
Journal of Modern Physics, 2012, 3, 1050-1059
http://dx.doi.org/10.4236/jmp.2012.39139 Published Online September 2012 (http://www.SciRP.org/journal/jmp)

Generating Mechanisms for Evolving
Software Mirror Graph

Ling-Zan Zhu1,2, Bei-Bei Yin1, Kai-Yuan Cai1
1Department of Automatic Control, Beijing University of Aeronautics and Astronautics, Beijing, China

2Institute of Chemical Defense, PLA, Beijing, China
Email: zhulingzan@gmail.com

Received July 9, 2012; revised August 11, 2012; accepted August 19, 2012

ABSTRACT

Following the growing research interests in complex networks, in recent years many researchers treated static structures
of software as complex networks and revealed that most of these networks demonstrate small-world effect and follow
scale-free degree distribution. Different from the perspectives adopted in these works, our previous work proposed
software mirror graph to model the dynamic execution processes of software and revealed software mirror graph may
also be small world and scale-free. To explain how the software mirror graph evolves into a small world and scale free
structure, in this paper we further proposed a mathematical model based on the mechanisms of growth, preferential at-
tachment, and walking. This model captures some of the features of the software mirror graph, and the simulation re-
sults show that it can generate a network having similar properties to the software mirror graph. The implications are
also discussed in this paper.

Keywords: Software Mirror Graph; Complex Network; Scale-Free; Small World

1. Introduction

Inspired by the surprising discovery of several recurring
structures in various complex networks, in recent years a
number of related works treated software systems as
complex networks and revealed several unexpected find-
ings [1-4]. A network contains nodes and edges that link
various pairs of nodes. Various attributes of interest may
be associated with nodes and edges. For software sys-
tems, the nodes could be methods, classes, functions, ob-
jects, head files, source files, etc. [5-8]. And the edges
could be any relations between the nodes, such as the
calls between the methods or functions, the dependency
or references between the objects, or the interclass rela-
tionships between classes.

The existing studies that treated static structures of
software as complex networks have already revealed that
software systems, just like many other complex networks,
might expose the small-world effect and follow scale-
free degree distribution [1-4]. Small-world effect means
that the average path length is small and the clustering
coefficient is relatively large [9]. Degree distribution

 is the probability that a node chosen uniformly at
random has degree k. If the degree distribution of a net-
work follows power law, the network is then referred to
as scale-free network. Scale-free distribution obeys a
right-screwed straight-line form on the doubly logarithm-

mic scale. Unlike the existing studies, our previous work
[10] treated the dynamic execution process of software as
an evolving network which is called software mirror
graph in our work, and found that software mirror graph
might also be small-world and scale-free.

Researchers have proposed several models to investi-
gate the mechanisms responsible for the small world and
scale-free networks. The WS model and NW model [11]
generate small world network by adding or moving edges
to create a low density of shortcuts on a low-dimensional
regular lattice. However, small world models cannot re-
produce the scale-free property. The BA model [12] and
its extensions postulated that there are two fundamental
mechanisms of many scale-free networks: growth and
preferential attachment. They stated that most real net-
works are better described by growing models in which
nodes and edges forming the network increases with time
and the probability an old node gains a new link is pro-
portional to its degree k. Although it is argued that the
existing models can not completely describe the real net-
works, they really capture some of the essential mecha-
nisms responsible for the uncovered properties. By
studying these mathematical models, we can better un-
derstand the network structure and behavior which is
obviously important to the complex systems.

 P k

For the same reason, some studies have emerged to ex-
plore the underlying mechanisms that generate the small

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL. 1051

world and scale-free software networks. It is argued that
the well-known WS model for small world effect and BA
model for scale-free property may be incapable of de-
scribing the growing process of man-made software sys-
tems. Valverde et al. [13] stated that the scale-free prop-
erty of software results from a local optimization process
instead of preferential attachment or duplication rewiring
rules. Myers et al. [14] proposed a refactoring-based mo-
del of software evolution, by modeling the program func-
tions to be binary strings, the model explains that how
the refactoring process of software leads to scale-free
distribution and other properties. Valverde et al. [15] sug-
gested a model of network growth by duplication and
rewiring, and showed the rules of evolution is response-
ble for the observed motif distribution. He et al. [16]
analyzed the growth characteristics of software patterns
and its topology thereof, proposed network topology and
local-world growth types of software patterns, and de-
veloped a software-pattern based modulation model.
Most of these evolving models are simple and can only
explain the growing process of software under specific
condition. Up to now, no wildly accepted mathematical
model is reported in the literature. Moreover, as far as we
know, no such model for the dynamic execution process
network has been reported to explain how the network
evolves into a small world and scale free structure.

