Way center 10,000 pc), D – distance be- 
tween peaks, amounting to D = 2·r·sin(90° – 53°)·sin 
(120°/2), r = 6370 km (radius of Earth), S – diameter of 
source (Sun, 1,392,000 km, Galaxy center 500 pc), here 
the role of two slits played the Earth atmosphere and the 
role of display – area which connects the peaks with each 
other and stands vertically to the gravitation source. Thus, 
λ ≥ 62 km (gravitation waves of Sun) and λ ≥ 330 km 
(gravitation waves of the Galaxy center). The gravitation 
wave length calculated by Hickey [11] was found to be  

~100 km furthermore Smirnov described a device for the 
registration of gravitation excitation in the frequency 
interval 10 Hz…40 kHz [12], which includes all invest- 
tigated cluster oscillations in molecular matter. We can 
therefore notice with a great probability that the GMS 
device registers directed gravitation radiation (GR). Now 
we want to analyze how GR influences the long range 
order in water whose structure was already proved ex- 
perimentally [8]. Inside the clusters, the water molecules 
are linked with each other by two hydrogen bridges but 
on the cluster surface the water molecules possess only 
one hydrogen bridge (HB) for their interaction with the 
surroundings. If the proton jumping in HB proceeds with 
emission of weak GR then we have to expect a resonance 
between weak GR of molecular matter and GR of planets. 
The proof of this assumption is given in Figure 2. 

As visible from Figure 2 the number of clusters in 
water reacts on the planets’ GR where this effect is shown 
most strongly at full moon (23:16, point M) and eclipse of 
the moon (the moon is covered to 80% by the Earth). 
The GR of Jupiter at its rise has a strong influence on the 
cluster number in water too. To understand the structure 
of GR we investigated GR of Jupiter (Figure 3). GR of 
Jupiter consists of two parts which were ascribed to sig- 
nals of “gravitation Jupiter” and of “visible Jupiter”. The 
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Figure 2. Behavior of the GR energy curve registered by GMS-sensor in water (I) and of the number of cluster kinds (II) in 
dependence on events in the near space, cluster ensembles up to 4.3 billion Da. Comments see in Figure 1. 
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Figure 3.Signal intensities of the base water cluster in agarose hydrogel when the flows of both Jupiter gravitation energy 
kinds are in the slide plane of gravitation proton resonance (SPGPR). Distance to Jupiter—658,629,000 km; altitude 19.7°. 
SPGPR—plane going through the Earth rotating axis and the sample place on the Earth surface. 
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sample was fully protected from visible light therefore, 
the signal of “visible Jupiter” can be interpreted as ripples 
of main Jupiter GR [7,11]. That means we have the right 
to use the correlation between the visible and gravitation 
constellation of planets. 

In Figure 4, computer models for the simplest water 
clusters, consisting of the base water cluster (Н2О)11±1 
[13,14], and experimentally observed methanol clusters 
are given [8]. The base water cluster belongs to an en-
semble of dominating clusters which were formed forced 
in the white noises: (Н2О)11±1, (Н2О)100, (Н2О)178, (Н2О)280, 
(Н2О)545, (Н2О)903, (Н2О)1351, (Н2О)1601, (Н2О)1889 etc.. 
Jupiter at rise (Figure 1) and culmination (Figure 4) 
strongly influences by its gravitation radiation the long 
range order in water and destroys the cluster ensemble 
temporarily. On the other side, the destruction of the wa-
ter cluster ensemble has been observed during the gravi-
tation interference (signal at 11:00) and even at GR of 
Uranus and sunrise (Figure 2). 

Cluster ensembles in methanol react analogously to 
GR flow of planets where the highest destruction of hy-
drogen bridges takes place at Jupiter rise. However, the 
behavior of polyethylene, which doesn’t have any hydro- 
gen bridges, is something differently the strongest cluster 
ensemble destruction is at Moon eclipse and at GR inter- 
ference of the Galaxy center and WGR of polyethylene 
(11:00 and 17:00).  

In the Table 1, the GR frequencies of planets and wa- 
ter molecular clusters that were calculated by the Zubow 

equation are given. 
Let us now discuss the hydrogen bridges (HB) in the 

amorphous part of starch (Figure 5). As shown in Fig- 
ure 5 HB, reflecting conformation changes in the starch 
coils, react on GR of planets. In Figure 6, the review 
GM-spectra of starch powder at Jupiter rise will be given 
(see Figure 1 too), the destruction of the hydrogen 
bridges that form the globular structure of this polymer 
can be seen. This destruction process proceeds reversibly 
and is an indication for a special resonance interaction 
between gravitation radiations. On the other side the 
dominating influence of planets’ GR on a cluster ensem- 
ble in molecular matter often leads to a simultaneous 
energy inversion of the density of all clusters. In starch, 
the conformation of macromolecule coils are known to 
be stabilized by HB and its destruction, which is caused 
by resonance with planets’ GR, should be modelable by 
a forced compression. At pressure the length of HB shall 
be changed and the oxygen influence on the “naked” 
proton becomes stronger. We found, that by pressing the 
starch powder mechanically (1…5 kPa) the hydrogen 
bonds were forced and reversibly destroyed too cones- 
quently, mechanical pressure is comparable with planets’ 
GR. 

Thus, the existence of weak gravitation radiation in 
molecular matter, which is caused by super light mass 
transfer in hydrogen bridges, has been concluded. It is 
hard to imagine this process, as a simple jump on a dis-
hard to imagine this process, as a simple jump on a dis-
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Figure 5. Share of collapsed clusters (1) and of cluster kinds’ numbers (2) in the amorphous part of potato starch observed at 
GR influence of planets (Figure 1). 
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Figure 6. FNS of potato starch (powder 1.55 mmol, 0.5 cm3) at Jupiter rise (Figure 5). Weak shock wave (р < 1 N/m2), Zubow 
constant is equal to 6.8 × 10-15 N/m. The numbers over the signals correspond to the number of α-D-glycopyranose in a cluster. 
The number of cluster kinds (signals) in the investigated mass ensemble amounts to: 102 at 18:18, 59 at 19:13 and 104 at 
20:12 (Central European Time, 16.08.2008). The distance between Jupiter and Earth is 655 × 106 km. 
 
Table 1. The main noise frequencies of planets and of the sun, that were calculated according to m = NA·1011·ω-2, where com-
pared with the frequencies of water clusters in a potato bio-matrix, m = 1011·ω-2. 

