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Abstract 

We study the asymptotic behavior of the difference  

( ) ( ), :X Y X Y Xα α αρ ρ ρ∆ = + −  as 1α → , where αρ  is a risk measure 
equipped with a confidence level parameter 0 1α< < , and where X and Y are 
non-negative random variables whose tail probability functions are regularly 
varying. The case where αρ  is the value-at-risk (VaR) at α, is treated in [1]. 
This paper investigates the case where αρ  is a spectral risk measure that 
converges to the worst-case risk measure as 1α → . We give the asymptotic 
behavior of the difference between the marginal risk contribution ,X Y

αρ∆  

and the Euler contribution ( )Euler |Y X Yαρ +  of Y to the portfolio X Y+ . 
Similarly to [1], our results depend primarily on the relative magnitudes of the 
thicknesses of the tails of X and Y. Especially, we find that ,X Y

αρ∆  is asymp-
totically equivalent to the expectation (expected loss) of Y if the tail of Y is 
sufficiently thinner than that of X. Moreover, we obtain the asymptotic rela-
tionship ( ), Euler~ |X Y Y X Yα αρ δρ∆ +  as 1α → , where ( ]0,1δ ∈  is a con-
stant whose value likewise changes according to the relative magnitudes of the 
thicknesses of the tails of X and Y. We also conducted a numerical experi-
ment, finding that when the tail of X is sufficiently thicker than that of Y, 

,X Y
αρ∆  does not increase monotonically with α and takes a maximum at a 

confidence level strictly less than 1. 
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1. Introduction 

The purpose of this paper is to investigate the asymptotic behavior of the differ-
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ence 

( ) ( ), :X Y X Y Xα α αρ ρ ρ∆ = + −                   (1.1) 

as 1α → , where X and Y are fat-tailed random variables (loss variables) and 
( )0 1α α
ρ

< <
 is a family of risk measures. The case where αρ  is an α-percentile 

value-at-risk (VaR), has been treated in [1], where it was shown that the asymp-
totic behavior of ,VaR X Y

α∆  drastically changes according to the relative mag-
nitudes of the thicknesses of the tails of X and Y (the definition of the VaR is 
given in (2.1) in the next section). In this paper, we study a progressive case in 
which αρ  is given as a parameterized spectral risk measure, and we obtain sim-
ilar results as in [1]. In particular, we find that if X and Y are independent and if 
the tail of X is sufficiently fatter than that of Y, then ,X Y

αρ∆  converges to the 
expected value [ ]E Y  as 1α →  whenever ( )0 1α α

ρ
< <

 are spectral risk meas-
ures converging to a risk measure of the worst case scenario. That is, whenever 

( ) ( )1 ess supZ Zα α
ω

ρ ω→→                 (1.2) 

for each loss random variable Z in some sense. Our result does not require any 
specific form for αρ , implying that this property is robust. Furthermore, as-
suming some technical conditions for the probability density functions of X and 
Y, we study the asymptotic behavior of the Euler contribution, defined as 

( ) ( )Euler

1

|
h

Y X Y X hY
hα αρ ρ

=

∂
+ = +

∂
            (1.3) 

(see Remark 17.1 in [2]), and show that ,X Y
αρ∆  is asymptotically equivalent to 

( )Euler |Y X Yαδρ +  as 1α → . Here, ( ]0,1δ ∈  is a constant determined ac-
cording to the relative magnitudes of the thicknesses of the tails of X and Y. 

We now briefly review the financial background for this study. In quantitative 
financial risk management, it is important to capture tail loss events by using 
adequate risk measures. One of the most standard risk measures is the VaR. The 
Basel Accords, which provide a set of recommendations for regulations in the 
banking industry, essentially recommend using VaR as a measure of risk capital 
for banks. VaRs are indeed simple, useful, and their values are easy to interpret. 
For instance, a yearly 99.9% VaR calculated as 0x  means that the probability of 
a risk event with a realized loss larger than 0x  is 0.1%. In other words, an 
amount 0x  of risk capital is sufficient to prevent a default with 99.9% probabil-
ity. The meaning of the amount 0x  is therefore easy to understand. However, 
VaRs are often criticized for their lack of subadditivity (see, for instance, [3] [4] 
[5] and [6]). VaRs do not reflect the risk diversification effect. 

The expected shortfall (ES) has been proposed as an alternative risk measure 
that is coherent (in particular, subadditive) and tractable, with the risk amount 
at least that of the corresponding VaR. Note that there are various versions of ES, 
such as the conditional value-at-risk (CVaR), the average value-at-risk (AVaR), 
the tail conditional expectation (TCE), and the worst conditional expectation 
(WCE). These are all equivalent under some natural assumptions (see [4] [7] [8], 
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and [9]). It should be noted that the Basel Accords have also considered recently 
the adoption of ESs as a minimal capital requirement, in order to better capture 
market tail risks (see for instance [10] and [11]). 

A spectral risk measure (SRM) has been proposed as a generalization of ESs, 
in [3]. SRMs are characterized by a weight function φ  that represents the signi-
ficance of each confidence level for the risk manager. SRMs are equivalent to 
comonotonic law-invariant coherent risk measures (see Remark 1 in the next 
section). 

VaRs and ESs as risk measures depend on a confidence level parameter 

( )0,1α ∈ . We let VaRα  (resp., ESα ) denote the VaR (resp., ES) with confi-
dence level α. When α is close to 1, the values of VaRα  and ESα  are in-
creasing without bound as in (1.2). The parameter α corresponds to the risk 
aversion level of the risk manager. Higher values of α indicate that the risk 
manager is more risk-averse and evaluates the tail risk as more severe. 

In this paper, we consider a family ( )0 1α α
ρ

< <
 of SRMs parameterized by the 

confidence level α. We make a mathematical assumption that intuitively implies 
situation (1.2) and investigate the asymptotic behaviors of (1.1) and (1.3) as 

1α → , when the tail probability function of X (resp., Y) is regularly varying 
with index β−  (resp., γ− ). Our main theorem asserts that the asymptotic 
behaviors of (1.1) and (1.3) strongly depend on the relative magnitudes of β  
and γ . Note that our results include the case ESα αρ = , the inclusion of which 
was discussed as a future task in [1]. 

The rest of this paper is organized as follows. In Section 2, we prepare the ba-
sic settings and introduce the definitions for SRMs based on confidence level. In 
Section 3, we give our main results. We numerically verify our results in Section 
4. Finally, Section 5 summarizes our studies. Throughout the main part of this 
paper, we assume that X and Y are independent. The more general case where X 
and Y are not independent is studied in Appendix 1. All proofs are given in 
Appendix 2. 

2. Preliminaries 

Let ( ), , PΩ   be a standard probability space and let +L  denote a set of 
non-negative random variables defined on ( ), , PΩ  . For each Z +∈L , we 
denote by ZF  the distribution function of Z and by ZF  its tail probability 
function; that is, ( ) ( )ZF z P Z z= ≤  and ( ) ( )ZF z P Z z= > . Moreover, for 
each ( )0,1α ∈ , we define 

( ) ( ){ }VaR inf ; .Z z P Z zα α= ∈ ≤ ≥              (2.1) 

Note that ( )VaR Zα  is exactly the left-continuous version of the generalized 
inverse function of ZF . 