However, exploring the generating mechanisms of the
dynamic execution process network is also important to
help us understand the software dynamic behavior which
can obviously benefit software development and mainte-
nance tasks. In this paper, we first reviewed the software
mirror graph of the software execution processes, and
then gave the definition of network measures. Further,
the networks of three real software systems were built
and the measures were calculated to reveal the network
properties. Moreover, the characteristic of the growing
process was analyzed and a mathematical model was
proposed based on the analysis. Finally the implications
of the model were discussed and the conclusions were
given.

2. Measures and Properties of the Software
Mirror Graph

2.1. Software Mirror Graph

To model the execution process of the software execu-
tion processes, a natural and convenient manner is to
adapt the directed topological graph. Suppose the meth-
ods are treated as nodes and an execution of method i
followed by an execution of method j defines a directed
edge from node i to node j. Then the execution trace is
modeled as a directed topological graph. However, the
topological graph is not capable of describing the soft-
ware execution process. For example, from the directed

graph it is not clear how often a method is executed and
how often a pair of methods is executed consecutively,
although information of this kind is important for identi-
fying method importance and software reliability. In our
previous work [10], we proposed software mirror graph,
which introduced a set of attributes to directed graph to
record the dynamic information. More specifically, vari-
ous attributes can be defined to convey dynamic infor-
mation of interest and then be associated with nodes and
edges in the directed topological graph. Software mirror
graph is introduced briefly as follows:

Let , , ,V V V V 1 2 m be the set of nodes, each cor-
responding to a distinct method in the subject software
system.  , , 1,2, ,E e i j m  ij be the set of directed
edges between two nodes. A software mirror graph is a
directed graph with a set of attributes

 , , , , , 1,2, ,ij ij j iA w i j m     being defined as fol-
lows:

ij  the number of times method i and method j are
consecutively executed,

ij  the minimal number of steps (transitions) from
an execution of method i to an execution of method j,

11

1 1 1 1

,

mm
ijij ji

j im m m m

ij ijj i i j

u w


 


   

 


   

, ,G V E A

.

The software mirror graph can be denoted

SK  . Note that ij represents the temporal
distance from node i to node j. Further,

1 iji

m 


 repre-
sents the in vertex weight degree of node j, and thus


j

represents the relative frequency of that an arbitrary
method and method j are consecutively executed. Simi-
larly,

1 ijj

m 


 represents the out vertex weight degree
of node i, and thus i represents the relative frequency
of that method i and an arbitrary method are consecu-
tively executed.


w

       

Software mirror graph evolves as the software execution
trace proceeds. Note that methods are visited and exe-
cuted one by one, and thus the time domain for the soft-
ware execution process should be discrete. Denote the

software mirror graph at time t as , ,SM t t t tG V E A

{ , , , }v v v

1

.

It represents the software state at time t and looks like a
mirror of the software state at time t.

Let us take the execution trace of Figure 1 as an illus-
trative example.

There are four methods and thus 1 2 3 4V v .
The total number of transitions of methods is 9, including
the one method 1 is executed for the first time (from the
initialization of the execution trace). We assume that the
first execution of method 1 exactly follows a previous
(virtual) execution of method 1. In this way 11  . The
corresponding attributes can be represented in the form
of matrix as follows:

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL.

JMP

1052

Now let us examine how a software mirror graph
evolves as the software execution trace proceeds. Note
that methods are visited and executed one by one, and
thus the time domain for the software execution process
should be discrete. Denote the software mirror graph at

Copyright © 2012 SciRes.

Figure 1. An execution trace and its directed topological
graph.

