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ABSTRACT 

Following the growing research interests in complex networks, in recent years many researchers treated static structures 
of software as complex networks and revealed that most of these networks demonstrate small-world effect and follow 
scale-free degree distribution. Different from the perspectives adopted in these works, our previous work proposed 
software mirror graph to model the dynamic execution processes of software and revealed software mirror graph may 
also be small world and scale-free. To explain how the software mirror graph evolves into a small world and scale free 
structure, in this paper we further proposed a mathematical model based on the mechanisms of growth, preferential at- 
tachment, and walking. This model captures some of the features of the software mirror graph, and the simulation re- 
sults show that it can generate a network having similar properties to the software mirror graph. The implications are 
also discussed in this paper. 
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1. Introduction 

Inspired by the surprising discovery of several recurring 
structures in various complex networks, in recent years a 
number of related works treated software systems as 
complex networks and revealed several unexpected find- 
ings [1-4]. A network contains nodes and edges that link 
various pairs of nodes. Various attributes of interest may 
be associated with nodes and edges. For software sys- 
tems, the nodes could be methods, classes, functions, ob-
jects, head files, source files, etc. [5-8]. And the edges 
could be any relations between the nodes, such as the 
calls between the methods or functions, the dependency 
or references between the objects, or the interclass rela- 
tionships between classes. 

The existing studies that treated static structures of 
software as complex networks have already revealed that 
software systems, just like many other complex networks, 
might expose the small-world effect and follow scale- 
free degree distribution [1-4]. Small-world effect means 
that the average path length is small and the clustering 
coefficient is relatively large [9]. Degree distribution 

 is the probability that a node chosen uniformly at 
random has degree k. If the degree distribution of a net- 
work follows power law, the network is then referred to 
as scale-free network. Scale-free distribution obeys a 
right-screwed straight-line form on the doubly logarithm- 

mic scale. Unlike the existing studies, our previous work 
[10] treated the dynamic execution process of software as 
an evolving network which is called software mirror 
graph in our work, and found that software mirror graph 
might also be small-world and scale-free. 

Researchers have proposed several models to investi- 
gate the mechanisms responsible for the small world and 
scale-free networks. The WS model and NW model [11] 
generate small world network by adding or moving edges 
to create a low density of shortcuts on a low-dimensional 
regular lattice. However, small world models cannot re- 
produce the scale-free property. The BA model [12] and 
its extensions postulated that there are two fundamental 
mechanisms of many scale-free networks: growth and 
preferential attachment. They stated that most real net- 
works are better described by growing models in which 
nodes and edges forming the network increases with time 
and the probability an old node gains a new link is pro- 
portional to its degree k. Although it is argued that the 
existing models can not completely describe the real net- 
works, they really capture some of the essential mecha-
nisms responsible for the uncovered properties. By 
studying these mathematical models, we can better un- 
derstand the network structure and behavior which is 
obviously important to the complex systems. 

 P k

For the same reason, some studies have emerged to ex- 
plore the underlying mechanisms that generate the small 
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world and scale-free software networks. It is argued that 
the well-known WS model for small world effect and BA 
model for scale-free property may be incapable of de- 
scribing the growing process of man-made software sys- 
tems. Valverde et al. [13] stated that the scale-free prop- 
erty of software results from a local optimization process 
instead of preferential attachment or duplication rewiring 
rules. Myers et al. [14] proposed a refactoring-based mo- 
del of software evolution, by modeling the program func- 
tions to be binary strings, the model explains that how 
the refactoring process of software leads to scale-free 
distribution and other properties. Valverde et al. [15] sug- 
gested a model of network growth by duplication and 
rewiring, and showed the rules of evolution is response- 
ble for the observed motif distribution. He et al. [16] 
analyzed the growth characteristics of software patterns 
and its topology thereof, proposed network topology and 
local-world growth types of software patterns, and de- 
veloped a software-pattern based modulation model. 
Most of these evolving models are simple and can only 
explain the growing process of software under specific 
condition. Up to now, no wildly accepted mathematical 
model is reported in the literature. Moreover, as far as we 
know, no such model for the dynamic execution process 
network has been reported to explain how the network 
evolves into a small world and scale free structure. 