We now introduce the definition of SRMs. 
Definition 1 
1) A Borel measurable function [ ) [ ): 0,1 0,φ → ∞  is called an admissible 
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spectrum if φ  is right-continuous, non-decreasing, and satisfies 

( )1

0
d 1.φ α α =∫                        (2.2) 

2) A risk measure [ ): 0,ρ + → ∞L  is called an SRM if there is an admissible 
spectrum φ  such that Mφρ = , where 

( ) ( ) ( )1

0
VaR d , .M Z Z Zφ α φ α α += ∈∫ L  

Remark 1 SRMs are law-invariant, comonotonic, and coherent risk measures. 
However, as shown in [12] [13], and [14], if ( ), , PΩ   is atomless, then for any 
law-invariant comonotonic convex risk measure ρ , there is a probability 
measure µ  on [ ]0,1  such that 

( ) ( ) ( )1

0
ES d ,Z Zαρ µ α= ∫                        (2.3) 

for each ( ), ,Z L P∞∈ Ω  . This is due to the generalized Kusuoka representa-
tion theorem (Theorem 4.93 in [12]), where ( )ES Zα  is the α-percentile ex-
pected shortfall of Z: 

( ) ( )11ES VaR d .
1 uZ Z uα αα

=
− ∫                    (2.4) 

Moreover, such a ρ  is always coherent and satisfies the Fatou property [13]. 
Furthermore, representation (2.3) can also be rewritten as ( ) ( )Z M Z

µφ
ρ = , 

where 

( ) [ ] ( ) ( )1

0,0

1 1 d .
1

u u
uµ αφ α µ=

−∫  

Here, it is easy to see that µφ  is non-negative, non-decreasing, right-continuous, 
and satisfies 

( ) { } ( )1 1 1

00 0 0

1d 1 d d 1,
1 u u

uµ αφ α α αµ≤ ≤= =
−∫ ∫ ∫  

meaning that µφ  is an admissible spectrum (see [15]). Therefore, any 
law-invariant comonotonic convex (or coherent) risk measure is completely cha-
racterized as an SRM. Arguments similar to those above, replacing ( ), ,L P∞ Ω   
with ( ), ,pL PΩ  , where 1 p≤ < ∞ , can be found in [15] and [16]. 

Next, we introduce a family ( )0 1α α
ρ

< <
 of SRMs parameterized by the confi-

dence level α. 
Definition 2 Let ( )0 1α α

φ
< <

 be a family of admissible spectra and let 
M

αα φρ = . Then ( )0 1α α
ρ

< <
 is called a set of confidence-level-based spectral risk 

measures (CLBSRMs) if 
w

1, 1,α δ αΦ → →                        (2.5) 

where αΦ  is a probability measure on [ ]0,1  defined by ( ) ( )d du u uα αφΦ =  
and 1δ  is the Dirac measure with unit mass at 1. 

Condition (2.5) formally implies (1.2). Indeed, if Z +∈L  is a bounded ran-
dom variable with a distribution function that is continuous and strictly in-
creasing on *0, z   , where ( )* esssupz Z

ω
ω= , then the function ( )VaRuu Z  

is bounded and continuous, so that (2.5) gives 
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( ) ( ) ( )1 *
0
VaR d , 1,uZ Z u zα αρ α= Φ → →∫  

where we recognize ( ) ( )1 *
1VaR 1ZZ F z−= = . Moreover, we see that 

Lemma 1 Relation (2.5) is equivalent to 

( ) [ )0, 1 for each 0,1 .u uαφ α→ → ∈                (2.6) 

We now give some examples of CLBSRMs. 
Example 1. Expected Shortfalls 
( )0 1
ESα α< <

 defined by (2.4) is a typical example of a CLBSRM. The corres-
ponding admissible spectra are given as 

( ) [ ) ( )ES
,1

1 1 .
1

u uα αφ
α

=
−

 

It is easy to see that (2.5) does hold. Indeed, for any bounded continuous 
function f defined on [ ]0,1 , we see that 

( ) ( )( ) ( )1 1

0

1 d 1 d 1 , 1
1

f u u f u u u f
α

α α
α

= + − → →
− ∫ ∫  

due to the bounded convergence theorem. Equivalently, we can also check that 
( )ESα α

 satisfies (2.6). 
ESα  is characterized as the smallest law-invariant coherent risk measures 

that are greater than or equal to VaRα  [14]. Note that if the distribution func-
tion of the target random variable Z is continuous, then ( )ES Zα  coincides 
with ( )CVaR Zα , where 

( ) ( )CVaR E | VaRZ Z Z Zα α= ≥    

(see [8] for details). 
Example 2. Exponential/Power SRMs 
An admissible spectrum φ corresponding to an SRM Mφ  represents the pre-

ferences of a risk manager for each quantile of the loss distribution. Therefore, 
the form taken by φ corresponds to the manager’s risk aversion, which is also 
described in terms of utility functions in classical decision theory. Recently, the 
relation between expected utility functions and SRMs has been studied, though it 
has not been entirely resolved. Here we introduce some examples of SRMs based 
on specific utility functions. 

The exponential utility function is a typical example of tractable utility func-
tions 

( ) e ,
p

U p
γ

γ γ

−

= −  

where p denotes the profit-and-loss ( 0p >  indicating profit) and γ characteriz-
es the degree of risk preference. We focus on the case 0 γ< < ∞  so that Uγ  
describes a risk-averse utility function. We transform the parameter γ into the 
confidence level ( )0,1α ∈  using ( ) 12 π tanα γ−= . Note that the original pa-
rameter γ can be recovered using the inverse ( ): tan π 2tαγ α= = . The expo-
nential utility of the loss l with confidence level α is then given as 

https://doi.org/10.4236/jmf.2018.81015


T. Kato 
 

 

DOI: 10.4236/jmf.2018.81015 202 Journal of Mathematical Finance 

 

( ) elt
tU l tα
α α− = − . Cotter and Dowd [17] have proposed an SRM EXP

EXP M
α

α φ
ρ =  

based on the exponential utility by constructing an admissible spectrum 
( ) ( )EXP

tu U u
ααφ λ= − −  for some 0λ > , so that ( )EXP uαφ  satisfies (2.2). Then, 

λ  must be set as ( )2 e 1tt α
α − , giving 

( )
( )1

EXP e
.

1 e

t u

t

tu
α

α

α
αφ

− −

−=
−

 

Note that the theoretical validity of the above method is still unclear. Other 
methods to adequately construct SRMs from exponential utility functions have 
been discussed in [18] [19], and [20], but no definite answer has been reached. 
In particular, it is pointed out in [18] that there exists no general consistency 
between expected utility theory and SRM-decision making. In any case, we can 
easily verify that ( )EXP

α α
φ  as defined above satisfies (2.5)-(2.6), which implies 

that ( )EXP
α α
ρ  is actually a CLBSRM. 

Similarly to the above, an SRM POW
POW M

α
α φ
ρ =  based on the power utility 

function has been studied in [21]. After changing the risk aversion parameter to 
the confidence level ( )0,1α ∈  as above, POW

αφ  is given as 
/ (1 )

POW ( ) = .
1

uu
α α

αφ α

−

−
 

We can also verify that ( )POW

0 1α α
ρ

< <
 is a CLBSRM. 

We now introduce some notations and definitions used in asymptotic analysis 
and extreme value theory. 