1 2 0 1

2 0 1 0
,

0 1 0 0

0 0 0 1

 
 
 
 
 
 

ij   ij   

1 1 2 1

1 2 1 2

2 1 3

1

 
 
 
 
 
   

1 1 1 2

3 3 9 9
 
  

ju     ,
4 1 1 1

9 3 9 9iw     

       time t as , ,SM t t t tG V E A

1t

. It represents the software

state at time t and a snapshot of the software execution
process. At the beginning of the software execution
process or  , only one method is executed and thus
the software mirror graph contains only one node and
one virtual edge (loop). For the execution trace of Figure
1, it holds that

 (1) 1V ,  1,1E  1w(1) , 1(1)  and

1(1) 2t1u  . At time  a second method is executed,
which may be or may not be the same one executed at
time 1t  . A new node may or may not be added. A
new edge may or may not be created. However the asso-
ciated attributes must be assigned or updated. This results
in an updated software mirror graph. More specifically,
for the execution traceof Figure 1,

 , : , 1, 2,3, 4ij ij i j   

       
       
       
       

 

 of the software mirror graph

evolves as follows:

     
       
       
       

       
       
       
       

1 2 3

1,1 0, 0, 0, 1,1 1,1 0, 0, 1,1 1,1 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1,1 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
t t t  

           
                                     
     

                     


   
       
       
       

       
       
       
       

       
       
       
       

6 5 4

0, 2 0, 1,1 2,1 0,2 0, 1,1 2,1 0, 0,

1,1 0,2 1,1 0, 1,1 0,2 1,1 0, 1,1 0,2 0, 0,

0, 1,1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
t t t  

        
                             
     

                     

       

       
       
       
       

       
       
       
       

7 8 9

, 1,1 2,1 0, 2 1,1 1,1 2,1 0, 2 1,1

, 2,1 0, 2 1,1 0,2 2,1 0, 2 1,1 0, 2

1 0, 2 1,1 0, 0,3 0,2 1,1 0, 0,3

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,1
t t t  

   
   
        

     
                    

: 1,2,3,4ju j  

 

1,   1 2,1

 1,1 2

  
  

,

2,1 0,

0, 2 1,



    
   
  

1 0,2 0

2 1,1 0

0, 0,




 

 
  
  

where as evolves as follows:

1
2 3

1 1 2 1
1 0 0 0 0 0 0 0

2 2 3 3t
t t



6 5 4

7 8 9

1 1 1 2 2 1 1 1
0 0 0 0

3 2 6 5 5 5 2 2

3 3 1 3 3 1 1 1 1 1 2
0

7 7 7 8 8 8 8 3 3 9 9

t t t

t t t

    
 

  

  

      


                


                

L.-Z. ZHU ET AL. 1053

and evolves as follows: : 1, 2,3, 4w j  j

   1 2

6 5

7 8

1 0 0 0 1 0 0 0

1 2 1 3 2 3
0 0 0

2 3 6 5 5 4

3 3 1 1 3 1
0 0

7 7 7 2 8 8 9

t t

t t

t t

 

 

 

3

4

9

2 1
0 0

3 3

1
0 0

4

4 1 1 1

3 9 9

t

t

t







     


 
  

 
  

          


          

Note that ij  

0ij

 at time t means that there is no
directed path from node i to node j up to time t. This
simultaneously implies that   at time t. Further,

() 1ij t  if and only if ()ij t 1  .

       , ,ESM t t t t is a graph that looks like a
mirror of the software state at time t. The difference be-
tween a software mirror graph and a weighted topologi-
cal graph can be clarified as follows. First, no self-loop
may appear in a weighted topological graph. This is not
the case for a software mirror graph and can be observed
at time t = 9 for the execution trace of Figure 1. A self-
loop appears if a method is consecutively executed twice.
Second, only a single numerical attribute, whose physical
interpretation is often obscure, is associated with each
edge in a weighted topological graph. However in a
software mirror graph, a set of attributes A is adopted to
convey the dynamic information of interest with clear
physical interpretations. The resulting software mirror
graph evolves in the spatial dimension in terms of the
nodes and edges as well as in the temporal dimension in
terms of the dynamic attributes. Finally, the set of attrib-
utes A can be tailored or expanded if other static or dy-
namic information of the software execution process is of
interest.

