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Abstract 
 
Spin dependent selection rules for photonic transitions in hydrogen-like atoms is derived by using the solu-
tion of Dirac equation for hydrogen-like atoms. It is shown that photonic transitions occur when 
[ 0, 1, 2j     while 0, 1, 2jm    ]. By applying the spin dependent selection rules, we can explain the 

observed (6 s7 s) transition in Cesium (Cs) atom. 
 
Keywords: Dirac Hydrogen Atom, Hydrogen-Like (Hydrogenic) Atoms, Photonic Transitions, Selection 

Rules, Fermi-Golden Rule, Transition Rate

1. Introduction 
 
Applications of hydrogen-like atoms in technology are 
more than the hydrogen atom itself. Accurate determina-
tion of the excited-state properties of atomic and mo-
lecular systems, such as fine and hyperfine coupling con-
stants, oscillator strengths play important roles for testing 
the high-precision atomic theory and quantum mechanics. 
The aim of the present study is to find spin dependent 
selection rules for photonic transitions in hydrogen-like 
atoms. We first derive the spin dependent eigenstates of 
the hydrogen-like atoms then find a more accurate cor-
respondence between these eigenstates. So far in litera-
ture the states have been denoted by the quantum num-
bers (n, l, j) [1] but not by the quantum numbers (n, l, mj). 
In this way, we distinguish the states in the Zeeman 
sense including the quantum number, mj. By using the 
Fermi-Golden rule, we calculate the non-zero matrix 
elements and then develop the spin dependent selection 
rules for the photonic transitions in the hydrogen-like 
atoms. We show that photonic transitions occur when 
( 0, 1, 2)j     and ( 0, 1, 2)jm    . By applying the 
spin dependent selection rules, we can explain the ob-
served (6s 7s)  transition in Cesium (Cs) atom. The 
outline of the present study is as follows. In Section 2 we 
give a short summary of the Dirac hydrogen atom and 
then extend it to the hydrogen-like atoms. In Section 3 
we develop the spin dependent transition rates for Dirac 

hydrogen-like atoms. In Section 4 we give the explana-
tion of the (6 s - 7 s) transition of Cs in terms of the spin 
dependent selection rules. In Section 5 we give the con-
clusions. 
 
2. The Dirac Hydrogen Atom 
 
To find the eigenvalue of the Dirac hydrogen-like atom, 
we will begin with the Dirac Hamiltonian of the hydro-
gen atom [2-4]: 

 2.HD pc mc V r              (1) 

where 2( ) /V r e r   is the Coulomb potential, m is the 
mass of an electron, c is the velocity of light,   and   
are the standard Dirac matrices in the Dirac representation: 

0 1 0

0 0 1


 


   

       
           (2) 

Here the 1's and 0's stand for 2 × 2 unit and zero ma-
trices respectively and the   is the standard vector com- 
posed of the three Pauli matrices ( , , )   x y z . Since 
the Hamiltonian is invariant under rotations, we look for 
simultaneous eigenfunctions of HD, |J|2, and Jz, where  

01

02 2
S




 
   

 
 

           (3a) 

and  
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Jz = Lz + Sz or mj = m + ms      (3b) 

We remark that the spin operator is diagonal in terms 
of 2 × 2 Pauli spin matrices; therefore the angular part 
should be precisely that of the Pauli two-component the-
ory. Defining 

1

0


 
  
 

 and 
0

1


 
  
 

 

the spin dependent wave functions can be written as [5]: 

1
2

1 1
2 2

1 1
2 2

, ,

1 1
2 2

1 2

, , ,

2 1 2 1

j

j j

j j

l hydrogen n j l m

m mj j
nl l nl l

m m

l l

n l m

l m l m
R Y R Y

l l

G Y G Y

 

 

 

 
 

 
 

   

   


 

 

(4a) 

1
2

1 1
2 2

1 1
2 2

, ,

1 1
2 2

2 1

, , ,

2 1 2 1

j

j j

j j

l hydrogen n j l m

m mj j
nl l nl l

m m

l l

n l m

l m l m
R Y R Y

l l

G Y G Y

 

 

 

 
 

 
 

   

   
 

 

  

(4b) 

where , ( )n lR r  is the radial wave function, jm
lY  are the 

spherical harmonics. Further in Equation (4a), l  can be  

replaced by ( 1

2
j  ) (spin-up case);and in Equation(4b), 

l  can be replaced by 1
( )

2
j   (spin-down case). In a  

hydro-gen-like atom the potential 2( )V r e r   is re-
placed by 2( )V r Ze r  , where Z is the atomic number. 
So the spin dependent eigenfunctions for hydrogen-like 
atoms are written as:  