Let f and g be positive functions defined on [ )0 1,x x , where [ )0 0,x ∈ ∞  and 
( ]1 0 ,x x∈ ∞ . We say that f and g are asymptotically equivalent (denoted as 

~f g ) as 1x x→  if ( ) ( )
1

lim 1
x x

f x g x
→

= . When 1x = ∞ , we say that f is regu-
larly varying with index k∈  if it holds that ( ) ( )lim k

x
f tx f x t

→∞
=  for each 

0t > . Moreover, we say that f is ultimately decreasing if f is non-increasing on 
[ )2 ,x ∞  for some 2 0x > . For more details, we refer the reader to [22] and [23]. 

3. Main Results 

Our main purpose is to investigate the property of (1.1) for a CLBSRM 
( )0 1α α
ρ

< <
 and random variables ,X Y +∈L  whose distributions are fat-tailed. 

To consider this case, we assume that XF  and YF  are regularly varying func-
tions with indices β−  and γ− , respectively. That is, ( ) ( ), 0X YF x F x >  for 
each 0x ≥  and 

( )
( )

( )
( )

lim , lim , 0X Y

x x
X Y

F tx F tx
t t t

F x F x
β γ− −

→∞ →∞
= = >               (3.1) 

for some , 0β γ > . 
In [1], we study the asymptotic property of (1.1) as 1α →  when 

VaRα αρ = . The results display the following five patterns: (i) 1β γ+ < , (ii) 
< 1β γ β≤ + , (iii) β γ= , (iv) 1γ β γ< ≤ + , and (v) 1γ β+ < . In cases (iv) 

and (v), we consider the difference ,VaRY X
α∆  instead of ,VaR X Y

α∆ , and the re-
sults are restated consequences of cases (i) and (ii). Hence, we assume here that 
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β γ≤  and focus on cases (i)-(iii) only. We further assume that 1β > . This as-
sumption guarantees the integrability of X and Y (see, for instance, Proposition 
A3.8 in [23]). 

Let ( )0 1α α
ρ

< <
 be a CLBSRM with a family of admissible spectra ( )0 1α α

φ
< <

. 
Here we assume that 

( ) ( )
1

1 lim
u

uα αφ φ
→

− = < ∞                        (3.2) 

for each ( )0,1α ∈ . Then, Lemma A.23 in [12] implies that 

( ) ( ) ( ) ( ) [ ] [ ]( )1

0
1 VaR d 1 E EuX Y X Y u X Yα α αρ φ φ+ ≤ − + = − + < ∞∫  

for each 0 1α< < . This immediately implies that ( ) ( ),X Yα αρ ρ < ∞ . Fur-
thermore, by (17.9b) and Proposition 17.2 in [2], we see that 

( ) ( ), Euler | ,X Y Y X Y Yα α αρ ρ ρ∆ ≤ + ≤               (3.3) 

where ( )Euler |Y X Yρ +  is given by (1.3) if ( )X hYαρ +  is continuously dif-
ferentiable in h. Note that inequality (3.3) holds for each 0 1α< <  whenever 

αρ  is coherent. 
Our main purpose in this section is to investigate in detail the asymptotic be-

havior of ,X Y
αρ∆ , as well as ( )Euler |Y X Yαρ +  if it is defined, as 1α → . To 

clearly state our main results, we establish the following conditions, which are 
assumed to hold in Section 4 of [1]. 

[C1] X and Y are independent. 
[C2] There is some 0 0x ≥  such that XF  has a positive, non-increasing  

density function Xf  on [ )0 ,x ∞ ; that is, ( ) ( ) ( )
0

0 0d ,
x

X X Xx
F x F x f y y x x= + ≥∫ . 

[C3] The function ( ) ( )Y Xx F x F xγ β−  converges to some real number k as 
x →∞ . 

Let us adopt the notation 

( )

[ ]

( ) ( )

( ){ } ( )

1 1

0

1

E if 1 ,

VaR d if 1,

1 1 if

u

Y
kM X u u

k X

β γ
α

β
α

β γ

α φ β γ β
β

ρ β γ

+ −


+ <

= < ≤ +

 + − =

∫      (3.4) 

for 0 1α< < . Note that ( )M α  is finite for each fixed ( )0,1α ∈  (see Corol-
lary 1 in Appendix 2). Our main results are the two following theorems. 

Theorem 1 Assuming [C1]-[C3], ( ), ~X Y Mαρ α∆  as 1α → . 
Formally, assertions (i)-(iii) of Theorem 4.1 in [1] are the same as the assump-

tions of Theorem 1, by setting =α αδΦ . That is, we have ( ),VaR ~X Y fα α∆  as 
1α → , where 

( )

[ ]

( )

( ){ } ( )

1

1

E if 1 ,

VaR if 1,

1 1 VaR if .

Y
kf X

k X

β γ
α

β
α

β γ

α β γ β
β

β γ

+ −


+ <

= < ≤ +

 + − =

        (3.5) 
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Theorem 1 justifies the following relation: 

( ) ( ) ( ) ( )1 1, ,
0 0

VaR d ~ d , 1.X Y X Y
u u u f u u u Mα α αρ φ φ α α∆ = ∆ = →∫ ∫  

Note that condition [C3] is not required for Theorem 1 when 1 <β γ+ . 
Moreover, when 1β γ+ < , Theorem 1 implies that ,X Y

αρ∆  converges to [ ]E Y  
as 1α → . The limit [ ]E Y  does not depend on the forms of ( )α α

φ , so this re-
sult is robust. The second main result is as follows. 

Theorem 2 Assume [C1] and [C3]. Moreover, assume that 
[C4] X and Y have positive, continuous, and ultimately decreasing density 

functions Xf  and Yf , respectively, on [ )0,∞ . 
Under these assumptions, ( ) ( )Euler | ~Y X Y Mαρ α δ+  as 1α → , where δ  

is a positive constant given by 

[ ]( )

( ){ }1 1

1 if 1 ,
E if 1 ,

1 if 1,

1 1 if .

k Y k

k k kβ

β γ
β γ β γ

δ γ β γ β

β γ−

+ <
 + + =

=  < < +

 + − + =


           (3.6) 

Theorems 1 and 2 together imply that if X and Y are independent, and if XF  
and YF  have adequate density functions, then 

( ), Euler~ | , 1.X Y Y X Yα αρ δρ α∆ + →        (3.7) 

Note that δ  is always smaller than or equal to 1, so that (3.7) is consistent 
with inequality (3.3). In particular, if 1β γ+ < , then the asymptotic equivalence 
between the marginal risk contribution ,X Y

αρ∆  and the Euler contribution 
( )Euler |Y X Yαρ +  is justified (see (17.10) in [2] for the definition of marginal 

risk contributions). 
Note that ,X Y

αρ∆  is always larger than or equal to [ ]E Y  so long as the ran-
dom vector ( ),X Y  satisfies a suitable technical condition, such as Assumption 
(S) in [24]. (Here, we modify some conditions of the original version of As-
sumption (S) to facilitate focusing on non-negative random variables.) Indeed, 
because αρ  is a convex risk measure, the function ( ) ( ):r h X hYαρ= +  is 
convex. Thus, we get 

( ) ( ) ( ) [ ], 1 0 0 E ,X Y r r r Yαρ ′∆ = − ≥ =                 (3.8) 

where the last equality in the above relation is obtained from (5.12) in [24], 

( ) ( )VaR E | VaR ,X hY Y X hY X hY
h α α
∂

+ = + = +  ∂
        (3.9) 

and 

( ) ( ) ( ) [ ]1

0
0 0

VaR d Eu
h h

X hY X hY u u Y
h hα αρ φ

= =

∂ ∂
+ = + =

∂ ∂∫  

due to the dominated convergence theorem. Therefore, if 1β γ+ < , then 

[ ] ( ) [ ], EulerE ~ | E , 1.X YY Y X Y Yα αρ ρ α≤ ∆ + → →  
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In Section 4, we numerically verify the above relation. Note that we can also 
verify a version of Assumption (S) under [C4]. 