G V A

 P k

 P k

2.2. Measures of the Software Mirror Graph

2.2.1. Degree Distribution
The degree of a node is defined as the number of edges
connected to it. Degree distribution is the prob-
ability that a node chosen uniformly at random has de-
gree k, that is, is the fraction of nodes in the net-
work that have degree k. For a directed topological graph,
node i has in-degree i as well as out-degree i ,
which are defined as the number of ingoing edges to it
and the number of outgoing edges from it, respectively.

The in-degree distribution describes the probabilities
of m 1 2, , ,  

0,
1 2, , ,

 taking various values over the inter-
val , and out-degree distribution describes the
probabilities of  m


  

0,

   Pr
m

ip k k

 taking various values
over the interval . More specifically, the in-degree
distribution and out-degree distribution are defined as

1in i



     1
Pr

m

out ii
p k k


 

   in inl k

 and
respectively.

The cumulative in-degree distribution and out-degree
distribution are defined as P k P l






   out outl k
P k P l




 

 and

 respectively.

  p kout follows a power law Suppose that
  ~outp k k   1~outP k k , then it holds   .

2.2.2. Vertex Weight Distribution
The definition of vertex weight distribution is similar to
the definition of degree distribution. The difference is
that the degree is replaced by the vertex weight which
can be represented by  in the attribute set A.

The in vertex weight and out vertex weight are defined
as:

    1 1
Pr

m m

in iji j
p s s

 
  

    1 1
Pr

m m

out ijj i
p s s

 

,

and

  

d

d

respectively. s here denotes the sum of weight of the each
node.

2.2.3. Average Path Length
The distance ij from node i to node j in a software
mirror graph with n nodes is defined as the number of
edges on the shortest path from nodes i to node j.

ij  
d

 if there is no directed path from node i to node j.
It is assumed that ij   j i

 

 if . The average path
length L of a mirror graph is then defined as follows:

, ,

1
.

ij iji j d
ij

L d
d 


 



 # ijdwhere   denotes the number of distances which
are finite.

Here we note that besides the average path length, av-
erage temporal distance was also defined in our previous
work [10]. It is defined to measure how many steps are
required from an arbitrary method to another arbitrary
method on average, which is calculated by the second

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL. 1054

attribute  in the attribute set A. In this paper, only the
average path length is discussed as a traditional measure
of the length of the network.

2.2.4. Clustering Coefficient
Clustering coefficient measures the conditional probabil-
ity that an arbitrary triple of nodes defines a triangular of
nodes (a third pair of topological neighbor) if the three
nodes define two pairs of topological neighbors already
[9]. Thus the clustering coefficient C is:

3 number of triangles in

number of connected trip
C




 the network

les of nodes

randC

,

Here a triple of nodes is said to be connected if at least
one of the three nodes takes the other two nodes as its
topological neighbors. Note that clustering coefficient is
only defined for undirected topological graphs. So in a
directed one, two nodes are considered to be in neighbor
if there is an edge from node i to node j, or vice versa.

2.3. Properties of the Software Mirror Graph

Three large-scale open-source GUI software systems
were used in this paper as subject programs, including a
tool kit for developing interactive 3D graphic applica-
tions named Intra3D, a tabbed browser with a custom-
izable interface based on the Internet explorer browser
engine named MyIE, and a tool for creating flowcharts,
diagrams or slide shows named Diagram Designer. The
programs were instrumented in advance in order to re-
cord the execution traces of the corresponding subject
program while they were executed. In order to run a sub-
ject program, a test suit comprising various test cases
was required to represent the input domain of the subject
program. A test case is a sequence of primitive actions
applied to the GUI program under operation [10]. Re-
lated statistics of the software operation platform are
tabulated in Table 1.

In our software experiments 40 trials were conducted
for each subject program. This generated 40 sets of ex-
perimental results for each subject program. The mean
and standard deviation were then analyzed. This was
aimed to guarantee the statistical repeatability of the
software experiments. In our software experiments, 200
of 2000 test cases in the test suite were executed in a
single trial of software execution for Intra3D, and 100 of
1000 test cases in the test suites were each executed in a
single trial of software execution for MyIE and Diagram
Designer.

