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ABSTRACT 

In this paper, by utilizing the fractional calculus theory and computer simulations, dynamics of the fractional order sys- 
tem is studied. Further, we have extended the nonlinear feedback control in ODE systems to fractional order systems, in 
order to eliminate the chaotic behavior. The results are proved analytically by stability condition for fractional order 
system. Moreover numerical simulations are shown to verify the effectiveness of the proposed control scheme. 
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1. Introduction 

Fractional calculus is a classical mathematical concept, 
with a history as long as calculus itself. It is a genera- 
lization of ordinary differentiation and integration to ar- 
bitrary order, and is the fundamental theories of frac- 
tional order dynamical systems. Fractional-order diffe- 
rential/integral has been applied in physics and engi- 
neering, such as viscoelastic system [1], dielectric pola- 
rization [2], electrode-electrolyte polarization [3] and 
electromagnetic wave [4], and so on. 

The fractional order system and its potential appli- 
cation in engineering field become promising and attrac- 
tive due to the development of the fractional order cal- 
culus. Typically, chaotic systems remain chaotic when 
their equations become fractional. For example, it has 
been shown that the fractional order Chua’s circuit with 
an appropriate cubic nonlinearity and with an order as 
low as 2.7 can produce a chaotic attractor [5]. 

However, there are essential differences between ordi- 
nary differential equation systems and fractional order 
differential systems. Most properties and conclusions of 
ordinary differential equation systems cannot be extend- 
ed to that of the fractional order differential systems. 
Therefore, the fractional order systems have been paid 
more attention. Recently, many investigations were de- 
voted to the chaotic dynamics and chaotic control of 
fractional order systems [6-12]. 

In this paper, practical scheme is proposed to eliminate 
the chaotic behaviors in fractional order system by ex- 
tending the nonlinear feedback control in ODE systems 
to fractional-order systems. This paper is organized as 

follows. In Section 2, the numerical algorithm for the 
fractional order system is briefly introduced. In Section 3, 
Dynamics of the fractional order system is numerically 
studied. In Section 4, general approach to feedback con- 
trol scheme is given, and then we have extended this 
control scheme to fractional order system, numerical 
results are shown. Finally, in Section 5, concluding com- 
ments are given. 

2. Fractional Derivative and Numerical  
Algorithm 

There are two approximation methods for solving frac- 
tional differential equations. The first one is an improved 
version of the Adams-Bashforth-Moulton algorithm, and 
the rest one is the frequency domain approximation. The 
Caputo derivative definition involves a time-domain com- 
putation in which nonhomogenous initial conditions are 
needed, and those values are readily determined. In this 
paper, the Caputo fractional derivative defined in [13] is 
often described by  

     = , > 0,nq n qD f t J f t q

n q

 

Jwhen  is the first integer that is not less than ,   
is the α-order Riemann-Liouville integral operator which 
defined by  

       1

0

1
= d ,

t
J f t t f

   



   

where   is the Gamma function, .0 < 1   
Now we consider the fractional order system [14] 

which is given by  *Corresponding author. 
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where  is the fractional order,  i

By exploiting the Adams-Bashforth-Moulton scheme 
[15], the fractional order system (1) can be discretized as 
followings:  

0 < i 
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3. Dynamic Analysis of the Fractional Order  
System 

Theorem 1: The fractional linear autonomous system  

 

  00 =X X

 

 

is locally asymptotically stable if and only if  

π
min > , = 1, 2, , .

2i i

q
arg i n 

*=

 

Theorem 2: Suppose x x

 = ,qD x f x

 be an equilibrium point 
of a fractional nonlinear system  

 

If the eigenvalues of the Jacobian matrix 
*=

=
x x

f
A

x




 

  

satisfy  

π
min > , = 1, 2, , ,

2i i

q
arg i n 

*= .

 

then the system is locally asymptotically stable at the 
equilibrium point x x

 

 
The system (1) has five equilibrium points:  

0 1 2

3 4

= 0,0,0 , = , , , = , , ,

= , , , = , , .