Remark 2 
1) If XF  is continuous, then ( )XF X  has a uniform distribution on ( )0,1  

(see, for instance, Lemma A.21 in [12]). Therefore, ( )M α  with 1β γ β< ≤ +  
is rewritten as 

( ) 1E ,
XQkM Xα β γα

β
+ − =    

where E
XQα  denotes the expectation operator with respect to the probability 

measure XQα  defined as 

( )( )d
.

d

X

X
Q F X
P
α

αφ=                   (3.10) 

Note that we have ( ) [ ]E
XQX Xα

αρ = , and so XQα  represents the risk scena-
rio that attains the maximum in the following robust representation of ( )Xαρ : 

( ) [ ]max E ,Q

Q
X Xαρ ∈

=


 

where   is a set of probability measures on ( ),Ω  . Also note that if 
ESα αρ = , then XQα  is given by 

( ){ }VaR

d 1 1 ,
d 1

X

X X

Q
P α

α

α ≥=
−

 

and therefore 

( )1 1E E | VaR .
XQ X X X Xα β γ β γ

α
+ − + −   = ≥     

Until the end of Remark 2, we assume that XF  and YF  are continuous. 
2) We can relax the independence condition [C1] so that X may weakly de-

pend on Y within the negligible joint tail condition (see Remark A.1 in [1]). In 
this case, under some additional assumptions such as [A5] and [A6] in [1], we 
can make the same assertion as in Theorem 1, where the value [ ]E Y  in the de-
finition (3.4) of ( )M α  is replaced by [ ]E

XQ Yα . In particular, if 1β γ+ < , 
then 

[ ], ~ E , 1.
XQX Y Yα

αρ α∆ →                  (3.11) 

Indeed, our proof in Appendix 2 also works by applying Theorem A.1 in [1] 
instead of Theorem 4.1. Note that we need some additional condition to have 
that 

[ ]liminf E 0
XQ Yα

α→∞
>                        (3.12) 

(see Proposition 3 in Appendix 2). 
3) As mentioned in Appendix A.1 of [1], we can get another version of Theo-

rem A.1 by switching the roles of X Y+  and X and by imposing modified 
(though somewhat artificial) mathematical conditions such as [A5’] and [A6’] in 
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[1]. In particular, if 1β γ+ < , we see that 

( ),VaR ~ E | VaR , 1X Y Y X Y X Yα α α∆ + = + →             (3.13) 

and then (by the same proof as Theorem 1 with (3.13)) 

[ ] ( ), Euler~ E | , 1
X YQX Y Y Y X Yα

α αρ ρ α
+

∆ = + →             (3.14) 

under some assumptions. Here, X YQα
+  is a probability measure defined by (3.10) 

with replacing X by X Y+ . If X and Y are independent (with natural assump-
tions on the density functions), then (3.7) implies that (3.14) is also true. Here, 
note that the last equality of (3.14) is obtained by (1.3), (3.9), and the dominated 
convergence theorem. Indeed, we have 

( ) ( ) ( ) [ ]1Euler
0

| E | VaR d E
X YQ

uY X Y Y X Y X Y u u Yα
α αρ φ

+
+ = + = + =  ∫ (3.15) 

because ( )X YF X Y+ +  is uniformly distributed on ( )0,1 . In Appendix 1, we 
will show that under some technical conditions that are more natural than both 
[A5]-[A6] and [A5’]-[A6’] in [1], relations (3.11) and (3.14) simultaneously hold 
in the case 1β γ+ < , even if X and Y are dependent. 

Note that if ESα αρ = , then 

[ ] ( ) ( )EulerE ES | E | VaR ,
X YQ Y Y X Y Y X Y X Yα

α α

+
= + = + ≥ +    

which is known as the component CVaR (also known as the CVaR contribution) 
and widely used, particularly in the practice of credit portfolio risk management 
(see for instance [25] [26], and [27]). 

4. Numerical Analysis 

In this section, we numerically investigate the behavior of ,X Y
αρ∆ . Throughout 

this section, we assume that the distributions of X and Y are given as 

( )GPD ,X Xξ σ  and ( )GPD ,Y Yξ σ , respectively, with ( ), 0,1X Yξ ξ ∈  and 
, 0X Yσ σ > , where ( )GPD ,ξ σ  denotes the generalized Pareto distribution 

whose distribution function is given by ( ) 11 1 x ξξ σ −− + , 0x ≥ . Then, XF  
and YF  satisfy (3.1) with 1 Xβ ξ=  and 1 Yγ ξ= . Note that condition [C3] is 
satisfied with 

1 1Y X

Y X

Y X

k
ξ ξ

σ σ
ξ ξ

−
   

=    
   

 

(see (5.2) in [1]). Also note that ( )VaR Xα  and ( )VaR Yα  are analytically 
solved as 

( ) ( ){ } ( ) ( ){ }VaR 1 1 , VaR 1 1 .X YX Y

X Y

X Yξ ξ
α α

σ σ
α α

ξ ξ
− −= − − = − −  

We numerically compute , , EXP, , POW, ,VaR , ES , ,X Y X Y X Y X Y
α α α αρ ρ∆ ∆ ∆ ∆ , and EulerESα , 

where we let ( )Euler EulerES ES |Y X Yα α= +  for brevity. In all calculations, we fix 
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100Xσ =  and 80Yσ = . For Xξ  and Yξ , we examine several patterns to 
study each of the following three cases: 1) 1β γ+ < , 2) 1β γ β< ≤ + , and 3) 
β γ= . 

Case 1) 1β γ+ <  
We set 0.5Xξ =  and 0.1Yξ = . Hence, = 2β  and 10γ = , so that 

1β γ+ <  holds. Figure 1 shows the graphs of , EXP, , POW, ,ES , ,X Y X Y X Y
α α αρ ρ∆ ∆ ∆ , 

and EulerESα . These values are always larger than [ ]E Y  whenever ( )0,1α ∈ , 
and they converge to [ ]E Y  for both 0α →  and 1α → . Indeed, 

[ ] [ ] [ ],

0
lim E E EX Y X Y X Yαα

ρ
→
∆ = + − =             (4.1) 

holds because ( ) ( ) ( )ES EXP POW, , 1u u uα α αφ φ φ → , 0α →  for each [ )0,1u∈ . The 
limit as 1α →  is a consequence of Theorem 1. Moreover, the forms of these 
graphs are unimodal. That is, the function ,X Y

αα ρ∆  increases on ( )00,α  
and decreases on ( )0 ,1α  for some ( )0 0,1α ∈ . Intuitively, the values of ,X Y

αρ∆  
seem to become large as α increases because a larger α implies a greater risk sen-
sitivity. However, our result implies that the impact of adding loss variable Y in-
to the prior risk profile X is maximized at some 0 1α < . 