Table 2 tabulates the results of the above measures for
the three subject programs, where L and C denote the
average path length and the average clustering coefficient
of the networks built by the execution traces of the 40
trials. and denote the average path length randL

Table 1. Traces statistics of the three subject programs.

Subject Program Intra3D MyIE
Diagram
Designer

Number of Classes 33 85 138

Number of Stubbed Methods 639 1172 1263

Number of Test Cases 2000 1000 1000

Table 2. Measures of the small-world effect.

Subject
program

Size k randL C L randC

Intra3D 381.275 4.210 4.809 4.135 0.128 0.011

MyIE 577.950 4.796 3.851 4.056 0.182 0.008

Diagram
Designer

448.475 4.399 5.022 4.122 0.148 0.010

and the clustering coefficient of a random graph of the
same size and degree. It can be seen that L is comparable
to rand , whereas C is much higher than randC . This
means that the topological structure of the software exe-
cution processes demonstrate the small-world effects. In
other words, the software execution process can be treated
as a small-world network.

L

The out-degree distributions and the out-degree ver-
tex weight distributions of the networks are showed in
Figures 2 and 3. We can find that the curves in the log-
log plot roughly fit a piecewise power law. This coin-
cides with the observation presented in reference [10]
that the out-degree distribution may be better treated as a
piecewise power law than a single power law. Note here
that a piecewise power law distribution is also a reflec-
tion of the scale-free property. However, it is less het-
erogeneous than a power law one because the proportion
of nodes with high degree in the network of the former
decreases.

3. The Proposed Model

3.1. The Generating Mechanisms of the Model

An evolving model is proposed in this paper to explain
the formalization of the software mirror graph. The
model should be capable of capturing the essential
mechanisms responsible for the small-world effect and
scale-free property. We analyze the characteristics of the
execution process in the first place. First, the increment
speed of the nodes in the network slows down with time
and the number of nodes gradually tends to the total
number of the methods in the software program. Second,
the link among methods should obey the program logic,
instead of attaching randomly among the whole network
just like most of other real complex networks. After the
program coding, the candidate methods that a method

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL. 1055

Figure 2. Out degree distribution.

Figure 3. Vertex weight distribution.

can reach is fixed. Finally, uncertainty is associated with
the software execution process, which stems from the
uncertainty of execution profile, execution environment,
and program multithreading, etc. Bugs in the program
can also cause uncertainty to the execution process.
Based on the analysis, we proposed a model which pos-
tulates that there are three fundamental mechanisms:
growth, preferential attachment, and walking on the net-
work. The model is described as follows:

Step 1: Growth: Starting with a small number  0n
, , ,X X X

of nodes  01 2 n and a small number  e

 1Node

0
of edges at time t0. The weight on each edge is set to be
one. Constant N is given to represent the total number of
nodes, and S the total weight of the edges. At each time
step from t1, a new node is added with
probability

 t
 1 where  n t notes

the number of nodes at time
*p a N  n t N , de

 , 2,3, , and , 1s st t t a
is a constant ranged  0,1 .

Step 2: Preferential attachment: At each time step
from t1, select a node from the network with
probability p2, which is a constant ranged

   2Node t
 0,1

 

. If this
action is taken, the probability of node i to be selected is
proportional to  i

      
1

m t

ji ij ji
W t t t 


  

i i
W tW t , where

   m t

 t

, is the number of

the neighbors of node i at time t, and
ij

 denotes the
weight of the edge from node i to node j. Note here

 1 2 (), , , n ti j x x x  , where n t is the number of nodes

 , 1, 2,3,t t t s  
   3Node t

at time s

Select a node from the network. The
probability of node i to be selected is proportional to

.

   ii i
W t W t , where

      
1

m t

ji ij ji
W t t t 


     m t

 ij
t

   1Node t    2Node t
   1Node t    2Node t    2Node t

   3Node t
   3Node t

   3Node t

   

, is the number of

the neighbors of node i at time t, and denotes the
weight of the edge from node i to node j.

If both of and exist, then
link to , and to

. If only one of the two exists, then link the
one to . The corresponding weight on each
edge adds one at the same time.