However, exploring the generating mechanisms of the 
dynamic execution process network is also important to 
help us understand the software dynamic behavior which 
can obviously benefit software development and mainte- 
nance tasks. In this paper, we first reviewed the software 
mirror graph of the software execution processes, and 
then gave the definition of network measures. Further, 
the networks of three real software systems were built 
and the measures were calculated to reveal the network 
properties. Moreover, the characteristic of the growing 
process was analyzed and a mathematical model was 
proposed based on the analysis. Finally the implications 
of the model were discussed and the conclusions were 
given. 

2. Measures and Properties of the Software 
Mirror Graph 

2.1. Software Mirror Graph 

To model the execution process of the software execu- 
tion processes, a natural and convenient manner is to 
adapt the directed topological graph. Suppose the meth- 
ods are treated as nodes and an execution of method i 
followed by an execution of method j defines a directed 
edge from node i to node j. Then the execution trace is 
modeled as a directed topological graph. However, the 
topological graph is not capable of describing the soft- 
ware execution process. For example, from the directed 

graph it is not clear how often a method is executed and 
how often a pair of methods is executed consecutively, 
although information of this kind is important for identi- 
fying method importance and software reliability. In our 
previous work [10], we proposed software mirror graph, 
which introduced a set of attributes to directed graph to 
record the dynamic information. More specifically, vari- 
ous attributes can be defined to convey dynamic infor- 
mation of interest and then be associated with nodes and 
edges in the directed topological graph. Software mirror 
graph is introduced briefly as follows: 

Let , , ,V V V V 1 2 m  be the set of nodes, each cor- 
responding to a distinct method in the subject software 
system.  , , 1,2, ,E e i j m  ij  be the set of directed 
edges between two nodes. A software mirror graph is a 
directed graph with a set of attributes 

 , , , , , 1,2, ,ij ij j iA w i j m      being defined as fol- 
lows: 

ij   the number of times method i and method j are 
consecutively executed, 

ij   the minimal number of steps (transitions) from 
an execution of method i to an execution of method j, 

11

1 1 1 1

,
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ijij ji
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The software mirror graph can be denoted  

SK  . Note that ij  represents the temporal 
distance from node i to node j. Further, 

1 iji

m 


 repre- 
sents the in vertex weight degree of node j, and thus 


j  

represents the relative frequency of that an arbitrary 
method and method j are consecutively executed. Simi- 
larly, 

1 ijj

m 


 represents the out vertex weight degree 
of node i, and thus i  represents the relative frequency 
of that method i and an arbitrary method are consecu- 
tively executed. 


w

       

Software mirror graph evolves as the software execution 
trace proceeds. Note that methods are visited and exe- 
cuted one by one, and thus the time domain for the soft- 
ware execution process should be discrete. Denote the  

software mirror graph at time t as , ,SM t t t tG V E A

{ , , , }v v v

1

.  

It represents the software state at time t and looks like a 
mirror of the software state at time t. 

Let us take the execution trace of Figure 1 as an illus- 
trative example. 

There are four methods and thus 1 2 3 4V v . 
The total number of transitions of methods is 9, including 
the one method 1 is executed for the first time (from the 
initialization of the execution trace). We assume that the 
first execution of method 1 exactly follows a previous 
(virtual) execution of method 1. In this way 11  . The 
corresponding attributes can be represented in the form 
of matrix as follows: 
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Now let us examine how a software mirror graph 
evolves as the software execution trace proceeds. Note 
that methods are visited and executed one by one, and 
thus the time domain for the software execution process 
should be discrete. Denote the software mirror graph at 
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Figure 1. An execution trace and its directed topological 
graph. 
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       time t as , ,SM t t t tG V E A