Figure 2 shows the relation between ,ESX Y
α∆  and ,VaR X Y

α∆ . We see that 
,ESX Y

α∆  takes a maximum at 0α α= , where 0α  is a solution to 

0 0

, ,VaR ES .X Y X Y
α α∆ = ∆                    (4.2) 

Indeed, we have the following result. 
Proposition 1 If there is a unique solution ( )0 0,1α ∈ to (4.2), then  

0

, ,

0 1
max ES ESX Y X Y

α αα< <
∆ = ∆ . 

Note that unlike the case of SRMs, ,VaR X Y
α∆  takes a value smaller than 

[ ]E Y  if α is small. This is because VaR is not a convex risk measure, so the re-
lation (3.8) is not guaranteed for = VaRα αρ . In particular, we observe that 
 

 
Figure 1. Graphs of ,ESX Y

α∆  (blue), EXP, ,X Y
αρ∆  (orange), POW, ,X Y

αρ∆  (green) and 

( )EulerES |Y X Yα +  (black, dashed) with 0.5Xξ =  and 0.1Yξ = . The red solid line 

shows [ ]E Y . The horizontal axis corresponds to α. 
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Figure 2. Graphs of ,ESX Y

α∆  (blue) and ,VaR X Y
α∆  (brown, dashed) with 0.5Xξ =  and 

0.1Yξ = . The red solid line shows [ ]E Y . The horizontal axis corresponds to α. 
 

( ),

0
lim VaR essinf essinf 0.X Y X Y Xαα→

∆ = + − =           (4.3) 

Case 2) 1β γ β< ≤ +  
Figure 3 shows the approximation errors, defined as 

( )
,Error 1X Y

M
α

α

α
ρ

= −
∆

                      (4.4) 

with 2 3Xξ =  ( 1.5β = ) and 0.5Yξ =  ( 2γ = ). We see that Errorα  is close to 
0 as 1α →  for each case of EXP POWES , ,α α α αρ ρ ρ= . Moreover, we numerically 
verify the assertion of Theorem 2 for ESα αρ =  in Figure 4. We observe that 

EulerESMα α  converges to 1 0.5Yδ γ ξ= = =  as 1α → . 
By contrast, the convergence speed of Errorα  as 1α →  decreases if the tails 

of X and Y are less fat-tailed. Figure 5 shows Errorα  with 2 7Xξ =  ( 3.5β = ) 
and 0.25Yξ =  ( 4γ = ). We find that Errorα  decreases as α tends to 1, but the 
gap between Errorα  and 0 is still large, even in the case 0.999α = . 

Case 3) β γ=  
Finally, we look at the case 0.7X Yξ ξ= = . The results are summarized in 

Figure 6 and Figure 7. We see that Errorα  approaches 0 as 1α →  for each 
case of EXP POWES , ,α α α αρ ρ ρ= . We also confirm that ( ) EulerESM αα  converges 
to ( ){ }1 11 1 0.870k k kβδ −= + − + ≈  as 1α → . 

Similarly to Case 2), the convergence speed of Errorα  decreases as the tails of 
X and Y become thinner. Figure 8 shows the graph of Errorα  with 

0.3X Yξ ξ= = . The approximation error tends to zero as 1α → , but remains 
smaller than −20% even when 0.999α = . 

5. Concluding Remarks 

In this paper, we have studied the asymptotic behavior of the difference between 
( )X Yαρ +  and ( )Xαρ  as 1α →  when αρ  is a parameterized SRM satis-

fying (1.2). We have shown that ,X Y
αρ∆  is asymptotically equivalent to ( )M α  

given by (3.4), whose form changes according to the relative magnitudes 
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Figure 3. Approximation errors defined by (4.4) with 2 3Xξ =  and 0.5Yξ = . 

Blue line: ESα αρ = . Orange line: EXP
α αρ ρ= . Green line: POW

α αρ ρ= . The ho-
rizontal axis corresponds to α. 

 

 
Figure 4. ( ) EulerESM αα  (blue) and 1 Yδ γ ξ= =  (red). We set 2 3Xξ =  

and 0.5Yξ = . The horizontal axis corresponds to α. 
 

 
Figure 5. Approximation errors defined by (4.4) with 2 7Xξ =  and 

0.25Yξ = . Blue line: ESα αρ = . Orange line: EXP
α αρ ρ= . Green line: 

POW
α αρ ρ= . The horizontal axis corresponds to α. 
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Figure 6. Approximation errors defined by (4.4) with 0.7X Yξ ξ= = . Blue 

line: ESα αρ = . Orange line: EXP
α αρ ρ= . Green line: POW

α αρ ρ= . The ho-
rizontal axis corresponds to α. 

 

 

Figure 7. ( ) EulerESM αα  (blue) and ( ){ }1 11 1k k kβδ −= + − +  (red). We set 

0.7X Yξ ξ= = . The horizontal axis corresponds to α. 
 

 
Figure 8. Approximation errors defined by (4.4) with 0.3X Yξ ξ= = . Blue line: 

ESα αρ = . Orange line: EXP
α αρ ρ= . Green line: POW

α αρ ρ= . The horizontal 
axis corresponds to α. 
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of the thicknesses of the tails of X and Y. In particular, for 1β γ+ < , we found 
the convergence [ ],

1
lim EX Y Yαα

ρ
→
∆ =  for general CLBSRMs ( )α α

ρ . Moreover, we 
also found that ( ), Euler~ |X Y Y X Yα αρ δρ∆ +  as 1α →  for a constant ( ]0,1δ ∈  
given by (3.6). This clarifies the asymptotic relation between the marginal risk 
contribution and the Euler contribution. 

Our numerical results in the case 1β γ+ <  showed that ,X Y
αρ∆  is not in-

creasing but is unimodal with respect to α, which implies that the impact of Y in 
the portfolio X Y+  does not always increase with α. Interestingly, this phe-
nomenon is inconsistent with intuition. 

Our results essentially depend on the assumption that X and Y are indepen-
dent. However, the dependence structure of the loss variables X and Y plays an 
essential role in financial risk management. The case of dependent X and Y for 

VaRα αρ =  has already been studied in Section A.1 of [1]. As mentioned in 
Remark 2, we have now generalized this result to the case of CLBSRMs. However, 
we require the somewhat strong assumption that X and Y are not strongly de-
pendent on each other. With the additional analysis in Appendix 1, we will see 
that our main results still hold for a general dependence structure if 1β γ+ < , 
but that they are easily violated if 1β γ β≤ ≤ + . In future work, we will con-
tinue to study the asymptotic behavior of ,X Y

αρ∆  as 1α → , without the inde-
pendence condition. 
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Appendix 1. A Short Consideration of the Dependent Case  

Here, we briefly investigate the asymptotic behavior of ,X Y
αρ∆  as 1α →  when 

X and Y are not independent. Throughout this section, we assume that XF , YF , 
and X YF +  are continuous. With this, (3.8) is rewritten as [ ], E

XQX Y Yα
αρ∆ ≥ . 

Combining this result with (3.3), we have 

[ ] [ ],E E .
X X YQ QX YY Yα α

αρ
+

≤ ∆ ≤                  (A.1) 

Note that (A.1) holds for general SRM αρ  whenever (3.9) holds. 

1.1. Comonotonic Case 

We consider the case where X and Y are comonotone. In other words, they are 
perfectly positively dependent (see Definition 4.82 of [12] and Definition 5.15 in 
[28]). In this case, the following proposition is straightforwardly shown. 