Step 3: Walk along the neighborhood: Set
to be the current node, from the current node, walk in the
network according to the following rule:

Select a node in the neighborhood of the current node.
The probability of a node i in the neighborhood to be
selected is proportional to

ii i
W t W t

     
, where

 
1

m t

ji ij ji
W t t t 


     m t

 t

, is the number of

the neighbors of node i at time t, and
ij

 denotes the
weight of the edge from node i to node j. Note here

 , ,i x x x   (), , n tx x x  , wh1 2 ()m t and 1 2j ere  n t
 number of nodes at time t. is the

Link an edge from the current node to the selected
node if the edge is absent. And the corresponding weight
on the edge added one at the same time. The total weight

 weight t at time t added one simultaneously. Note
here  weight t is initially set to be zero at the begin-
ning of this step.

Set the selected node to be the current node. If weight t

 Weight weight t

equals to a constant e, stop this step. Else continue walk-
ing in its neighborhood according to the rule described
above.

Step 4: If
t equals to a con-

stant S, stop the process. Otherwise, go to Step 1. Note
here Weight is initially set to be zero at the beginning of
the process.

3.2. The Simulation Results of the Modle

In this section, we give the simulation results of the pro-
posed model, and discuss the relationship of parameters
setting and the network properties.

3.2.1. The Total Node Number N
Set 0.2a  , 2 0.2p  , 5e  , . Figure 4
gives the out degree distribution, out vertex weight de-
gree distribution, average path length and clustering co-

10,000S 

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL. 1056

efficient while N takes 100, 200, 500 and 1000 respec-
tively. From Figure 4 we can see that the distributions of
the out degree and the out vertex weight degree roughly
fit a piecewise power law. Along with the increase of N,
the power exponent k of the first stage increases, while
that of the second stage decreases, which makes the
curve more and more fit a power law. Along with the
increases of N, the average path length increases and the
clustering coefficient decreases. However, the average
path length keeps short and the coefficient keeps small,
which means the world is still small although it turns a
little bigger with the network growing.

3.2.2. Parameter a
If N is set, parameter a decides the probability to intro-
duce a new node into the network. Set , 500 0.2aN   ,

, . Figure 5 gives the out degree dis-
tribution, out vertex weight degree distribution, average
path length and clustering coefficient while a takes 0.1,
0.2, 0.5 and 1 respectively. From Figure 5 we can see
that the influence of parameter a is not obvious. Along
with the increase of a, the average path length increases
slightly and the clustering coefficient decreases slightly,
which means the world is still small although it turns a
little bigger.

5e  100,000S 

500

3.2.3. Probability p2
p2 decides the probability of preferentially attaching a
node which already exists in the network before choosing
a node to be the start point of walking. Set N  ,

, , . Figure 6 gives the out de-
gree distribution, out vertex weight degree distribution,
average path length and clustering coefficient while p2
takes 0.1, 0.2, 0.5 and 1 respectively. Figure 6 shows
that along with the increase of p2, the heterogeneity gets
worse and the curve fits more and more like a piecewise
power law. However, the influence of p2 on the vertex
weight degree distribution is not obvious. Along with the
increase of p2, the average path length decreases slightly
and the clustering coefficient increases slightly, which
means the world gets a little smaller.

0.2 5e a 100,000S 

100,000S 

3.2.4. The Total Weight e Added in Each Time Step
e decides the the total weight to be added in each time
step. Set N , , . Figure 7
gives the out degree distribution, out vertex weight de-
gree distribution, average path length and clustering co-
efficient while e takes 2, 4, 8 and 16 respectively. Figure
7 shows that e does not change the power exponent of the
piecewise power law. However, it makes the curve
moves parallelly to the left. From Figure 7 we can see
that along with the increase of e, the average path length
increases slightly and the clustering coefficient decreases
slightly, which means the world is still small although it

500 0.2a 

(a)

(b)

(c)

(d)

Figure 4. a = 0.2, p2 = 0.2, e = 5, S = 100,000.

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL. 1057

(a)

(b)

(c)

(d)

Figure 5. N = 500, p2 = 0.2, e = 5, S = 100,000.