1
2

1
2

1
2

, ,

1
2

1

2

1 11
2 2 2

1 21 1 1

2 2 2

, , ,

( )
2 1

( )
2 1

j

j

j jj

l H like n j l m

mj
nl H like

l j

m mmj
nl H like

l j j j

n l m

l m
R r Y

l

l m
R r Y FY F Y

l



  

  


 

 

 
   

   

   

 




 
 



  

    (5a) 
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nl H like
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   
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         (5b) 

where 

 

3
2

, 3

2 1
1

2 ( 1)!
( )

2 ( 1)!

2 2

o
r

na
n l H like

o

l

l
n l

o o

Z n l
R r e

na n n

Zr Zr
X L

na na






 

   
  

 

   
  

   

   (5c) 

Here 2 1
1

l
n lL 
   are the Laguerre polynomials and 

2 2
0a me   is the Bohr radius.  

 
3. Developing Spin Dependent Transition 

Rates for Photonic Transitions in Dirac 
Hydrogen-Like Atoms 

 
To develop the spin dependent selection rules for hydro-
gen-like atoms, we need to consider energy shifts coming 
from the electric field E and the magnetic field B sepa-
rately. When the atom is subject to an external electric 
and magnetic field, it will have interactions through the 
Hamiltonians: ( ) .H E d E  

 
 and ( ) .H B B  


.  

However, the electric and the magnetic field of a pho-
ton are not independent fields and they are related to 
each other with the same vector potential ( , , )A x y z


 

which obeys the Coulomb gauge condition ( 0A 


). 
In this case the electric and the magnetic field vectors are 
given by:  

   , , , ,E x y z ikA x y z 


         (6a) 

and  

   , , , ,B x y z A x y z 
 

         (6b) 

where k


 is the wave vector of the photon. 
In general the effect of the vector potential  , ,A x y z


 

on electron is considered through the canonical momen-
tum that produces an interaction potential ( )H A  which 
has the linear and the quadratic terms [6]: 

   
2

2
2

.
2

e e
H A A p A

mc mc
   
  

         (7) 

where p


 is the linear momentum of the electron.  
We will see that to develop the selection rules for pho- 

tonic transitions, the Hamiltonian ( ) .H E d E  
 

 will be 
adequate and the Hamiltonian ( ) .H B B  


 will not 

produce anything new.  
Let us first start with the effect of the electric field. In 

Dirac notations, if at t = 0 the electron is at an initial state  

 i   , , ,l H liken l m   

given by Equation (5a) and Equation (5b), then at t 0, 
because of the interaction with H', there will be a 
non-zero transition rate to some other states 

 f  , , ,l H liken l m 
    

which will be called the final states. According to the 
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Golden rule, the transition probability will be propor-
tional to the square of the matrix element of H' between 

the initial and the final states: 
2

f H i . To calculate 

the matrix element .f H i f d E i 
 

, we follow a 

similar way as followed by Saglam et al. [5]. Namely we 
will consider two different cases: a) The polarization of 
the electric field is in x-y plane (along the x- or the 
y-axis) b) The polarization of the electric field is in 
z-direction. Since the dipole moment vector d


 is equal 

to ( er


), for the case a), we calculate the matrix ele-
ments of the quantities x  iy= rsin exp(i) and for the 
case b) we calculate the matrix elements of the quantity: 
rcos . For the case a) we can write:  

, , sin , , ,i
l l H like

f H i n l m r e n l m 


      

, , sin , , ,i
l l H like

n l m r e n l m 


     

, , sin , , ,i
l l H like

n l m r e n l m 


     

, , sin , , ,i
l l H like

n l m r e n l m 


     

, , sin , , ,i
l l H like

n l m r e n l m 


    . 

1 2 3 4I I I I                      (8) 

Substitution of Equation (5a) in 1I  we obtain: 

'

'

*1 1 1

2 2 2
1 1 1 1 1 3

2 2 2

5 3

2 2
1 3

2 2

*1 1 3
' 2 2 2

2 2 1 1 3

2 2 2

3 1

2 2
1 3

2 2

d

j j j

j j

j j j

j j

m m m

j j j

m m

j j

m m m

j j j

m m

j j

I F F Y AY BY

AY BY

F F Y CY DY

CY DY

   

  

 

 

   

  

 

 

             
 

     

   
          

 
   
 





d


     (9) 

which will be non-zero for: 

1j  ; 0, 2jm                (10a) 