Proposition 2 If X and Y are comonotone, then 

[ ] [ ] ( ), E E .
X X YQ QX Y Y Y Yα α

α αρ ρ
+

∆ = = =            (A.2) 

This proposition implies that when 1 <β γ+ , the asymptotic relations (3.11) 
and (3.14) still hold, even if X and Y are strongly correlated, but that the asser-
tions of Theorems 1 and 2 do not necessarily hold when 1β γ β≤ ≤ + . 

1.2. Additional Numerical Analysis 

Similarly to Section 4, we assume that ( )~ GPD ,X XX ξ σ  and 
( )~ GPD ,Y YY ξ σ  with 100Xσ = , 80Yσ = . To describe the dependence be-

tween X and Y, we introduce a copula. By Sklar’s theorem, we see that the joint 
distribution function ( ) ( ) ( ), , ,X YF x y P X x Y y= ≤ ≤  of the random vector 
( ),X Y  is represented by 

( ) ( ) ( ) ( )( ), , , ,X YX YF x y C F x F y=  

for a copula [ ] [ ]2: 0,1 0,1C → , which is a distribution function with uniform 
marginals. Here, we examine the following three copulas: 

1) The Gaussian copula ( ) ( ) ( )( )Gauss 1 1, ,C u v u vρ
− −= Φ Φ Φ , 1 1ρ− < < , 

2) The Gumbel copula ( ) ( ) ( )( )1Gumbel , exp log logC u v u v
θθ θ

θ
 = − − + − 
 

,  

1θ ≥ , 
3) The countermonotonic copula ( ) { }cmon , max 1,0C u v u v= + − , 

where ( ) 2 2e 2πd
x yx y−

−∞
Φ = ∫  is the distribution function of the standard  

normal distribution (for more details on the copulas, see, for instance, Chapter 5 
of [28]). The parameters ρ  in (a) and θ  in (b) describe the strength of the 
dependence between X and Y. We always set 0.3ρ =  and 3θ =  in this sec-
tion. If cmonC C= , then X and Y are perfectly negatively dependent. In particu-
lar, in that case, X and Y are represented as ( )1

XX F U−=  and ( )1 1YY F U−= − , 
where U is a random variable with uniform distribution on ( )0,1 . 
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Figure A1 summarizes the results with 0.5Xξ =  and 0.1Yξ = . We compare 
the values of ,X Y

αρ∆  (with EXP POWES , ,α α α αρ ρ ρ= ) and ( )EulerES |Y X Yα + . We 
find that all these values converge to the same value, which is not equal to [ ]E Y , 
by letting 1α → . Note that when X and Y are countermonotonic, they converge 
to zero as 1α → , so (3.12) does not hold in this case. 

Figure A2 shows the graphs of the relative errors defined by (4.4) with 
EXP POWES , ,α α α αρ ρ ρ=  when we set 2 3Xξ =  and 0.5Yξ = . We find that 

Errorα  does not converge to zero as 1α → . Similar phenomena are observed 
in Figure A3 with the settings 0.7X Yξ ξ= = . Therefore, the assertion of Theo-
rem 1 does not hold when 1β γ β≤ ≤ +  if X and Y are correlated. 
 

 

 

 
Figure A1. Graphs of ,ESX Y

α∆  (blue), EXP, ,X Y
αρ∆  (orange), POW, ,X Y

αρ∆  (green) and 

( )EulerES |Y X Yα +  (black, dashed) with 0.5Xξ =  and 0.1Yξ = . The red solid line 

shows [ ]E Y . The horizontal axis corresponds to α. Top: GaussC Cρ=  with 0.3ρ = . 

Center: GumbelC Cθ=  with 3θ = . Bottom: cmonC C= . 
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Figure A2. Approximation errors defined by (4.4) with 2 3Xξ =  and 0.5Yξ = . Blue 

line: ESα αρ = . Orange line: EXP
α αρ ρ= . Green line: POW

α αρ ρ= . The horizontal axis 

corresponds to α. Top: GaussC Cρ=  with 0.3ρ = . Center: GumbelC Cθ=  with 3θ = . 

Bottom: cmonC C= . 
 

Note that the above findings are consistent with the comonotonic case (Prop-
osition 2). 

1.3. Theoretical Result in the Case 1β γ+ <  

We describe the following conditions. 
[C5] For each 0y ≥ , ( )|XF Y y⋅ =  has a positive, non-increasing density 

function ( )|Xf Y y⋅ =  on [ )0,∞ , where ( )|XF Y y⋅ =  is the conditional dis-
tribution function of X given Y y= . Moreover, ( )|Xf x Y y=  is continuous in 
x  and y. 

[C6] There is a κ ∈  such that ( )|Xf x Y y=  is uniformly regularly vary-
ing with index κ  in the following sense: 
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Figure A3. Approximation errors defined by (4.4) with 0.7X Yξ ξ= = . Blue line: 

ESα αρ = . Orange line: EXP
α αρ ρ= . Green line: POW

α αρ ρ= . The horizontal axis corres-

ponds to α. Top: GaussC Cρ=  with 0.3ρ = . Center: GumbelC Cθ=  with 3θ = . Bottom: 
cmonC C= . 

 

( )
( )0

|
sup 0,

|
X

y X

f tx Y y
t x

f x Y y
κ

≥

=
− → →∞

=
            (A.3) 

for each 0t > . Moreover, X Yf +  is ultimately decreasing. 
[C7] It holds that 

0 0
sup E | sup E |
x z

Y X x Y X Y zη η

≥ ≥
   = + + = < ∞           (A.4) 

for some { }max ,1η κ β> − − . 
Conditions [C5]-[C7] strongly correspond to conditions [A5]-[A6] in [1]. It 

should be noted that the index parameter κ  is assumed to be equal to 1β− −  
in condition [A6] in [1], but that this equality is not required to obtain our re-
sults. Note also that κ  may be different from 1β− − . Indeed, we can verify, at 
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least numerically, that for each 0y ≥ , the function ( )|Xf Y y⋅ =  is regularly 
varying with index ( )21 1κ β ρ= − − −  (resp., 1κ θβ= − − ) if we adopt 

GaussC Cρ=  (resp., GumbelC Cθ= ) as a copula for the random vector ( ),X Y  
whose marginal distributions are given by the generalized Pareto distribution. 

Using a similar argument as in the proof of the uniform convergence theorem 
(Theorem 1.2.1 in [22]), together with the continuity of ( )|Xf x Y y=  in y, we 
get from (A.3) that 

( )
( )0

|
supsup 0, ,

|
X

t K y X

f tx Y y
t x

f x Y y
κ

∈ ≥

=
− → →∞

=
         (A.5) 

for each compact set ( )0,K ⊂ ∞ . 
We now introduce the following result. 
Theorem 3 Assume [C5]-[C7] and (3.12). If 1β γ+ < , it holds that 

[ ] [ ],E ~ ~ E , 1.
X X YQ QX YY Yα α

αρ α
+

∆ →  

This theorem claims that both (3.11) and (3.14) are true under some condi-
tions, even when X and Y are dependent. 