1t

. It represents the software 

state at time t and a snapshot of the software execution 
process. At the beginning of the software execution 
process or  , only one method is executed and thus 
the software mirror graph contains only one node and 
one virtual edge (loop). For the execution trace of Figure 
1, it holds that 

 

 (1) 1V ,  1,1E  1w(1) , 1(1)   and 

1(1) 2t1u  . At time   a second method is executed, 
which may be or may not be the same one executed at 
time 1t  . A new node may or may not be added. A 
new edge may or may not be created. However the asso-
ciated attributes must be assigned or updated. This results 
in an updated software mirror graph. More specifically, 
for the execution traceof Figure 1, 

 , : , 1, 2,3, 4ij ij i j   

       
       
       
       

 

 of the software mirror graph 

evolves as follows: 
 

     
       
       
       

       
       
       
       

1 2 3

1,1 0, 0, 0, 1,1 1,1 0, 0, 1,1 1,1 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1,1 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
t t t  

           
                                     
     

                     


   
       
       
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       
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       
       
       
       

6 5 4

0, 2 0, 1,1 2,1 0,2 0, 1,1 2,1 0, 0,

1,1 0,2 1,1 0, 1,1 0,2 1,1 0, 1,1 0,2 0, 0,

0, 1,1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
t t t  

        
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     
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       

7 8 9

, 1,1 2,1 0, 2 1,1 1,1 2,1 0, 2 1,1

, 2,1 0, 2 1,1 0,2 2,1 0, 2 1,1 0, 2

1 0, 2 1,1 0, 0,3 0,2 1,1 0, 0,3

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,1
t t t  

   
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        
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
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


 
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where as  evolves as follows: 
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and  evolves as follows: : 1, 2,3, 4w j  j
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Note that ij  

0ij

 at time t means that there is no 
directed path from node i to node j up to time t. This 
simultaneously implies that    at time t. Further, 

( ) 1ij t   if and only if ( )ij t 1  . 

       , ,ESM t t t t  is a graph that looks like a 
mirror of the software state at time t. The difference be- 
tween a software mirror graph and a weighted topologi- 
cal graph can be clarified as follows. First, no self-loop 
may appear in a weighted topological graph. This is not 
the case for a software mirror graph and can be observed 
at time t = 9 for the execution trace of Figure 1. A self- 
loop appears if a method is consecutively executed twice. 
Second, only a single numerical attribute, whose physical 
interpretation is often obscure, is associated with each 
edge in a weighted topological graph. However in a 
software mirror graph, a set of attributes A is adopted to 
convey the dynamic information of interest with clear 
physical interpretations. The resulting software mirror 
graph evolves in the spatial dimension in terms of the 
nodes and edges as well as in the temporal dimension in 
terms of the dynamic attributes. Finally, the set of attrib- 
utes A can be tailored or expanded if other static or dy- 
namic information of the software execution process is of 
interest. 

G V A

 P k

 P k

2.2. Measures of the Software Mirror Graph 

2.2.1. Degree Distribution 
The degree of a node is defined as the number of edges 
connected to it. Degree distribution  is the prob- 
ability that a node chosen uniformly at random has de- 
gree k, that is,  is the fraction of nodes in the net- 
work that have degree k. For a directed topological graph, 
node i has in-degree i  as well as out-degree i , 
which are defined as the number of ingoing edges to it 
and the number of outgoing edges from it, respectively. 

The in-degree distribution describes the probabilities 
of m 1 2, , ,  

0,
1 2, , ,

 taking various values over the inter- 
val , and out-degree distribution describes the 
probabilities of  m


  

0,

   Pr
m

ip k k

 taking various values 
over the interval . More specifically, the in-degree 
distribution and out-degree distribution are defined as 

1in i



     1
Pr

m

out ii
p k k


 

   in inl k

 and  
respectively. 

The cumulative in-degree distribution and out-degree 
distribution are defined as P k P l






   out outl k
P k P l




 

 and  

 respectively. 

  p kout  follows a power law  Suppose that 
  ~outp k k   1~outP k k , then it holds   . 