(a)

(b)

(c)

(d)

Figure 6. N = 500, a = 0.2, e = 5, S = 100,000.

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL. 1058

(a)

(b)

(c)

(d)

Figure 7. N = 500, a = 0.2, p2 = 0.2, S = 100,000.

turns a little bigger.

3.3. Discussion

The model and the simulation results are further dis-
cussed here. In Part 2 of Section 3 we analyzed the char-
acteristic of the execution process. In brief, the number
of executed methods goes stable with time, and the
methods are executed according to the program logic
with some elements of uncertainty. In the model pro-
posed in Part 1 of Section 3, we can see that the prob-
ability of introducing a new node is proportional to

  *a N n t N , which keeps decreasing along with
time. When  n t

   3Node t
   2Node t

   1Node t    3Node t

   2Node t

 increases up to N, the number of the
nodes in the network stops increasing and the evolving of
the network only reflect by the increasing of edges or
weights. The dynamic execution process can be treated
as walking along the software static structure according
to the execution profile, so instead of linking randomly,
the node can only link its neighbors in the static structure.
The topology of the execution process network can be
treated as a union set of a lot of sub graphs of the soft-
ware static structure and the repetitive edges are repre-
sented by weight on the edge. The uncertainty in the
model is reflected in three ways: the selection of the start
node of the walking in each time step, the
selection of which bridge the new added
node and , and the selection of
the nodes on the walking route.

From the simulation results, we can see that the model
generates a network being both scale-free and small
world. The trend of the curves consists with that of the
real software system. Along with the increase of N and
decrease of p2, the topological network turns more and
more scale-free, and the curve fits more like a power law.
The parameter e only has influence on the turning point,
and makes it move to the left along with e increasing.
The scale-free property of the execution process network
first comes from static structure of the software program
which has been widely reported to be scale-free. The
reuse of basic functions and the decomposition of main
functions make the “hubs” emerge in the network and
lead to the scale-free property. While executed, these
hubs naturally have more chances to be selected. The
preferential attachment is another cause of the scale-free
property, due to the execution profile, some functions are
executed with a higher probability, which makes the cor-
responding methods possesses more edges or weight.

The parameters all have influence on the short path
length and clustering coefficient. However, the network
keeps being a small world. We can notice that the pa-
rameter p2 make the network to be even smaller with its
increasing. It is not hard to be understood because p2
decides the probability to add which can

Copyright © 2012 SciRes. JMP

L.-Z. ZHU ET AL.

Copyright © 2012 SciRes. JMP

1059

provide “long-distance” connections in the network.

4. Conclusions

In recent years a number of related works treated soft-
ware systems as complex networks and found that soft-
ware systems might also be small world and follow
scale-free degree distributions. Our previous work [10]
revealed that not only the software static structure, but
also the networks of software dynamic execution proc-
esses (software mirror graph) may have small world ef-
fect and scale-free property. Up to now, there exist no
wild accepted models that can describe the mechanisms
that generate the small world and scale-free software
networks.

In this paper, we first reviewed the software mirror
graph of the software execution process. And then we
gave the definitions of the network measures and proper-
ties. The experimental results of three real software were
presented and showed the networks are scale-free and
small world. Then an evolving model was proposed
based on the analysis of the execution process. The
model has three basic mechanisms: growth, preferential
attachment, and walking in the neighborhood. The model
can well describe the evolving process and the simulation
results showed that it can reflect the network properties.
The influence of parameters was then discussed and we
found the number of nodes in network and the probabil-
ity p2 of adding the bridge nodes affected the scale-free
property. And p2 also affects the small-world effect
which makes the world turning to be even smaller with
its increase.

A possible work we can do in future is to examine
more subject programs to find the network properties of
their execution process. Moreover, based on the proposed
model, we may carry out research on software bug local-
ization because as what we discussed in previous sec-
tions, bugs causes uncertainty and may change the net-
work structure and properties.

5. Acknowledgements

This work is supported by the National Science Founda-
tion of China under Grant No. 60973006, and the Beijing
Natural Science Foundation under Grant No. 4112033.