S S S

S S
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       
   

 

2 2 2 24 4
= , = .

2 2

a a a a 
 

   

= 2,  = 5,a

where   

  we obtain  When 

   
 
 
 

0 1

2

3

4

= 0,0,0 ,  = 4.0317,1.4142,5.7016 ,

= 4.0317, 1.4142,5.7016 ,

= 0.4961,1.4142, 0.7016 ,

= 0.4961, 1.4142, 0.7016 .

S S

S

S

S

 

 

 

 

First, we choose 0  to study, the eigen- 
values of the Jacobian matrix are 

= 0,0,0S

1 2= = 2  and  
3 = 1.  We can obtain 1 2  and     = = πarg arg 
  = 0.arg 

S

1 2,q q 3q

3  According to Theorem 2, we can easily 
conclude that the equilibrium 0  of system (1) is un- 
stable when  and  are all greater than zero. 

 1 = 4.0317,1.4142,5.7016S  and  We choose 
 = 4.0317,  1.4142,5.7016S  

1 2= 4.0000,  = 0.50000 4.24316i

2  to study, the eigen- 
values of the Jacobian matrix are  

 and    
3 = 0.50000 4.24316 .i  We can obtain   
   1 = π,  = 1.4535arg arg 2  and  
  = 1.4535.arg  

1 2,q q 3q
3  According to Theorem 2, we can 

easily conclude that when  and  are all less  

than 
2

0.9253 1.4535 ,
π

 1 2,S S

1 2,q q

  the equilibrium  of 

system (1) is stable. On the contrary, when  and 
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3q 0.9253 1 2,S S

 142, 0.7016
42, 0.7016 

0 1.4

 are all great than , the equilibrium  of 

system (1) is unstable. 
Finally , when choose  

 and  
 to study, the eigenva- 

lues of the Jacobian matrix are  

3 = .4S
4 = 0 1.41S

= 4 =

0.4961,1
.4961,

1 2.0000, 0.5000 1284i 
.50000 1

   and  

3 = 0 .41284 .i 
 1 = π,arg
  = 1.23

7834

S

q

0.7834,0.92

= = =q

 We can obtain  
 and  

3  According to Theorem 2, we can 
easily conclude that when 1  and 3  are all great 
than , the equilibrium  of system (1) is 
unstable. 

arg  
06.arg 

0.

 =2 1.2306

,q q q

, , S ,q q q
0.7834


53

2

3 4,S S

orS S

= 0.911q

In sum, there exists at least one stable equilibrium 

1 2 3  and 4  of system (1), when 1 2  and 3  
are all less than , i.e., the system (1) will be 
stabilized at one point  1 2 3 4  finally; when 

1 2  and 3  are all greater than 0. , all the 
equilibriums of system (1) are unstable, the system (1) 
will exhibit a chaotic behaviour; when  

i  the problem will be complicated, 
the system (1) may be convergent, periodic or chaotic. 
For example, when 1 2 3  the value of 
the largest Lyapunov exponent is 0.1653. Obviously, the 
fractional order system (1) is chaotic. When  

1 2 3  the fractional order system (1) is 
not chaotic, but periodic orbits appear. 

S S

,q q

q 

, ,S S



=

92

,

53 ,

=q q

0.91,q q

4. Feedback Control 

Let us consider the fractional order system  

   , ,u t= ,f xqD x t              (2) 

where  x t  is the system state vector, and  u t  the 
control input vector. Given a reference signal   ,x t

 

 the 
problem is to design a controller in the state feedback 
form:  

  ,t= ,u t g x  

where  ,g x t  is the vector-valued function, so that the 
controlled system  

 qD x t f   ,x t t

 

= , ,x g

 

 

can be driven by the feedback control g(x, t) to achieve 
the goal of target tracking so we must have  

limt t f
x t   = 0.x t  

Let  x t

=e x  
, = ,

 be a periodic orbit or fixed point of the 
given system (2) with , then we obtain the system 
error  

= 0u

   = , ,t F e t

x

   , ,0, .