Characteristics Molecule clusters* 
Planet m, g ω, Hz ω, Hz Formula 

Mercury 3.40E + 26 13309 ± 2000 11111 ± 2000 (Н2О)45 
Venus 4.87E + 27 3517 ± 200 3431 ± 200 (Н2О)472 
Earth 5.97E + 27 3176 ± 200 3193 ± 200 (Н2О)545 
Mars 6.40E + 26 9700 ± 1500 7454 ± 1500 (Н2О)100 

Jupiter 1.90E + 30 178 ± 20 178 ± 20 (Н2О)174420 
Saturn 5.69E + 29 325 ± 30 333 ± 30 (Н2О)50124 
Uranus 8.70E + 28 832 ± 50 827 ± 50 (Н2О)8131 

Neptune 1.03E + 29 765 ± 40 769 ± 40 (Н2О)9385 
Moon 7.35E + 25 28624 ± 4000 21517 ± 4000 (Н2О)11±1 
Sun 1.99E + 33 5.5 ± 1 5.5 ± 1 (Н2О)36453036 

 
Blow 
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tance of 0.2 nm or longer, a process in which the proton 
must penetrate a “net” from electron clouds of atoms and 
molecules. However, there are another way, namely the 
transition of the proton into the vacuum (dissolving) 
connected with the arising of his equivalent simultane- 
ously in the next free energy place. This process of super 
fast dissolving and condensation of mass could cause 
WGR from molecular matter [15]. Under the examined 
substances stand out the ones, those don’t have any HB 
(aPS, polyethylene). The proton jump in HB is therefore 
a special case of the general phenomenon for the proton 
jump from the atomic nucleus into vacuum and reversed.  

To evaluate the velocity of the proton jumping in va-
cuum the results of GR wave length analysis were ap-
plied (Figure 1) using in the first approximation the 
Planck equation E= h · cГ ·/λ, where h –Planck constant, 
λ –wave length, m, cГ – velocity, m/s. The energy value 
(E) can be considered as the disintegration energy of 
starch coils [16]. We assume that this value amounts to 
~2 kJ/mole, then 

cГ = E· λ/h > 15 × 1035 m/s. 

This velocity is 5 × 1027 times higher than the light 
velocity and the GR frequency is equal to cГ ·1/λ = 2.32 
× 1031 s-1 which doesn’t agree with the gravitation fre-
quencies published in [17-20] as well as with the conclu-
sions on the GR influence on the long range order in 
molecular matter. However, this situation can be cleared 
with the results of Kokkotas [21] according to whom at 
moving of masses their gravitation waves initiate ripples 
of smaller ones (gravitation noise), that spread with light 
velocity. The gravitation noise we observed to be the 
reason for the forced oscillation of clusters in molecular 
matter and matter in space but the clusters themselves are 
the result of stationary gravitation waves. Then, the en-
ergy dependence of the main gravitation waves on their 
wave length can be given as: 

Е = z · λ, 

where z ~ (2...3)·10-2 J/m, λ ~ 65,000...100,000 m. 
Of course, the proton moving with super light velocity 

has to understand as a short living time at the level of 
proton dissolving in vacuum (Pp) and proton conden- 
sation from vacuum (Pк). Then, the model for the proton 
jumping can be shown as follows. 

In this scheme, the distance between dissolving and 
 

 х 

Hypothetical 
surface of vacuum 

Pp 

Dissolving of 
proton  

Pк 

Condensation of 
proton  

Scheme 2 

condensing proton can be forced changed for example, 
by a simple sample compressing [7] or by the resonance 
with analogous processes from planets. 

This nucleus model doesn't contradict the idea about 
the cluster formation in boson matter, according to which 
the mass transformation proceeds to strictly deterministic 
gravitation laws [7]. The physicists have unbelievable 
done, to explain the stability of great and thick accumu- 
lations of positively charged particles in a very small 
volume of the nucleus. One tried to find a force which 
holds these particles together however it wasn’t found. 
Now as we understand the proton as an oscillating sub- 
stance (dissolving and condensing) the nucleus formation 
of chemical elements and their isotopes should be clearer. 
In nuclei, the proton dissolving proceeds in the energy 
balance with the condensation of the neighboring proton 
(see scheme). In this case, the probability that two posi- 
tive charges are besides each other, gets lower but the gr- 
avitation interaction in the nucleus becomes more domi- 
nant.  

The instability of radioactive isotopes has been ex-
plained by the destruction of the oscillation harmony in 
the nucleus. Radioactive isotopes are characterized by a 
high potential energy of their nuclei (as a pendulum sys-
tem) and its minimization is connected with nucleus dis-
integration.  

The molecule stability of hydrogen (H-H) can be bet- 
ter explained by this model according to which the pro- 
tons alternately dissolve and condense and the electrons 
permanently catch up with the positive charges (conden- 
sed proton). Here the electrons permanently rotate 
around the condensed proton and its Fata Morgana “(di- 
ssolved proton) leading to multiple canonical structures 
for instance H-H. 

For the beryllium nucleus, two canonical structures 
shall be shown, for example (Figure 7) this scheme is 
analogous to the one which describes the formation of 
clusters in molecular matter [9]. 

The electron clouds around the nuclei can be under-
stood as stationary shock waves arose from condensing 
protons from vacuum. The shock wave front is in balance 
with the energy state of the vacuum 1.4 × 1016 kJ/m3 [7,9]. 
This front (electron orbital) is permanently generated by 
high frequency shock waves from the condensing proton 
and at proton dissolution; it doesn’t manage to dissipate 
in vacuum and saves therefore its spherical form (model 
for hydrogen atom, Figure 8) because of a higher inertia 
of the dissipation process, probably. A proof for this 
model could be that the electron orbital in the hydrogen 
atom oscillates (known as electron transition from one 
energy state to the other one). In accordance with this 
logic the energy released at proton condensation should 
correspond with the vacuum energy namely with ~ 1.4 × 
1016 kJ/m3. 

For multiple proton nuclei, the spherical shock wave 
construction shall be changed to differently formed ones,  
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Figure 7. Statistical model for the nucleus formation of beryllium (4 protons (P) and 5 neutrons (N)). P—proton condensed 
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Figure 8. Model for the formation of a spherical electron orbital in the hydrogen atom. This orbital is caused by a shock wave 
front which arises from the pulsating of the condensing proton from the vacuum (left) and from the front movement at pro-
ton dissolving in vacuum (right). The structure and energy of the vacuum are described in [7,9]. 
 
known as orbital hybridization in chemistry. Here the 
hybridization reflects an energy minimization process. 
On the other side the state of free electrons can be under-
stood as an energy cluster of excited matter from vacuum 
that exists in the movement form only. 

According to this model of nucleus, the molecule is 
less caused by the unification of nuclei through electron 
orbitals than by a forced cluster formation of protons in 
stationary gravitation waves of the space [7]. The con- 
centration of atomic nuclei in a cluster represents a mole- 
cule but that one of any molecules a molecule cluster. 
Starting out from this model the electron orbital can be 
imaginated as a shock wave front in the compressed va-
cuum being another form of the matter. Under special 
conditions the shock wave front could be concentrated in 
a cluster of negative energy-electron-particle. We there-
fore have to work with two matter forms which aren’t 
mixable with each other, vacuum matter and matter that 
shall be released or absorbed at condensation/dissolution 
of a proton. 