1j   ; 1jm                 (10b) 

To evaluate the integral (9) we have used the relation: 

  
  

  
  

1
1

1
1

1 2
sin

2 1 2 3

1

2 1 2 1

m m
l l

m i
l

l m l m
Y Y

l l

l m l m
Y e

l l


 





   
  

 

  


 

     (11) 

Next substituting Equation (5b) in 2I  we obtain:  

'

'

*1 1 1

2 2 2
2 2 2 1 3 1

2 2 2

5 3

2 2
3 1

2 2

1 1 3
*2 2 2

1 1 1 3 1

2 2 2

3 1

2 2
3 1

2 2

d

)

j j j

j j

j j j

j j

m m m

j j j

m m

j j

m m m

j j j

m m

j j

I F F Y AY BY

AY BY

F F Y CY DY

CY DY

   

  

 

 

   

  

 

 

             
 

     
             

 
   
 





d


  (12) 

which will be non-zero for:  

1j  ; 0, 2jm               (13a) 

1j   ; 1jm                (13b) 

where we have used Equation (11) again. 
Similarly substitution of Equations (5a) and (5b) in 

3I  we obtain: 

'

'

*1 1 1

2 2 2
3 1 2 1 3 1

2 2 2

5 3

2 2
3 1

2 2

*1 1 3
' 2 2 2

2 1 1 3 1

2 2 2

3 1

2 2
3 1

2 2

d

j j j

j j

j j j

j j

m m m

j j j

m m

j j

m m m

j j j

m m

j j

I F F Y AY BY

AY BY

F F Y CY DY

CY DY

   

  

 

 

   

  

 

 

              
 

     

   
          

 
   
 





d


   (14) 

which will be non-zero for  

2; 0, 2jj m                 (15a) 

0; 1jj m                  (15b) 

Similarly substitution of Equations (5a) and (5b) in 4I  

we obtain:  

'

'

'

*1 1 1

2 2 2
4 2 1 1 1 3

2 2 2

5 3 1 1
*2 2 2 2

1 21 3 1 1

2 2 2 2

3 3 1

2 2 2
3 1 3

2 2 2

)

j j j

j j j j

j j j

m m m

j j j

m m m m

j j j j

m m m

j j j

I F F Y AY BY

AY BY d F F Y CY

DY CY DY

   

  

   

   

  

  

               
                       

  
     

  





d





 

      (16) 
which will be non-zero for  

0; 0, 2jj m     2; 1jj m           (17)  

Next we consider the case (b):  
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' , , cos , , ,l l H like
f H i n l m r n l m


     

, , cos , , ,l l H like
n l m r n l m


   

, , cos , , ,l l H like
n l m r n l m


     

+ , , cos , , ,l l H like
n l m r n l m


   

, , cos , , ,l l H like
n l m r n l m


     

1 2 3 4I I I I                        (18) 

Substitution of Equation (5a) in 1I   we obtain: 

'

'

*1 1 1

2 2 2
1 1 1 1 1 3

2 2 2

*1 1 1

2 2 2
2 2 1 1 3

2 2 2

d

d

j j j

j j j

m m m

j j j

m m m

j j j

I F F Y AY BY

F F Y CY DY

   

  

   

  

            
   

           
   





  (19) 

which will be non-zero for  

1; 0jj m                   (20) 

where we used the relations: 

   
   
  
  

1

1

1 1
cos

2 1 2 3

2 1 2 1

m m
l l

m
l

l m l m
Y Y

l l

l m l m
Y

l l

 



   
 

 

 


 

      (21) 

Similarly substitution of Equation (5b) in 2I   we ob-
tain: 

'

'

*1 1 1

2 2 2
2 2 2 1 3 1

2 2 2

*1 1 1

2 2 2
1 1 1 3 1

2 2 2

d

d

j j j

j j j

m m m

j j j

m m m

j j j

I F F Y AY BY

F F Y CY DY

   

  

   

  

            
   

           
   





   (22) 

which will be non-zero for 

1; 0jj m                   (23) 

Substitution of Equations (5a) and (5b) in '
3I  we ob-

tain: 

'

*1 1 1

2 2 2
3 1 2 1 3 1

2 2 2

*1 1 1

2 2 2
2 1 1 3 1

2 2 2

d

d

j j j

j j j

m m m

j j j

m m m

j j j

I F F Y AY BY

F F Y CY DY

   

  

   

  

             
   

           
   





   (24) 

which will be non-zero for  

0, 2; 0jj m                   (25) 

Similarly substitution of Equations (5a) and (5b) in 
'
4I  we obtain: 