2.2.2. Vertex Weight Distribution 
The definition of vertex weight distribution is similar to 
the definition of degree distribution. The difference is 
that the degree is replaced by the vertex weight which 
can be represented by   in the attribute set A. 

The in vertex weight and out vertex weight are defined 
as:  

    1 1
Pr

m m

in iji j
p s s

 
  

    1 1
Pr

m m

out ijj i
p s s

 

, 

and 

  

d

d

 

respectively. s here denotes the sum of weight of the each 
node. 

2.2.3. Average Path Length 
The distance ij  from node i to node j in a software 
mirror graph with n nodes is defined as the number of 
edges on the shortest path from nodes i to node j. 

ij  
d

 if there is no directed path from node i to node j. 
It is assumed that ij   j i

 

 if . The average path 
length L of a mirror graph is then defined as follows: 

, ,

1
.

# ij iji j d
ij

L d
d 


 

  

 # ijdwhere    denotes the number of distances which 
are finite. 

Here we note that besides the average path length, av- 
erage temporal distance was also defined in our previous 
work [10]. It is defined to measure how many steps are 
required from an arbitrary method to another arbitrary 
method on average, which is calculated by the second 
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attribute   in the attribute set A. In this paper, only the 
average path length is discussed as a traditional measure 
of the length of the network. 

2.2.4. Clustering Coefficient 
Clustering coefficient measures the conditional probabil- 
ity that an arbitrary triple of nodes defines a triangular of 
nodes (a third pair of topological neighbor) if the three 
nodes define two pairs of topological neighbors already 
[9]. Thus the clustering coefficient C is: 

3 number of triangles in

number of connected trip
C




 the network

les of nodes

randC

, 

Here a triple of nodes is said to be connected if at least 
one of the three nodes takes the other two nodes as its 
topological neighbors. Note that clustering coefficient is 
only defined for undirected topological graphs. So in a 
directed one, two nodes are considered to be in neighbor 
if there is an edge from node i to node j, or vice versa. 

2.3. Properties of the Software Mirror Graph 

Three large-scale open-source GUI software systems 
were used in this paper as subject programs, including a 
tool kit for developing interactive 3D graphic applica- 
tions named Intra3D, a tabbed browser with a custom- 
izable interface based on the Internet explorer browser 
engine named MyIE, and a tool for creating flowcharts, 
diagrams or slide shows named Diagram Designer. The 
programs were instrumented in advance in order to re- 
cord the execution traces of the corresponding subject 
program while they were executed. In order to run a sub- 
ject program, a test suit comprising various test cases 
was required to represent the input domain of the subject 
program. A test case is a sequence of primitive actions 
applied to the GUI program under operation [10]. Re- 
lated statistics of the software operation platform are 
tabulated in Table 1. 

In our software experiments 40 trials were conducted 
for each subject program. This generated 40 sets of ex- 
perimental results for each subject program. The mean 
and standard deviation were then analyzed. This was 
aimed to guarantee the statistical repeatability of the 
software experiments. In our software experiments, 200 
of 2000 test cases in the test suite were executed in a 
single trial of software execution for Intra3D, and 100 of 
1000 test cases in the test suites were each executed in a 
single trial of software execution for MyIE and Diagram 
Designer. 

Table 2 tabulates the results of the above measures for 
the three subject programs, where L and C denote the 
average path length and the average clustering coefficient 
of the networks built by the execution traces of the 40 
trials.  and  denote the average path length  randL

Table 1. Traces statistics of the three subject programs. 

Subject Program Intra3D MyIE 
Diagram 
Designer 

Number of Classes 33 85 138 

Number of Stubbed Methods 639 1172 1263 

Number of Test Cases 2000 1000 1000 

 
Table 2. Measures of the small-world effect. 