The GM-spectra observations of water at the period 
when the Sun is in SPGPR could be an additional proof 
for the dissolving of the proton and for its existence in 
two forms (dissolved and condensed). The results of 

these observations shall be given in Figure 9. 
As visible from Figure 9, all base skeletal water clus-

ters are present in water of the agarose hydrogel [22]. 
The GM-spectra are identical up to the entrance of the 
Sun in SPGPR (13:14) and after its exit from SPGPR 
(13:18). The molecular clusters are given in their ex- 
panded forms indicating a strong inter- cluster interaction 
through hydrogen bonds. In these bonds, the, by the Pau- 
lings so-called, “naked” protons [23] are in the con-
densed state. At the entrance of the Sun in SPGPR (13:15) 
the protons disappear, to be explained with their forced 
dissolution in physical vacuum and the remove to the 
Sun [7]. 

Thus, the structure of hydrogen bonds between mo-
lecular clusters has been destroyed that means the in-
ter-cluster hydrogen bonds possess the weakest protons 
that shall be removed to the Sun center first. In the fol-
lowing two minutes in the long–range order of water, an 
other form of hydrogen bonds was observed where water 
clusters became collapsed (13:16...13:17). A weakened 
proton is present here in the inter-cluster hydrogen bonds, 
that return into the normal condition at 13:18 again, the 
same state before the entrance of the Sun in SPGPR. 
Therefore, two forms of “naked” protons and a state with- 

P                                OP

Shock wave (electon cloud – 
orbital) around condensing 

proton from vacuum

Shock wave evolution (electon cloud – 
orbital) around dissolving proton in 

vacuum



K. ZUBOW  ET  AL. 
 

Copyright © 2010 SciRes.                                                                               JMP 

182 

 

13:15, Солнце в ПГРП

-4%

-2%

0%

2%

4%

6%

8%

1.5 2.5 3.5 4.5 5.5 6.5

f

13:14

-1%

0%

1%

2%

3%

4%

1.5 2.5 3.5 4.5 5.5 6.5

f

13:16

-4%

-3%

-2%

-1%

0%

1%

1.5 2.5 3.5 4.5 5.5 6.5

f

13:18

-1%

0%

1%

2%

3%

4%

1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3

log m , Да

f

(Н2О)12

(Н2О)100

(Н2О)280

(Н2О)545

(Н2О)1889

(Н2О)903

(Н2О)1351

 

13:15, Sun in SPGPR

log m, Da 
 

Figure 9. Dynamics of the proton state in hydrogen bonds between water clusters in agarose hydrogel at the period when the 
Sun is in SPGPR (August 7th 2009). 
 
out any protons were concluded to be present in hydro-
gen bonds (Figure 10). 

At this time, to differentiate between the dissolution 
and condensation state of protons is impossible because 
they proceed with a super light velocity however, the talk 
can be on canonical structures in their harmonic reso-
nance. It doesn’t have to be excluded that neutrons take 
place in this family of pendula too. The gravitation 
strength which holds the nucleus as a unity together is 
the result of the minimization of the potential energy of 
this mass ensemble [7]. 

As shown in Figure 10 the proton dissolving is ac-
companied by the disappearance of its electron (station-
ary front of shock wave). Here in the matter, only one 
free radical of the so-called “free electron”, as it was 
understood by the nature scientists of the 20th century, 
remains. If only the proton should dissolve, then the 
matter should have a gigantic negative charge what isn’t 
the case, however. This simple logic supports the sug-
gested electron model as phenomenon of stationary 
shock wave front (Figure 8). Our universe consists con-
sequently of two not with each other mixable, highly dis- 



K. ZUBOW  ET  AL.                                     
 

Copyright © 2010 SciRes.                                                                               JMP 

183

 

13:15 

13:14 

13:16 

13:18 

O

H O

O
O

OH

O

OH

O

-

  
Scheme 2 

Figure 10. Scheme illustrating the inter-molecular clusters 
states of hydrogen bonds when the Sun hits SPGPR. 
 
persed and competitive forms of the matter: mater of 
vacuum and matter of proton. 
 
4. Conclusions 
 
Thus, the mass transfer of protons of hydrogen bonds or 
atomic nuclei in vacuum (dissolution) proceeding with a 
super light velocity as well as the almost simultaneous 
appearance of protons from vacuum (condensation) at 
the nearest vacant place of the space were concluded to 
be the reason for weak gravitation radiation of molecular 
matter. The structure of the hydrogen atom reflects the 
surface state between two forms of matter: matter in va-
cuum and matter consisting of dissolved protons. These 
two forms could exist independently of each other. The 
electron orbitals in atoms and molecules are stationary 
shock waves in vacuum coming from two fast running 
processes (dissolving/condensing of protons) in atomic 
nuclei. 
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ijg . Semicolon and comma respectively denote covariant 

differentiation with respect to ijg  and partial differen-

tiation with respect to coordinates. The cosmological 
term Λ ijg  of Einstein theory is transformed to 

2
0Λ ijg  in scale invariant theory with a dimensionless 

constant 0Λ . ijT  is the energy momentum tensor of the 

matter field and 
4

8
.

G

c

   

The line element for Einstein- Rosen metric with a 
gauge function  ct   is. 

2 2 2
W Eds ds                 (3) 

with 

 2 2 2 2 2 2 2 2 2 2 2A B B B
Eds e c dt dr r e d e dz        (4) 

where A and B are functions of t only, and c is the veloc-
ity of light. Here we intend to build cosmological models 
in this space-time with a perfect fluid having the energy 
momentum tensor of the form 

 2m
ij m m i j m ijT p c U U p g            (5) 

together with 1i j
ijg U U   

where iU is the four-velocity vector of the fluid; mp

and mp  are the proper isotropic pressure and energy 

density of the matter respectively. 
The non – vanishing components of conventional 

Einstein’s tensor (2) for the metric (4) can be obtained as 

2
11 42

1
G B

c
                     (6) 

 14 4

1
G A

r
                   (7) 

2
22 44 42

1
G A B

c
                  (8) 

2
33 44 44 42

1
2G A B B

c
                (9) 

2
44 4G B                      (10) 

Here afterwards the suffix 4 after a field variable de-
notes exact differentiation with respect to time t only.  

Using the comoving coordinate frame where 4
i iU  , 

the non-vanishing components of the field Equation (1) 
for the metric (3) can be written in the following explicit 
form: 

 

11

2
2 2 2 2 2 244 4 4

4 4 02 2

1
2 2A B A B

m

G

p e A B c e
c

  
 

 
 



 
       

 

 

(11) 

14 0G                     (12) 

i.e. 1A k , where 1k is an integrating constant. 