Appendix 2. Proofs 

\Proof of Lemma 1. Assume (2.5). Fix any [ )0,1u∈ . Then, (2.5) implies that 

( ) ( )1 2

1
lim d 0.

u

u
v vαα

φ
+

→
=∫                      (B.1) 

Because αφ  is non-decreasing and non-negative, we see that 

( ) ( ) ( )1 2 1d 0.
2

u

u

uv v uα αφ φ
+ −

≥ ≥∫                (B.2) 

Combining (B.1) with (B.2), we have ( )
1

lim 0uαα
φ

→
= . 

Conversely, if we assume (2.6), then Prokhorov’s theorem implies that for  
each increasing sequence ( ) ( )1

0,1n n
α

≥
⊂  with lim 1nn

α =  there is a further 

subsequence ( )
1kn k

α
≥

 and a probability measure µ  on [ ]0,1  such that 
nkαΦ   

weakly converges to µ  as k →∞ . Then, for each ( )0,1β ∈ , we see that 

[ )( ) ( ) ( )
0

0 0, liminf d liminf 0.
n nk kk k

u u
β

α αµ β φ βφ β
→∞ →∞

≤ ≤ ≤ =∫  

This immediately leads us to [ )( )0,1 0µ = , hence 1µ δ= . We therefore ar-
rive at (2.5). 

Proof of Proposition 1. Let ( ) ,ESX Yf αα = ∆ . We observe that 

( )
( )

( )1 , ,
2

1 1VaR d VaR ,
1 11

X Y X Y
u

g
f u αα

α
α

α αα
′ = ∆ − ∆ =

− −−
∫  

where ( ) , ,ES VaRX Y X Yg α αα = ∆ − ∆ . By (4.1), (4.3), and Theorem 1, we see that g 
is continuous on ( )0,1 , ( ) [ ]0 E 0g Y+ = >  and ( )1 0g − = . Moreover, by the 
assumption, it holds that ( )0 0g α =  and ( ) 0g α ≠  for all ( ) { }00,1 \α α∈ . 
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Together, these imply that g is positive on ( )00,α  and negative on ( )0 ,1α , and 
that f ′  has the same pattern. Therefore, ( )f α  takes a maximum at 0α α= . 

Proof of Proposition 2. Because αρ  is comonotonic, we obviously have 

( ) ( ) ( ) ( ), .X Y X Y X Yα α α α αρ ρ ρ ρ ρ∆ = + − =  

Here, we see that ( )1
XX F U−=  and ( )1

YY F U−=  for some random variable 
U with uniform distribution on ( )0,1  (see Lemmas 4.89-4.90 in [12] and their 
proofs). Then we have 

( ) ( ) ( )1E | VaR VaR ,YY X X F Yα αα−= = =    

and thus 

[ ] ( ) ( ) ( )1

0
E VaR d .

XQ
uY Y u u Yα

α αφ ρ= =∫  

Similarly, because 1 1 1
X Y X YF F F− − −
+ = + , we have 

( ) ( )E | VaR VaR ,Y X Y X Y Yα α+ = + =    

and [ ] ( )E
X YQ Y Yα

αρ
+

= , which completes the proof. 

2.1. Proof of Theorem 1 

We first state some propositions and prove them. For this, let f  be given as 
(3.5). Note again that M  defined in (3.4) satisfies 

( ) ( ) ( )1

0
d .M f u u uαα φ= ∫  

Proposition 3 ( )
1

liminf 0M
α

α
→

> . 
Proof. If 1β γ+ < , we see that ( ) [ ]E 0f Yα = >  because Y is non-negative 

and YF  is positive. If 1β γ β< ≤ + , we observe 

( ) ( ) ( )

( ) ( )( )
( )

0

0

0

0

1 1

1

0

1

VaR d

VaR 1 d

VaR 0, 1,

u
kM X u u

k X u u

k X

β γ
αα

αβ γ
α α

β γ
α

α φ
β

φ
β

α
β

+ −

+ −

+ −

≥

≥ −

→ > →

∫

∫  

where ( )0 0,1α ∈  is a real number satisfying ( )
0

VaR 0Xα > . The existence of 
such an 0α  can be proven using Propositions 1.5.1 and 1.5.15 in [22]. Similarly, 
if β γ= , we have 

( ) ( ){ } ( )
0

1

1
liminf 1 1 VaR 0.M k Xβ

αα
α

→
≥ + − >  

Proposition 4 ( )1

0
0 df u u≤ < ∞∫ . 

Proof. If 1β γ+ < , the assertion is obvious from the assumption 1β > . If 
1β γ β< ≤ + , we see that 

( ) [ ]1 11
0

0 d E E ,k kf u u X X β γβ γ

β β
+ −+ − ≤ = ≤ < ∞ ∫  

because of 0 1 1β γ< + − < . If β γ= , we have 
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( ) ( ){ } [ ]1 1

0
0 d 1 1 E .f u u k Xβ≤ = + − < ∞∫  

Corollary 1 ( )M α < ∞ , ( )0,1α ∈ . 
Proof. This follows from (3.2) and Proposition 4. 
Proof of Theorem 1. Let ( ) ,VaR X Yf αα = ∆ , ( )0,1α ∈ . Note that 

( )
( )1

lim 1,
f
fα

α
α→

=                        (B.3) 

by virtue of Theorem 4.1(i)-(iii) in [1]. Moreover, (B.3) immediately implies 

[ )

( )
( )1 ,1

lim sup 1 0.
u

f u
f uα α→ ∈

− =                    (B.4) 

Furthermore, it holds that 

( ) ( ) ( )
[ ] [ ]
[ ]

1 1 1

0 0 0
d VaR d VaR d

E E

E ,

u uf u u X Y u X u

X Y X

Y

= + −

= + −

= < ∞

∫ ∫ ∫
       (B.5) 

hence f  is integrable. The integrability of f  is guaranteed by Proposition 4. 
Temporarily fix any ( )0,1δ ∈ . From (2.6) and (B.5), we easily see that 

( ) ( ) ( ) ( ) ( )1

0 0
0 d d 0, 1.f u u u f u u

δ
α αφ φ δ α≤ ≤ → →∫ ∫        (B.6) 

Similarly, we have 

( ) ( )
01

lim d 0.f u u u
δ

αα
φ

→
=∫                     (B.7) 

Additionally, we have 

( ) ( )
( )

( )
( )

( )
1

1d
= d ,

f u u u f u
u u

M f u
αδ

αδ

φ
ψ

α
∫

∫               (B.8) 

where ( ) ( ) ( ) ( )u f u u Mα αψ φ α= . Using (B.7) and Proposition 3, we obtain 

( ) ( ) ( ) ( )1

0

1d 1 d 1, 1.u u f u u u
M

δ
α αδ

ψ φ α
α

= − → →∫ ∫        (B.9) 

By (B.8) and (B.9), we have 

( ) ( )
( )

( )
( )

( ) ( )

[ )

( )
( )

( )
[ )

( )
( )

1
1 1

1

,1 ,1

d
1 1 d d 1

sup 1 d 1 sup 1 , 1.
u u

f u u u f u
u u u u

M f u

f u f u
u u

f u f u

αδ
α αδ δ

αδδ δ

φ
ψ ψ

α

ψ α
∈ ∈

 
− ≤ − + −  

 

≤ − + − → − →

∫
∫ ∫

∫

 

Combining this with (B.6) and Proposition 3, we arrive at 

( ) [ )

( )
( )

,

1 ,1
limsup 1 sup 1 .