Subject 
program

Size k randL  C  L randC

Intra3D 381.275 4.210 4.809 4.135 0.128 0.011

MyIE 577.950 4.796 3.851 4.056 0.182 0.008

Diagram 
Designer

448.475 4.399 5.022 4.122 0.148 0.010

 
and the clustering coefficient of a random graph of the 
same size and degree. It can be seen that L is comparable 
to rand , whereas C is much higher than randC . This 
means that the topological structure of the software exe- 
cution processes demonstrate the small-world effects. In 
other words, the software execution process can be treated 
as a small-world network.  

L

The out-degree distributions and the out-degree ver- 
tex weight distributions of the networks are showed in 
Figures 2 and 3. We can find that the curves in the log- 
log plot roughly fit a piecewise power law. This coin-
cides with the observation presented in reference [10] 
that the out-degree distribution may be better treated as a 
piecewise power law than a single power law. Note here 
that a piecewise power law distribution is also a reflec- 
tion of the scale-free property. However, it is less het- 
erogeneous than a power law one because the proportion 
of nodes with high degree in the network of the former 
decreases. 

3. The Proposed Model 

3.1. The Generating Mechanisms of the Model 

An evolving model is proposed in this paper to explain 
the formalization of the software mirror graph. The 
model should be capable of capturing the essential 
mechanisms responsible for the small-world effect and 
scale-free property. We analyze the characteristics of the 
execution process in the first place. First, the increment 
speed of the nodes in the network slows down with time 
and the number of nodes gradually tends to the total 
number of the methods in the software program. Second, 
the link among methods should obey the program logic, 
instead of attaching randomly among the whole network 
just like most of other real complex networks. After the 
program coding, the candidate methods that a method  
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Figure 2. Out degree distribution. 
 

 

Figure 3. Vertex weight distribution. 
 
can reach is fixed. Finally, uncertainty is associated with 
the software execution process, which stems from the 
uncertainty of execution profile, execution environment, 
and program multithreading, etc. Bugs in the program 
can also cause uncertainty to the execution process. 
Based on the analysis, we proposed a model which pos- 
tulates that there are three fundamental mechanisms: 
growth, preferential attachment, and walking on the net- 
work. The model is described as follows:  

Step 1: Growth: Starting with a small number  0n
, , ,X X X

 
of nodes  01 2 n  and a small number  e

 1Node

0  
of edges at time t0. The weight on each edge is set to be 
one. Constant N is given to represent the total number of 
nodes, and S the total weight of the edges. At each time 
step from t1, a new node  is added with 
probability 

 t
 1  where  n t notes 

the number of nodes at time 
*p a N  n t N ,  de

 , 2,3, , and , 1s st t t a 
is a constant ranged  0,1 . 

Step 2: Preferential attachment: At each time step 
from t1, select a node  from the network with 
probability p2, which is a constant ranged 

   2Node t
 0,1

 

. If this 
action is taken, the probability of node i to be selected is 
proportional to  i

      
1

m t

ji ij ji
W t t t 


  

i i
W tW t , where 

   m t

 t

,  is the number of  

the neighbors of node i at time t, and 
ij

 denotes the 
weight of the edge from node i to node j. Note here  

 1 2 ( ), , , n ti j x x x  , where n t  is the number of nodes  

 , 1, 2,3,t t t s  
   3Node t

at time s

Select a node  from the network. The 
probability of node i to be selected is proportional to 

. 

   ii i
W t W t , where  

      
1

m t

ji ij ji
W t t t 


     m t

 ij
t

   1Node t    2Node t
   1Node t    2Node t    2Node t

   3Node t
   3Node t

   3Node t

   

,  is the number of  

the neighbors of node i at time t, and  denotes the 
weight of the edge from node i to node j. 

If both of  and  exist, then 
link  to , and  to 

. If only one of the two exists, then link the 
one to . The corresponding weight on each 
edge adds one at the same time. 