 

22

2
2 2 2 2 2 244 4 4

4 02 2

1
2 2A B A B

m

G

p e B c e
c

  
 

 
 



 
     

 

  

(13) 

 

33

2
2 2 2 2 2 244 4 4

4 02 2

1
2 2A B A B

m

G

p e B c e
c

  
 

 
 



 
     

 

 

(14) 

 

44

2
4 2 2 2 2 2 24 4

4 02
3 2A B A B

m

G

c e B c e
 

 


 



 
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 

 

(15) 
Equation (12) reduces the above set of Equations 

(11)-(15) as 

 1 1

11 22

2
2 2 2 22 244 4 4

4 02 2

1
2 2k B k B

m

G G

p e B c e
c

  
 
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 

 

(16) 

 

1

1

2 2
33

2
2 22 244 4 4

4 02 2

1
2 2

k B
m

k B

G p e

B c e
c
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
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


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 
    

 

   (17) 

 

1

1

2 24
44

2
2 22 24 4

4 02
3 2

k B
m

k B

G c e

B c e


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


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 
   
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       (18) 

Now, Equation (1) and Equations (16)-(18) (Wesson 
[12]) suggest the definitions of quantities vp (vacuum 

pressure) and vp (vacuum density) that involves neither 

the Einstein tensor of conventional theory nor the prop-
erties of conventional matter. These two quantities can 
be obtained as: 

  1

2
2 22 2 244 4 4

4 02
2 2 k B

vB c e p c
  

 
 

      (19) 

  1

2
2 22 2 244 4 4

4 02
2 2 k B

vB c e p c
  

 
 

     (20) 

  1

2
2 22 2 44 4

4 02
3 2 k B

vB c e c
 

 


       (21) 

It is evident from Equations (19) and (20) that 

4 20B B k    since 4 0



        (22) 

where 2k  is an integrating constant. Using Equation (22) 

in Equations (19)-(21), the pressure and energy density 
for vacuum case can be obtained as 
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1 2

1 2

2
2 22 244 4

02 2 22

1
2 k k

v k k
p c e

c e

 


 




 
    

 
  (23) 

1 2

1 2

2
2 22 24

02 2 24

1
3 k k

v k k
c e

c e


 






 
   

 
   (24) 

Here vp  and vp  relate to the properties of vacuum 

only in conventional physics. The definition of above 
quantities is natural as regards to the scale invariant 
properties of the vacuum. The total pressure and energy 
density can be defined as 

t m vp p p                 (25) 

t m v                    (26) 

Using the aforesaid definitions of tp  and tp , the 

field equations in scale invariant theory i.e. (16)-(18) can 
now be written by using the components of Einstein ten-
sor (6)-(10) and the results obtained in Equations (22)- 
(24) as: 

12 22 2
4

k B
tB p c e                (27) 

12 22 2
44 42 k B

tB B p c e               (28) 

12 22 4
4

k B
tB c e                (29) 

 
3. Solution 
 
From Equations (27) and (29), we obtained the equation 
of state 

2
t tp c                 (30) 

Using Equation (27) in Equation (28), we obtained 

1 2B d t d                 (31) 

where 1d  and 2d  are integrating constants. 

Substituting Equation (31) in Equation (27) and Equa-
tion (29) respectively, the total pressure ‘ tp ’ and energy 

density ‘ t ’ can be obtained as: 

1

2
2 1

2 2

1
t t d t

d
p c

c qe


 

 
   

 
          (32) 

where 1 22 2k kq e   is a constant. The reality condition 

demands that 2
1 0d  . 

Using Equation (31) in Equations (23) and (24) respec-

tively and taking 
1

ct
  , the pressure and energy den-

sity corresponding to vacuum case can be calculated as: 

0
2 2

11
v

q
p

c q t
      

             (33) 

0
4 2

31
v

q

c q t



     

              (34) 

In this case, when there is no matter and the gauge 

function   is a constant, one recovers the relation 

2 4 Λ

8
GR

v vc c p
G




    i.e. 2 0v vc p   , which is the 

equation of state for vacuum. Here 2
0GR     = con-

stant, is the cosmological constant in general relativity. 
Also vp being dependent on the constants GR , c and G, 

is uniform in all directions and hence isotropic in nature. 
The cosmological model with this equation of state is 
rare in literature and is known as   – vacuum or false 

vacuum or degenerate vacuum model [18-21], the cor-
responding model in the static case is a well known 
de-Sitter model. 

Now the matter pressure and density can be obtained 
as: 

1 1 2

2
0 1

2 2 2 2

11
m t v k d t d

q d
p p p

c qt e  

  
    

 
    (35) 

1 1 2

2
0 1

4 2 2 2

31
m t v k d t d

q d

c qt e
  

  

  
    

 
    (36) 

Now, we have m   as 0t   and m  as 

t  . Also when 0t  , constantm  . It is inter-

esting to note that the model free from singularity. 
So, the Einstein-Rosen cylindrically symmetric model 

in scale invariant theory of gravitation is given by the 
Equations (12), (31) and (32) and the metric in this case 
is 

 
 1 1 2 1 2 1 2

2

2 2 2 2 2 2 22 2 2 2 2 2
2

1
W

k d t d d t d d t d

dS

e c dt dr r e d e dz
ct

    



    
 

(37) 
 
4. Some Physical Properties of the Model 
 

The scalar expansion, ; 3i T
i

Q
U

Q
    for the model 

given by Equation (37) takes the form 

 1 2 1
1

1 d t d kd e
c

                (38) 

Thus, we find 2 1
1

1
( )d kd e

c
    as 0t   and  

0   as t  . 
If 0c  , 1 0d   and 2 1d k  the model represents 

expanding one for 1 2
1

1

( )
k d

t t
d


  . 

It is also observed that as 
2

constantm


  as t   

and 
2
m 


  as 0t  . Thus the universe confirms the 

homogeneity nature of the space-time. 
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Following Raychaudhuri [22], the anisotropy   can 

be defined as 
2

2 22

11,4 22,4 22,4 33,4 33,4 11,4

11 22 22 33 33 11

g g g g g g

g g g g g g

 

     
         
       

 

(39) 

Consequently for the model (37),  2
1 2

8
0

3
d t d    . 

So the shear scalar remains constant for 0t   and be-
comes indefinitely large for t  . 

The ratio of anisotropy to expansion 
2

2




  

1 2

2
2 28

0
3

k dc
e    for 0t  . Thus there is a singularity of 

0t  for 1 22 2k d  is not very large. Moreover, the 

model is isotropy for finite t and does not approach iso-
tropy for large value of t. 

It is observed that the vorticity ‘w’ vanishes which in-

dicates that iu  is hypersurface orthogonal. As the acce-

leration 
.

iu  found to be zero, the matter particle follows 
geodesic path in this theory. 
 