'

'

*1 1 1

2 2 2
4 2 1 1 1 3

2 2 2

*1 1 1

2 2 2
1 2 1 1 3

2 2 2

d

d

j j j

j j j

m m m

j j j

m m m

j j j

I F F Y AY BY

F F Y CY DY

   

  

   

  

             
   

   
        

   





   (26) 

which will be non-zero for   

0, 2; 0jj m     .             (27) 

So far we have considered the effect of the electric 
dipole transitions. If we want to add the effect of the 
magnetic field, we must take   .H B B  


 as the 

perturbing potential. To calculate the matrix element  
f H i f B i  


 , we will follow a similar way 

as we did above. Namely we will consider two different 
cases: a) The polarization of the magnetic field is in x-y 
plane (along the x- or the y-axis) b) The polarization of 
the magnetic field is in z-direction. The only difference 
is that the magnetic moment vector   will be propor- 

tional to (
2

r dr 

 

), so   will be perpendicular to  

the vector r


. Therefore for the case a) we calculate the 
matrix elements of the quantity rcos   and for the case 
b) we calculate the matrix elements of the quantity x  
iy= rsin exp(i ). That means for the case a) we will 
calculate the matrix elements 1 2 3 4, , ,I I I I     given in 
Equation (18) and for the case b) we will calculate the 
matrix elements 1 2 3 4, , ,I I I I  given in Equation (8). 
Therefore the selection rules of the magnetic dipole tran-
sitions will be the same as the selection rules for the 
electric dipole transitions. Combining the results of the 
Equations (10), (13), (15), (17), (20), (23), (25) and (27), 
we write the selection rules for a photonic transitions in 
Hydrogen-like atoms:  

0, 1, 2j     0, 1, 2jm          (28) 

 
4. Application of the Spin Dependent  

Selection Rules to ( 6s 7s ) 
Transition in Cs 

 
According to the conventional selection rules ( 1l    
and 0s  ) which are derived from the Schrödinger 
equation in the same way as in Section 3, a transition 
such as 6s 7s  is not allowed ( because this is a tran-
sition ( 0l   0l  ) in which 0l  , so it does not 
meet the condition 1l   ). But 6s 7s  transition in 
Cs atom has been already observed [7-9]. However, the 
present spin dependent selection rules allow the transi-
tion: 6s   7s   in Cs atom. Because here we 
have 0j   and 0jm   which are allowed by the 
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present spin dependent selection rules given in Equation 
(28). To prove the above transition in detail, let us as-
sume that the outer electron of the Cs atom is initially at  

the state 6s  = 6,0,0,1 2
H like

. From Equation (5a) 

we write:  
0 0

6,0 0 06,0,0,1 2 ( )H like H likei R r Y AY         (29) 

where A is the normalization constant. When it is excited 
to the 7s state, the possible final states are: 

7
H like

s


  and 7
H like

s


 . 

From Equations (5a) and (5b) these states are: 
0 0

7,0 0 07,0,0,1 2 ( )H like H likef R r Y BY        (30a) 

1
7,0 0

1
0

7,0,0, 1 2 ( )H like H likef R r Y

CY






  




    


    (30b) 

where B, and C are the normalization constants. Substi-
tuting the wave functions from Equation (29) and Equa-
tions (30a)-(30b) in Equations (8) and (18) we find: 

2

0

7,0,0,1 2 6,0,0,1 2 sin d 0d E  


   
 

   (31)  

7,0,0, 1 2 6,0,0,1 2 0d E   
 

       (32) 

Therefore the non-zero matrix element in Equation (31) 

gives us a non-transition between the states 6s   and 

7s   which is  also allowed by the present spin de-

pendent selection rules given in Equation (28) ( 0j   

and 0jm  ).  

 
5. Conclusions  
 
We have derived the spin dependent selection rules for 
photonic transitions in hydrogen-like atoms by using the 
solution of Dirac equation for hydrogen-like atoms. It is 
shown that photonic transitions occur when 
[ 0, 1, 2j     while 0, 1, 2jm    ]. By applying the 
present spin dependent selection rules we can explain the 
observed (6 s 7 s) transition in Cesium (Cs) atom 
[7,8]. Because in the (6s 7s) transition in Cesium (Cs) 

atom we have [ 0j   while 0jm  ] which is an al-
lowed transition according to the present selection rules 
given in Equation (28). The present result is believed to 
be helpful for a deeper understanding of the photonic 
transitions and the spectrum of Cs atom [1]. A detailed 
study will be presented in the future. 
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