Step 3: Walk along the neighborhood: Set  
to be the current node, from the current node, walk in the 
network according to the following rule: 

Select a node in the neighborhood of the current node. 
The probability of a node i in the neighborhood to be 
selected is proportional to 

ii i
W t W t

     
, where  

 
1

m t

ji ij ji
W t t t 


     m t

 t

,  is the number of  

the neighbors of node i at time t, and 
ij

 denotes the 
weight of the edge from node i to node j. Note here 

 , ,i x x x    ( ), , n tx x x  , wh1 2 ( )m t and 1 2j ere  n t  
 number of nodes at time t. is the

Link an edge from the current node to the selected 
node if the edge is absent. And the corresponding weight 
on the edge added one at the same time. The total weight 

 weight t  at time t added one simultaneously. Note 
here  weight t  is initially set to be zero at the begin- 
ning of this step. 

Set the selected node to be the current node. If weight t

 Weight weight t

 
equals to a constant e, stop this step. Else continue walk-
ing in its neighborhood according to the rule described 
above. 

Step 4: If 
t  equals to a con- 

stant S, stop the process. Otherwise, go to Step 1. Note 
here Weight is initially set to be zero at the beginning of 
the process. 

3.2. The Simulation Results of the Modle 

In this section, we give the simulation results of the pro- 
posed model, and discuss the relationship of parameters 
setting and the network properties. 

3.2.1. The Total Node Number N 
Set 0.2a  , 2 0.2p  , 5e  , . Figure 4 
gives the out degree distribution, out vertex weight de- 
gree distribution, average path length and clustering co- 

10,000S 
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efficient while N takes 100, 200, 500 and 1000 respec- 
tively. From Figure 4 we can see that the distributions of 
the out degree and the out vertex weight degree roughly 
fit a piecewise power law. Along with the increase of N, 
the power exponent k of the first stage increases, while 
that of the second stage decreases, which makes the 
curve more and more fit a power law. Along with the 
increases of N, the average path length increases and the 
clustering coefficient decreases. However, the average 
path length keeps short and the coefficient keeps small, 
which means the world is still small although it turns a 
little bigger with the network growing. 

3.2.2. Parameter a 
If N is set, parameter a decides the probability to intro- 
duce a new node into the network. Set , 500 0.2aN   , 

, . Figure 5 gives the out degree dis- 
tribution, out vertex weight degree distribution, average 
path length and clustering coefficient while a takes 0.1, 
0.2, 0.5 and 1 respectively. From Figure 5 we can see 
that the influence of parameter a is not obvious. Along 
with the increase of a, the average path length increases 
slightly and the clustering coefficient decreases slightly, 
which means the world is still small although it turns a 
little bigger. 

5e  100,000S 

500

3.2.3. Probability p2 
p2 decides the probability of preferentially attaching a 
node which already exists in the network before choosing 
a node to be the start point of walking. Set N  , 

, , . Figure 6 gives the out de- 
gree distribution, out vertex weight degree distribution, 
average path length and clustering coefficient while p2 
takes 0.1, 0.2, 0.5 and 1 respectively. Figure 6 shows 
that along with the increase of p2, the heterogeneity gets 
worse and the curve fits more and more like a piecewise 
power law. However, the influence of p2 on the vertex 
weight degree distribution is not obvious. Along with the 
increase of p2, the average path length decreases slightly 
and the clustering coefficient increases slightly, which 
means the world gets a little smaller. 

0.2 5e a 100,000S 

100,000S 

3.2.4. The Total Weight e Added in Each Time Step 
e decides the the total weight to be added in each time 
step. Set N , , . Figure 7 
gives the out degree distribution, out vertex weight de-
gree distribution, average path length and clustering co-
efficient while e takes 2, 4, 8 and 16 respectively. Figure 
7 shows that e does not change the power exponent of the 
piecewise power law. However, it makes the curve 
moves parallelly to the left. From Figure 7 we can see 
that along with the increase of e, the average path length 
increases slightly and the clustering coefficient decreases 
slightly, which means the world is still small although it 

500 0.2a 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. a = 0.2, p2 = 0.2, e = 5, S = 100,000. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. N = 500, p2 = 0.2, e = 5, S = 100,000. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. N = 500, a = 0.2, e = 5, S = 100,000. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. N = 500, a = 0.2, p2 = 0.2, S = 100,000. 

turns a little bigger. 