5. Conclusions 
 
Every physical theory carries its own mathematical 
structure and the validity of the theory is usually studied 
through the exact solution of the mathematical structure. 
In this theory black holes do not appear to exist. If the 
existence of black holes in nature is confirmed, it will 
represent a great success of general theory of relativity. 
Since there is no concrete evidence at present for the 
existence of black holes, one can take a stand point that 
black holes represents a familiar concept of space time. 
Therefore the scale invariant theory involves gauge theo-
ries as it relates to gravitational theories with an added 
scalar field. 

The significance of the present work deals with the 
modification of gravitational and geometrical aspects of 
Einstein’s equations. These are 1) scale invariant theory 
of gravitation which describes the interaction between 
matter and gravitation in scale free manner; and 2) the 
gauge transformation, which represents a change of units 
of measurements and hence gives a general scaling of 
physical system. The nature of the cosmological model 
with modified gravity that would reproduce the kinemat-
ical history and evolution of perturbation of the universe 
is investigated. 

Here, cylindrically symmetric static zeldovich fluid 
model is obtained in the presence of perfect fluid distri-
bution in scale invariant theory of gravitation. As far as 
matter is concerned the model does not admit either big 

bang or big crunch during evolution till infinite future. 
The model appears to be a steady state. 
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Abstract 

We have studied the Hoyle-Narlikar C-field cosmology with Kasner [1,2] space-time. Using methods of Nar-
likar and Padmanabhan [3], the solutions have been studied when the creation field C is a function of time t 
only. The geometrical and physical properties of the models, thus obtained, are also studied. 

Keywords: Kasner Space-Time, Creation Field Cosmology, Cosmological Models of Universe. 

1. Introduction 

The three important observations in astronomy viz., the 
phenomenon of expanding universe, primordial nucleon- 
synthesis and the observed isotropy of cosmic micro-
wave background radiation (CMBR) were supposed to 
be successfully explained by big-bang cosmology which 
is based on Einstein’s field equations. However, Smoot 
et al. [4] revealed that the earlier predictions of the 
Friedman-Robertson-Walker types of models do not al-
ways exactly meet our expectations. Some puzzling re-
sults regarding the red shifts from the extra galactic ob-
jects continue to contradict the theoretical explanations 
given from the big bang type of the models. Also, 
CMBR discovery did not prove it to be an out come of 
big bang theory. Infact, Narlikar et al. [5] proved the 
possibility of non-relic interpretation of CMBR. To ex-
plain such phenomenon, many alternative theories have 
been proposed from time to time. Hoyle [6], Bondi and 
Gold [7] proposed steady state theory in which the uni-
verse does not have singular beginning nor an end on the 
cosmic time scale. Moreover, they have shown that the 
statistical properties of the large scale features of the 
universe do not change. Further, the constancy of the 
mass density has been accounted by continuous creation 
of matter going on in contrast to the one time infinite and 
explosive creation of matter at t = 0 as in the earlier 
standard models. But, the principle of conservation of 
matter was violated in this formalism. To overcome this 
difficulty, Hoyle and Narlikar [8] adopted a field theo-
retic approach by introducing a massless and chargeless 
scalar field C in the Einstein-Hilbert action to account for 
the matter creation. In the C-field theory introduced by 
Hoyle and Narlikar there is no big bag type of singularity 
as in the steady state theory of Bondi and Gold [7].  

The solutions of Einstein’s field equations admitting 
radiation with negative energy mass less scalar creation 
field C was obtained by Narlikar and Padmanabhan [3]. 
The study of Hoyle and Narlikar theory [9,10] and [8] to 
the space-time of dimensions more than four was carried 
out by Chatterjee and Banerjee [11]. RajBali and Tikekar 
[12] studied C-field cosmology with variable G in the flat 
Friedmann-Robertson-Walker model. Whereas, C-field 
cosmological models with variable G in FRW space-time 
has been studied by RajBali and Kumawat [13]. Singh 
and Chaubey [14] studied various Bianchi types models 
and Kantowski-Sach model in creation field cosmology. 

The way in which the Kasner [1,2] metric has played a 
central role in the elucidation of the existence and struc-
ture of anisotropic cosmological models and their singu-
larities in general relativity motivates the authors to stu- 
dy this problem. The Kasner metric is one of the more 
widely studied metric. Its usefulness for the construction 
of cosmological models and its utility for certain studies 
of elementary particles have made it particularly attrac-
tive for exploitation. Because of its simplicity it has been 
“rediscovered” many times and is itself very closely re-
lated to metrics given several years earlier by Weyl, 
Levi-Civita and Wilson. The form in which Kasner pre-
sented it has been virtually forgotten in favor of the dy-
namic form of the synchronous Bianchi I metric. Here, 
we have considered a spatially homogeneous and anisot-
ropic Kasner form of Bianchi type-I metric in Hoyle and 
Narlikar C-field cosmology. We have assumed that the 
creation field C is a function of time t only i.e.  ,C x t  

 C t .  

2. Hoyle and Narlikar C-Field Cosmology 

Introducing a massless scalar field called as creation 
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field viz. C-field, Einstein’s field equations are modified. 
Einstein’s field equations modified by Hoyle and Nar-
likar [8-10] are  

 1
8

2
m c

ij ij ij ijR g R T T               (1)  

where m
ijT  is matter tensor of Einstein theory and c

ijT  

is matter tensor due to the C-field which is given by  

1

2
c k

ij i j ij kT f C C g C C
    
 

          (2) 

where 0f   and i i

C
C

x





 . 

Because of the negative value of  00 00 0T T  , the 

C-field has negative energy density producing repulsive 
gravitational field which causes the expansion of the 
universe. Hence, the energy conservation equation re-
duces to 

; ; ;
m ij c ij i j

j j jT T fC C           (3) 

i.e. matter creation through non-zero left hand side is 
possible while conserving the over all energy and mo-
mentum.  

[Here semicolon (;) denotes covariant derivative]. 
Above equation is similar to 

0
i

ij j

dx
mg C

ds
                (4) 

Which implies that the 4-momentum of the created 
particle is compensated by the 4-momentum of the 
C-field. In order to maintain the balance, the C-field 
must have negative energy. Further, the C-field satisfy 

the source equation ; ;
i i

i if C J  and 
i

i idx
J v

ds
   , 

where   is homogeneous mass density. 

 
3. Metric and Field Equations 
 
We consider an anisotropic [Bianchi type-I] metric in 
Kasner form as 

31 2 22 22 2 2 2qq qds dt t dx t dy t dz           (5) 

where 1q , 2q  and 3q are three parameters that we shall 

require to be constants. 
We have assumed that creation field C is function of 

time t only i.e.    ,C x t C t and 

 , , ,m i
jT diag p p p               (6) 

We have also assumed that velocity of light and gravi-
tational constant are equal to one unit. 