REFERENCES
[1] A. de Moura, Y.-C. Lai and A. Motter, “Signatures of

Small-World and Scale-Free Properties in Large Com-
puter Programs,” Physical Reviews E, Vol. 68, 2003.

[2] S. Valverde, R. Ferrer-Cancho and R. Sole, “Hierarchical

Small Worlds in Software Architecture,” Santa Fe Insti-
tute Working Papers, SFI/03-07-044, 2003.

[3] A. Gorshenev and Y. Pis’mak, “Punctuated Equilibrium
in Software Evolution,” Physical Reviews E, Vol. 70,
2004.

[4] A. Potanin, J. Noble, M. Frean and R. Biddle, “Scale-Free
Geometry in Object-Oriented Programs,” Communication
of the ACM, Vol. 48, No. 5, 2005, pp. 99-103.
doi:10.1145/1060710.1060716

[5] S. Jenkins and S. R. Kirk, “Software Architecture Graphs
as Complex Networks: A Novel Partitioning Scheme to
Measure Stability and Evolution,” Information Sciences,
Vol. 177, No. 5, 2007, pp. 2587-2601.
doi:10.1016/j.ins.2007.01.021

[6] G. Concas, M. Marchesi, S. Pinna and N. Serra, “Power-
Laws in a Large Object-Oriented Software System,” IEEE
Transactions on Software Engineering, Vol. 33, No. 10,
2007, pp. 687-707. doi:10.1109/TSE.2007.1019

[7] P. Louridas, D. Spinellis and V. Vlachos, “Power Laws in
Software,” ACM Transactions on Software Engineering
and Methodology, Vol. 18, No. 1, 2008, pp. 1-26.
doi:10.1145/1391984.1391986

[8] L. Hatton, “Power-law Distributions of Component Size
in General Software Systems,” IEEE Transactions on
Software Engineering, Vol. 35, No. 4, 2009, pp. 566-572.
doi:10.1109/TSE.2008.105

[9] M. E. J. Newman, “The Structure and Function of Com-
plex Networks,” SIAM Review, Vol. 45, No. 2, 2003, pp.
167-256. doi:10.1137/S003614450342480

[10] K. Y. Cai and B. B. Yin, “Software Execution Processes
as an Evolving Complex Network,” Information Sciences,
Vol. 179, No. 12, 2009, pp. 1903-1928.
doi:10.1016/j.ins.2009.01.011

[11] D. J. Watts and S. H. Strogatz, “Collective Dynamics of
‘Small-World’ Networks,” Nature, Vol. 393, 1998, pp. 440-
442. doi:10.1038/30918

[12] A.-L. Barabási and R. Albert, “Emergence of Scaling in
Random Networks,” Science, Vol. 286, No. 5439, 1999,
pp. 509-512. doi:10.1126/science.286.5439.509

[13] S. Valverde, R. Ferror Cancho and R. V. Sole, “Scale-
Free Networks from Optimal Design,” cond-mat/0204344,
April 2002.

[14] C. Myers, “Software Systems as Complex Networks:
Structure, Function, and Evolvability of Software Col-
laboration Graphs,” Physical Reviews E, Vol. 68, 2003.

[15] S. Valverde and R. Sole, “Network Motifs in Computa-
tional Graphs: A Case Study in Software Architecture,”
Physical Review E, Vol. 72, No. 2, 2005, Article ID:
026107.

[16] K. He, R. Peng, J. Liu, F. He, et al., “Design Methodol-
ogy of Networked Software Evolution Growth Based on
Software Patterns,” Journal of System Science and Com-
plexity, Vol. 19, No. 2, 2006, pp. 157-181.
doi:10.1007/s11424-006-0157-6

http://dx.doi.org/10.1145/1060710.1060716
http://dx.doi.org/10.1016/j.ins.2007.01.021
http://dx.doi.org/10.1109/TSE.2007.1019
http://dx.doi.org/10.1145/1391984.1391986
http://dx.doi.org/10.1109/TSE.2008.105
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1016/j.ins.2009.01.011
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1007/s11424-006-0157-6

	2.2.1. Degree Distribution
	2.2.2. Vertex Weight Distribution
	2.2.3. Average Path Length
	2.2.4. Clustering Coefficient