3.3. Discussion 

The model and the simulation results are further dis- 
cussed here. In Part 2 of Section 3 we analyzed the char-
acteristic of the execution process. In brief, the number 
of executed methods goes stable with time, and the 
methods are executed according to the program logic 
with some elements of uncertainty. In the model pro- 
posed in Part 1 of Section 3, we can see that the prob- 
ability of introducing a new node is proportional to 

  *a N n t N , which keeps decreasing along with 
time. When  n t

   3Node t
   2Node t

   1Node t    3Node t

   2Node t

 increases up to N, the number of the 
nodes in the network stops increasing and the evolving of 
the network only reflect by the increasing of edges or 
weights. The dynamic execution process can be treated 
as walking along the software static structure according 
to the execution profile, so instead of linking randomly, 
the node can only link its neighbors in the static structure. 
The topology of the execution process network can be 
treated as a union set of a lot of sub graphs of the soft- 
ware static structure and the repetitive edges are repre- 
sented by weight on the edge. The uncertainty in the 
model is reflected in three ways: the selection of the start 
node  of the walking in each time step, the 
selection of  which bridge the new added 
node  and , and the selection of 
the nodes on the walking route. 

From the simulation results, we can see that the model 
generates a network being both scale-free and small 
world. The trend of the curves consists with that of the 
real software system. Along with the increase of N and 
decrease of p2, the topological network turns more and 
more scale-free, and the curve fits more like a power law. 
The parameter e only has influence on the turning point, 
and makes it move to the left along with e increasing. 
The scale-free property of the execution process network 
first comes from static structure of the software program 
which has been widely reported to be scale-free. The 
reuse of basic functions and the decomposition of main 
functions make the “hubs” emerge in the network and 
lead to the scale-free property. While executed, these 
hubs naturally have more chances to be selected. The 
preferential attachment is another cause of the scale-free 
property, due to the execution profile, some functions are 
executed with a higher probability, which makes the cor- 
responding methods possesses more edges or weight. 

The parameters all have influence on the short path 
length and clustering coefficient. However, the network 
keeps being a small world. We can notice that the pa- 
rameter p2 make the network to be even smaller with its 
increasing. It is not hard to be understood because p2 
decides the probability to add  which can 

Copyright © 2012 SciRes.                                                                                 JMP 



L.-Z. ZHU  ET  AL. 

Copyright © 2012 SciRes.                                                                                 JMP 

1059

provide “long-distance” connections in the network. 

4. Conclusions 

In recent years a number of related works treated soft- 
ware systems as complex networks and found that soft- 
ware systems might also be small world and follow 
scale-free degree distributions. Our previous work [10] 
revealed that not only the software static structure, but 
also the networks of software dynamic execution proc- 
esses (software mirror graph) may have small world ef- 
fect and scale-free property. Up to now, there exist no 
wild accepted models that can describe the mechanisms 
that generate the small world and scale-free software 
networks. 

In this paper, we first reviewed the software mirror 
graph of the software execution process. And then we 
gave the definitions of the network measures and proper- 
ties. The experimental results of three real software were 
presented and showed the networks are scale-free and 
small world. Then an evolving model was proposed 
based on the analysis of the execution process. The 
model has three basic mechanisms: growth, preferential 
attachment, and walking in the neighborhood. The model 
can well describe the evolving process and the simulation 
results showed that it can reflect the network properties. 
The influence of parameters was then discussed and we 
found the number of nodes in network and the probabil- 
ity p2 of adding the bridge nodes affected the scale-free 
property. And p2 also affects the small-world effect 
which makes the world turning to be even smaller with 
its increase. 

A possible work we can do in future is to examine 
more subject programs to find the network properties of 
their execution process. Moreover, based on the proposed 
model, we may carry out research on software bug local- 
ization because as what we discussed in previous sec- 
tions, bugs causes uncertainty and may change the net- 
work structure and properties.  
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