We first find the components of Ricci tensor Rij.  

Assuming the metric (5), the non vanishing compo-
nents of Christoffel’s symbols are 

2 10 iq
ii iq t   , 0

i i
i

q

t
   , i=1, 2, 3 . 

Hence, we calculate 

  2 2
1 2 3 1 iq

ii iR q q q q t      , i=1, 2, 3. 

   2 2 2 2
00 1 2 3 1 2 3R q q q q q q t         . 

Let 1 2 3S q q q    and 2 2 2
1 2 3q q q     , we get 

 2 22R S S t   
 

Now, the Hoyle-Narlikar field Equations (1) for metric 
(5) with the help of Equations (2), (3) and (6) can be 
written as 

   2 2 2
1

1 1
1 2 8

2 2
q S S S t p fC              

  (7) 

   2 2 2
2

1 1
1 2 8

2 2
q S S S t p fC              

  (8) 

   2 2 2
3

1 1
1 2 8

2 2
q S S S t p fC              

  (9) 

   2 2 21 1
2 8

2 2
S S S t fC                

  (10) 

 S S
p fC C C

t t
       

 
            (11) 

Now, we assume that  

 1 2 3q q q SV t t                (12) 

Above Equation (12) can be written in the form 

     d d
V p fC V VC V

dV dV
     

        (13) 

In order to obtain a unique solution, one has to satisfy 
the rate of creation of matter-energy (at the expense of 
the negative energy of the C-field). 

Without loss of generality, we assume that the rate of 
creation of matter energy density is proportional to the 
strength of the existing C-field energy-density per unit 
proper-volume. 

This is given by  

   2 2 2 2d
V p C g V

dV
           (14) 

where   is proportionality constant . 

Let us define that    C V g V  . 

Substituting it in (13), we get  

     d d
V p fg V Vg

dV dV
           (15) 

Comparing right hand sides of (13) and (14), we get 
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     
2

2d
g V gV g V

dV f


 .       (16) 

On integrating which gives  

 
2

1

1

f
g V AV

 
  
               (17) 

where 1A  is arbitrary constant of integration. 

We consider the equation of state of matter as 

p  , 0 1              (18) 

Substituting Equations (17) and (18) in the equation 
(14), we get 

 
2

2 1
2 2 fd

V A V
dV



  
 
  
         (19) 

which further yields 
2

2 2 2 1
1

2

2 1

fA
V

f





 

 
  
 

 
  

 

         (20) 

Subtracting Equation (7) from Equation (8), we get  

   2
2 1 1 0q q S t              (21) 

Equation (21) can be written as  

1 2 1 2 0
q q q qd S

dt t t t t t
         
   

 

Now, using Equation (12), the above equation be-
comes 

1 2 1 2 0
q q q qd V

dt t t t t V
         
   


       (22) 

This on integration gives 

1
1

2 1

dtq x
V

q

t
d e

t


 , 1 1;d const x const     (23) 

Subtracting Equation (9) from Equation (8), we get  

   2
2 3 1 0q q S t              (24) 

Equation (24) can be written as  

3 32 2 0
q qq qd S

dt t t t t t
         
   

 

Now, using Equations (12) the above equation be-
comes 

3 32 2 0
q qq qd V

dt t t t t V
         
   


. 

This on integration gives 

2
2

3 2

dtq x
V

q

t
d e

t


 ; 2 2;d const x const     (25) 

Subtracting Equation (9) from Equation (7), we get  

    2
1 3 1 0q q S t             (26) 

Equation (26) can be written as  

3 31 1 0
q qq qd S

dt t t t t t
         
   

 

Now, using Equations (12) the above equation be-
comes 

3 31 1 0
q qq qd V

dt t t t t V
         
   


 

This on integration gives 

1
3

3 3

dtq x
V

q

t
d e

t


  3 3;d const x const     (27) 

where 3 1 2 3 1 2;d d d x x x   .  

Using Equations (23), (25) and (27), the values of 
1 2,q qt t and 3qt  can be explicitly written as, 

1 1 3
1 1expq dt

t D V X
V

   
          (28) 

2 1 3
2 2expq dt

t D V X
V

   
          (29) 







  V

dt
XVDt q

3
31

3 exp3         (30) 

where the relations 1 2 3 1D D D   and 1 2 3 0X X X    

are satisfied by  1, 2,3iD i   and  1, 2,3iX i  . 

Adding Equations (7)-(9) and subtracting from three 
times Equation (10), we get 

   21 12S S t p            (31) 

From Equation (12) and (18), we get 

 12 1
V

V
   


             (32) 

Substituting Equation (21) in Equation (32), we get 

 
2

2 2 2 1
1

2

12 1

2 1

fAV
V

V

f


  

 

 
  
 




 
  

 


       (33) 

This further gives 

   
 

2

2

1 2

2
1 2

12 1

2

f

f f

fV A f t
f f



 


 




      

     

 (34) 

Substituting Equation (34) in Equation (17), we get  

 
 

 

1 2

2 2

12 11 1

2
g

tf f f

 

  


 
 
    

     (35) 

Also, from equation    C V g V , we get 
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 
 

 

1 2

2 2

12 11
log

2
C t

f f f

 

  


 
 
    

   (36) 

Substituting Equation (34) in Equation (21), the ho-
mogeneous mass density becomes  

  
2

2 22

1

12 1

f

tf


  


 

        (37) 

Using Equation (18), pressure becomes  

  
2

2 22

1

12 1

f
p

tf

 

  


 
         (38) 

From Equations (37) and (38), it is observed that:  
When time t  , we get, density and pressure tend-

ing to zero i.e. the model reduces to vacuum. Also from 
Equation (31), we can verify that [p = 0 and ρ = 0 gives] 
S = 1. Which is consistent with the Kasner’s condition 
for vacuum i.e. S ≡ 1 2 3q q q  = 1. 

When 2f  , there is singularity in density and pres-

sure. 
There is also singularity in density and pressure 

for 1  . 

From Equation (18), for 1  , we get p   which 

further gives [using Equation (31)] S = 1. In this case, we 
can interpret this result as “an anisotropic Kasner type 
universe can be considered to be filled with an ideal 
(non-viscous) fluid which has equation of state p   

[stiff matter: the velocity of sound coincides with the 
speed of light]. 

Using Equation (34) in Equations (28)-(30) we get 

 
2

2 2
1

31 3 1
1 2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

   (39) 

 
2

2 2
2

31 3 2
2 2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

   (40) 

 
2

2 2
3

31 3 3
3 2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

   (41) 

where    
 

21 2

2
1 2

12 1

2

f

f

K A f
f f


 


 

      
     

and 

1D , 2D , 3D  and 1X , 2X , 3X  are constants of in-

tegration, satisfying the relations 1 2 3 1D D D   and 

1 2 3 0X X X   . 