qD e  

where  and  

   ,F e t g x t t f x t   

Theorem 3: If 0  is a fixed poi  of the system (2) 
an  

f x

nt
d the eigenvalues of the Jacobian matrix at the equili- 

brium point 0  satisfies the condition  

  π
m n > , = 1, 2,i i

q
arg i i , ,

2
n  

then the trajectory    x t  of system (2) conver o xge t .t  
e fractional o ), we Let us consider th rder system (2

propose to stabilize table periodic orbit or fixed ,  uns point
the controlled system is as follows:  

1d
=
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
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


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      (3) 

Since  , ,x y z    is solution of system (1), then we 
have:  

1dq x 
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         (4) 

Subtracting (4) from (3) with notation,  

1e 2 3= , = , = ,x x e y y e z z      we obtain the system 
error  
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We define the control function as follow  

2

3 3

= ,

= .

u zx zx
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1 = ,u yz yz



 


 
 

  




             (6) 

So the system error (5) becomes  
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The Jacobian matrix of system (7) is  

0 0

0 ,

0 0 1


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so we have th 1 2= =e eigenvalues     and  

3 = 1 .   When > 1  all eigenvalues are real nega- 
tives, one has   = π,iarg   therefore  

  π
> ,  = 2,3,

2
i

iarg i  for all iq  satisfies 

2,  = 1,2,3,q i  it follows from Theorem 3 that the 

1,
q

0 < <i

trajectory  x t  of system (2) c ges to onver  x t  and 

5. Nume ul

 we give num ich prove the 
performance of the propo e oned in 
Section 2 we have 

Mou ati

20,t 

= 0.93, = 0.95q q

0S
= , = , = .u yz u zx u xy z

The control can be started at any time according to our 
needs, so we choose to activate the control when  
in order to make a comparison between the behavior 
before activation of control and after it. 

For 1 2  and q3 = 0.98, unstable point 
 has been stabilized, as shown in Figure 1, note that 

1 2 3  
20,t   

 The control is activated 
when  and the evolution of    , ,x t y t z t

= 22.5t

0S
= 0.93,  = 0.95q q = 0,98,q

1S

= 0.92q = = 0,97,q q

2S
= = = 0,94,q q q 3S

= = = 0,96,q q q 4S

t 20

 is 
chaotic, then when the control is started at  we 
see that  is rapidly stabilized. 

For 1 2  and 3  the un- 
stable point  has been stabilized, as shown in Figure 
2. 

the control is completed. 

rical Sim ation 

In this section erical results wh

For 1  and 2 3  the unstable point 
 has been stabilized, as shown in Figure 3. 
For 1 2 3  the unstable point  has 

been stabilized, as shown in Figure 4. 
For 1 2 3  the unstable point  has 

been stabilized, as shown in Figure 5. 
sed schem . As menti

implemented the improved Adams- 
Bashforth- lton algorithm for numerical simul on. When  is less than , there is a chaotic behavior,  
 

 

the equilibrium point S0 for q1 = 0.93, q2 = 0.95 and q3 = 0.98. Figure 1. Stabilizing 
 

 

Figure 2. Stabilizing the equilibrium point S1 for q1 = 0.93, q2 = 0.95 and q3 = 0.98. 
 

 

Figure 3. Stabilizing the equilibrium point S2 for q1 = 0.92 and q2 = q3 = 0.97. 
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Figure 4. Stabilizing the equilibrium point S3 for q1 = q2 = q3 = 0.94. 
 

 

Figure 5. Stabilizing the equilibrium point S  for q  = q  = q  = 0.96. 4 1 2 3

but when the control is activated at = 20t , the five 

2 3,S S S S  and pidly stabilized. 

6. Conclusions 

Chaotic phenomenon makes prediction impossible in the 
real world; then the deletion of this phenomenon from 
fractional order system is very useful, the main con- 
tribution of this paper is to this end. 

In this paper, we investig
rder applying the fractiona

al ord

h the r- 
dback control scheme has been ex- 

actional order system. The results are 

effectiveness 
of
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