4. Physical Properties 
 

We define  31 2

1

3qq qa t t t  as the average scale factor so 

that the Hubble’s parameter in our anisotropic models 
may be defined as  

3

1

1

3 i
i

a
H H

a 

  


, where i
i

i

a
H

a



 are directional 

Hubble’s factors in the direction of ix s respectively. 
The expansion scalar   is given by  

3H 
2

1f

tf 
 

   
             (42) 

The mean anisotropy parameter is given by 
23

1

1

3
i

i

H
A

H

   
 

  

2

2
22 2 2

2

3 fX f
A t

fK




 
 
   

  
 

      (43) 

The shear scalar 2  is given by  
3

2 2 2 2

1

1 3
3

2 2i
i

H H AH


    
 
  

2
2 2

22

f

fX
t

K


 
 
                 (44) 

The deceleration parameter is given by 

1
1

d
q

dt H
   
 

 

23
2q

f


  ,              (45) 

where 2 2 2 2
1 2 3X X X X    

If 2f  then for large t , the model tends to iso-

tropic case. 
Case I : 0   (Dust Universe) : 

In this case, we obtain the values of various parame-
ters as  

  1 2
2

2

21 1

12

f
g

tf





 
 

   
 

  1 2
2

2

21
log

12

f
C t

f





 
 

   
 

 
2

2 22

1

12

f

tf


 




, 
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 
2

2 2
1

31 3 1
1 1 2

1

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

 
2

2 2
2

31 3 2
2 1 2

1

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

 
2

2 2
3

31 3 3
3 1 2

1

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

where    

21 2

2
1 2

12

2

f

f

K A f
f






      
    

 

Here 1D , 2D , 3D  and 1X , 2X , 3X  are con-

stants of integration, satisfying the relations 1 2 3 1D D D   

and 1 2 3 0X X X    . 

In this case, the expansion scalar  is given by  

2

1f

tf



 

   
, 

The mean anisotropy parameter is given by 
2

2
22 2 2

2
1

3 fX f
A t

fK




 
 
   

  
 

 

The shear scalar 2  is given by 

2
2 2

2
2

12

f

fX
t

K

 
     

The deceleration parameter is given by 
23

2q
f


  , 

where 2 2 2 2
1 2 3X X X X    

If 2f  , this model also tends to isotropy for large 

t . 

Case II : 
1

3
   (Disordered Radiation Universe)   

In this case, we obtain the values of various parame-
ters as  

  1 2
2

2

31 1

12

f
g

tf





 
 

   
 

  1 2
2

2

31
log

12

f
C t

f





 
 

   
 

 
2

2 22

3 1

24

f

tf


 




, 

 
2

2 22

1

24

f
p

tf



 



 

 
2

2 2
1

31 3 1
1 2 2

2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      
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where    
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2
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f

f

K A f
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

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      
    

 . 

Here 1D , 2D , 3D  and 1X , 2X , 3X  are constants of 

integration, satisfying the relations 1 2 3 1D D D   and 

1 2 3 0X X X    . 

In this case, the expansion scalar   is given by  

2

1f

tf



 

   
 . 

The mean anisotropy parameter is given by 
2

2
22 2 2

2
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3 fX f
A t

fK
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 
 
   

  
 

 

The shear scalar 2  is given by  

2
2 2

2
2

22

f

fX
t

K

 
     

The deceleration parameter is given by 
23

2q
f


   

where 2 2 2 2
1 2 3X X X X    or 2f  , this model also 

tends to isotropy for large t . 
 
5. Discussion 
 
1) In both cases for 2f   , we get negative decelera-

tion parameter indicating that the universe is accelerating. 
This observation is consistent with the present day ob-
servation. 

2) The expansion scalar   starts with an infinite 
value at t = 0, further gradually decreases & the expan-
sion halts when t = ∞. 

3) For 2f  , we get lim 0
t



 . Therefore, the mod-

els are isotropic for large value of t. 
4) Also, we have noticed that matter density is in-

versely proportional to square of time t. When t →0, we 
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get ρ→∞ and when t →∞, we get ρ→0.  
These are all physically valid results indicating that 

there is a situation where Kasner type C-field cosmology 
starts from infinite mass density. 

5) In general, we have observed that the creation field 
C is proportional to time t. That is, the creation of matter 
increases as time increases. 
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Abstract 

To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is 
proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room tem-
perature is 26ºC. Results show that the temperature of the substrate of LEDs reaches 62ºC without the fan, 
however, it reaches only 32ºC when the best cooling condition appears. The temperature of the LEDs de-
creases by 30ºC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demon-
strates that the cooling system with the fan has good performance. 

Keywords: High-Power Leds, Cooling System, Heat Dissipation, The Fan, Data Acquisition Card 

1. Introduction 

Light emitting diodes (LEDs), generally used for indicator 
lights, have been developed for the past 50 years. Recently, 
with the emergence of high power LEDs, they are received 
more and more attention, and have begun to play an im-
portant role in many applications. Typical applications 
include back lighting for cell phones and other LCD dis-
plays, interior and exterior automotive lighting including 
headlights, large signs and displays, signals and illumina-
tion, traffic lights, spot lights, and so on [1,2].The extensive 
applications are due to the distinctive advantages towards 
incandescent lamp and daylight lamp, such as high bright-
ness, small size, ease of integration, anti-mechanical dam-
age, all solid-state, environmental protection, lower power 
cost, long life, and high efficiency, good reliability, vari-
able color, etc. So, LEDs are called the fourth generation 
light or green light [3,4], and have been foreseen as an “ul-
timate lamp” for the future [5]. However, based on the 
current semiconductor manufacture technology, only 5%- 
10% of the input power will transfer into light energy, the 
remaining will transfer into heat while the chip size is only 
1 × 1 mm-2.5 × 2.5 mm, the heat flux is very high. If the 
heat can not dissipate in short time, it will lead excessive 
temperature, shorten the life, and thermal stress will dam-
age the LEDs chip. So, effective thermal management is 
the critical factor for the efficiency, reliability, and life of 
LEDs, especially for high power LEDs, thermal manage-

ment has become the development bottleneck of LEDs 
[6-8]. 

To address the thermal problem of LEDs, many investi-
gators have researched interrelated thermal management of 
LEDs: 

LUO and LIU [9] proposed a closed microjet cooling 
system for LEDs thermal management. By optimizing the 
microjet array device’s parameters, the cooling system was 
used for cooling a 220 W LED lamp, and the temperature 
tests demonstrate it can effectively cool the total system. 
Zhang et al. [10] used MWNT and carbon black to im-
prove the thermal performance of TIM in high-brightness 
light emitter diode (HB-LED) packaging. Thermal inter-
face material was developed to achieve the thermal con-
ductivity of about 0.6 W/m·K with 2 wt% nitric acid 
treated CNT and 10 wt% carbon black. The output light 
power of the 1 × 1 mm 2 HB-LED device with the devel-
oped TIM can achieve 62 mW with the input current of 
300 mA. Yuan et al. [11] described a process of applying a 
FEA technique to simulate and analyses a light emitting 
diode (LED) array integrated in microchannel cooler mod-
ule. The cooling module with different internal configura-
tions, heat source density, and heat dissipation capacity 
corresponding with different flow velocity are investigated. 
From the analysis, the special design of internal staggered 
fins in microchannel cooler could reduce the average die 
temperature, the difference in temperature and the flow 
resistance compared to straight fins in microchannel cooler. 
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Liu et al. [12] introduced a method of thermal design and 
module of thermal resistance of High-power LED; and 
describes heat dissipation design for illumination High- 
power LED arrays. The results proved that the radiator 
designed can control the maximum junction temperature of 
LED chip within 70  under the condition that all chips ℃
work in full-load and the environment temperature is 40 . ℃
Zhang et al. [13] studied the effect of thermal conductive 
coating on the thermal management of LED lamps with 
different color and packing number used in a close un-
der-water environment. Experiment result shows that the 
thermal conductive coating used on LED integrated circuit 
board can increase the thermal release efficiency of LED. 
And the higher the thermal conductivity is, the better the 
effect of thermal management is.  

In this paper, a cooling system with a fan is proposed. 
Several conditions at different input power of the fan are 
conducted to investigate its effect on thermal management 
of high power LEDs. For achieving relatively exact tem-
perature in LEDs, a K-type thermocouple is welded into 
the substrate of LEDs, and its signal is collected by using 
data acquisition system. Based on the detected temprature, 
the cooling ability of the system is evaluated. 
 
2. Experimental 
 
Figure 1 demonstrates the cooling system. It composes 
of a radiator including cooling fins and a fan. In the sys-
tem, the LEDs and cooling fins is connected through 
thermal conductive silicone grease. It can be seen that 
the system is very simple and convenient, and the room it 
required is very small. 

The light source module is composed of six LEDs in 
tandem mode. (The LED, which type is XL-HP3WHWC, 
the diameter of substrate is 20 mm, the emitted color is 
white, and the limit power is 3 W). The total power con-
sumption of the 2 × 3 array is added up to be 18 W. The 
radiator is 80 mm × 95 mm. The fan’s model is 3110KL- 
04W-B50. The temperature of heat dissipation substrate 
of LEDs is measured by K-type thermocouple, the mea-
surement error of which is about 0.5ºC at the temperature 
range from –30ºC to 150ºC.  

Experimental system is constructed as shown in Fig-
ure 2 DC power supply of LEDs is special electrical 
source of LEDs, and its power is 6 × 3 W = 18 W. In the 
experiment, the junction temperature could not be 
achieved directly, so, the substrate of LEDs is measured. 
Although there is difference temperature between the 
heat dissipation substrate of LEDs and the junction tem-
perature, it is feasible using the former to check the 
cooling ability of the proposed concept since it can re-
flect the latter intuitively. At the beginning, in order to 
study the heat dissipation effect of the fan, a couple of 
comparative experiments are conducted under the condi-
tion without the fan and the input power of the fan is 

 

Figure 1. The cooling system. 
 

 

Figure 2. The experimental system. 
 
2.13 W respectively. Then, a set of experiments are con-
ducted to study the effect of different input power of the 
fan on the thermal management of high-power LEDs. 

In the experiment, a temperature transmitter is used to 
transform the signal of temperature from the thermocou-
ple into that of voltage which can be acquired by using 
the data acquisition card (PCI-1710). The acquisition 
frequency is 0.1 s. Then, the signal of voltage is trans-
formed into the signal of temperature through the for-
mula describing the relationship between the temperature 
and the voltage. After the signal of temperature is filtered 
with the software of MATLAB, the temperature graph 
can be found which demonstrates the cooling effect of 
the system. 
 
3. Results and Analysis 
 
After the signature of temperature is filtered with the 
software of MATLAB, the temperature graphs of LEDs 
are found as follows: 
 
3.1. Without the Fan and the Input Power of the 

Fin is 2.13 W 
 
Figure 3 shows the temperature variations of substrate of 
LEDs with time without the fan and at the input power of 
the fan 2.13 W. It can be seen that the temperature of 
substrate of LEDs increases continuously up to 62ºC and 
still has a rising trend without the fan, however, it reach-
es the maximum about 32.5ºC in short time and remains 
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Figure 3. The temperature variations of substrate of LEDs 
with time without the fan and at the input power of the fan 
2.13 W. 
 
steady by using the fan. The above result is easy to un-
derstand that the heat generated by LEDs conducts to the 
cooling fins, if the heat of cooling fins does not released 
into the environment in time, the temperature of LEDs 
will increases continually. In the designed system, the 
main approach of heat exchange between the system and 
environment is natural convection though cooling fins 
when the fan is not used. However, when the fan works, 
it is forced convection, and the effect of heat exchange 
will be effectively improved. This indicated that the fan 
has a good performance on the thermal management of 
high-power LEDs. 
 
3.2. The Different Input Power of the Fan 
 
Figure 4 shows the temperature variations of substrate of  
LEDs with time at different input power of the fan. It can 
be seen that the temperature of substrate of LEDs will 
reach a steady value within 5 mins when the fan is used, 
and the steady temperatures are different with the differ-
ent input power of the fan. The maximum and minimum 
 

 
Figure 4. The temperature variations of substrate of LEDs 
with time at different input power of the fan. 

temperature is 35.6ºC and 32ºC when the input power is 
0.23 W and 3.22 W respectively. The higher the input 
power is, the lower the steady temperature is. As the en-
largement of input power, forced convection enhanced, 
fluid can quickly remove LED heat, leading to the lower 
temperature of the substrate of LEDs, while the running 
cost is correspondingly increased. In the practical appli-
cations based on the above experiment, a choice should 
be made to achieve a balance between the cooling effect 
and the power consumption of the system. Figure 4 
shows that 0.83 W and 1.22 W of the system is appropri-
ated. 
 
4. Conclusions 
 
A cooling system with a fan is presented to improve the 
heat dissipation of high-power LEDs. Several conditions 
at different input power of the fan are conducted. The 
experimental result demonstrates that the cooling system 
with the fan has a good performance on the thermal 
management of high-power LEDs. The minimum tem-
perature is only 32ºC when the fan is applied and the 
environment temperature is 26ºC, while it reaches 62ºC 
without the fan. With the increasing of the input power, 
however, the cooling performance improves slightly, so, 
in practical applications, appropriate input power should 
be selected to achieve a good balance between the cool-
ing effect and the power consumption of the system. 
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