X Y

u

f u
M f u

α

α δ

ρ
α→ ∈

∆
− ≤ −  

Because ( )0,1δ ∈  is arbitrary, we obtain the desired assertion by (B.4). 
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2.2. Proof of Theorem 2 

Let Z X Y= +  for brevity. We see that Z has a density function 

( ) ( ) ( ) ( ) ( )
0 0

d d .
z z

Z X Y X Yf z f z y f y y f x f z x x= − = −∫ ∫  

Lemma 2 Zf  is positive and continuous on ( )0,∞ . Moreover, Zf  is regu-
larly varying with index { }min , 1β γ− −  and it holds that 

( )
( ) { }lim min , .Z

z
Z

zf z
F z

β γ
→∞

=                   (B.10) 

Proof. Continuity and positivity are obvious. By [C4] and Theorem 1.1 in [29], 
we see that ( ) ( ) ( )~Z X Yf z f z f z+ , z →∞  and that Zf  is regularly varying 
with index { } { }max 1, 1 min , 1β γ β γ− − − − = − − . The last assertion is obtained 
by Proposition 1.5.10 in [22]. 

Let ( )|YF Z z⋅ =  be the conditional distribution function of Y given Z z= . 
Then we have 

[ ] ( )
0

E | d | .YY Z z yF y Z z
∞

= = =∫             (B.11) 

Proposition 5 It holds that 

( ) ( )
( ) ( )

0
| d , , 0.

y z X
Y Y

Z

f z y
F y Z z f y y y z

f z
∧ ′−

′ ′= = ≥∫  

Proof. For each , 0y z ≥ , a straightforward calculation gives 

( )
( ) ( ) ( ) ( )

0 0
d d , ,

z y z X
Y Z

Z

f z y
f y y f z z P Y y Z z

f z
′∧ ′ ′−

′ ′ ′ ′ = ≤ ≤
′∫ ∫  

which implies our assertion. 
Note that (B.11) and Proposition 5 lead to 

[ ] ( )
( ) ( )

0
E | d .

z X
Y

Z

f z y
Y Z z y f y y

f z
−

= = ∫            (B.12) 

Proposition 6 If 1β γ+ < , then 

( ) [ ]E | VaR E , 1.Y Z Z Yα α= → →    

Proof. Let 

( )VaR ,z Zα α=                        (B.13) 

( ) ( )
( ) [ ] ( )0, 21 ,X

z
Z

f z y
G y y y

f z α

α
α

α

−
=                (B.14) 

( ) ( ) ( )
( ) [ ] ( )0, 21 .Y

z
Z

f z x
H x z x x

f z α

α
α α

α

−
= −             (B.15) 

Then, we see that 

( ) ( )

( ) ( )
( ) ( ) [ ]2

0 2

E E

d E | .
z z X

Yz
Z

G Y H X

f z y
y f y y Y Z z

f z
α α

α

α α

α
α

α

+      
−

= + = =∫ ∫
     (B.16) 
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Therefore, we need to show that 

( ) [ ] ( )E E , E 0, 1.G Y Y H Xα α α→ → →                (B.17) 

First, we show that 

( ) ( ), 0, 1 for each , 0.G y y H x x yα α α→ → → ≥        (B.18) 

Using (B.10), Lemmas A.1 and A.3 in [1], and Proposition A3.8 in [23], we 
obtain 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

11 1 1, 1.

X X X X Z

Z X X Z Z

f z y f z y z f z F z F z
f z f z F z F z z f z

α α α α α α

α α α α α α

β α
β

− −
= ⋅ ⋅ ⋅

→ ⋅ ⋅ ⋅ = →

 

Furthermore, we observe that 

( ) ( )
( )

2
0 ,Y

Z

z f z
H x

f z
α α

α
α

≤ ≤                   (B.19) 

and that the function ( ) ( )2Y Zz zf z f z  is regulary varying with index 
1 0β γ+ − < . Thus, we obtain 

( )
( )

2
0, 1.Y

Z

z f z
f z

α α

α

α→ →  

Now, (B.18) is obvious. 
Next, we observe that 

( ) ( ) ( )
( )

( )
( )

2 2
0 .X Y

Z Z

f z z f z
G Y H X Y

f z f z
α α α

α α
α α

≤ + ≤ +  

Because ( ) ( )( )2X Zf z f zα α α
 and ( ) ( )( )2Y Zz f z f zα α α α

 are convergent 
(as 1α → ), they are bounded. Thus, we have 

( ) ( ) ( )0 1G Y H X C Yα α≤ + ≤ +        (B.20) 

for some 0C > . By (B.18) and (B.20), we can apply the dominated convergence 
theorem to obtain (B.17). 

Proposition 7 If 1β γ+ = , then 

( ) [ ]E | VaR E , 1.kY Z Z Yα
γ

α
β

= → + →    

Proof. Let zα , ( )G yα , and ( )H xα  be the same as in (B.13)-(B.15). First, 
we have ( ) [ ]E EG Y Yα →   , 1α →  by the same argument as in the proof of 
Proposition 6. Next, for each 0x ≥ , we see that 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) [ ) ( )0, 21

11 1 1 , 1

Y Y Y

Y Y X

X Z
z

Z Z

z x f z x F z x z F z
H x

F z x F z F z

F z F z
x

F z z f z
kk

α

α α α α α
α

α α α

α α

α α α

γ
γ α

β β

− − −
= ⋅ ⋅

−

× ⋅

→ ⋅ ⋅ ⋅ ⋅ ⋅ = →
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due to [C3], (B.10), Proposition A3.8 in [23], Proposition 3.1(i) in [1], and 
Lemmas A.1 and A.3 in [1]. Moreover, we have (B.19), and the right-hand side 
of this inequality converges to 12 kγ γ β+  as 1α → , and so it is bounded. 
Therefore, we apply the dominated convergence theorem to obtain 

( )E H X kα γ β→    as 1α → . We complete the proof by combining these 
with (B.16). 

Proposition 8 If 1β γ β< < + , we have 

( ) ( ) 1E | VaR ~ VaR , 1.kY Z Z X β γ
α α

β
α

γ
+ −= →    

Proof. Let zα , ( )G yα  and ( )H xα  be set as earlier. Similarly to the proof 
of Propositions 6 and 7, we get ( ) [ ]E EG Y Yα →   , 1α → . This implies that 

( ) 1E 0G Y xβ γ
α α

+ − →   , 1α → , where ( )VaRx Xα α= . Therefore, it suffices to 
show that ( ) 1E H X x kβ γ

α α β γ+ − →    as 1α → , which is easy to see by using 
similar calculations as in the proof of Proposition 7 and by using Proposition 
3.1(i) in [1]. 

Proposition 9 If β γ= , then 

( ) ( ) ( )1 1E | VaR ~ 1 VaR , 1.Y Z Z k k Xβ
α α α− += + →    

Proof. Similarly to the proof of Proposition 8, we need to show only that 

( ) ( ) 1 1E 1 , 1,H X k k β
α α− +  → + → 
        (B.21) 

where ( ) ( )H x H x xα α α= . Note that Lemmas A.1 and A.2 in [1] imply 
( ) ( ) ( ) ( ) ( ) ( ) ( )1~ ~ 1 ~ 1Z X Y X YF x F x F x k F x k F x−+ + + , x →∞  and 
( )1~ 1z k xβ

α α+ , 1α → . Therefore, for each 0x ≥ , we observe 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( ) [ ) ( )

( ) ( )

0, 2

1 1 1

1

11 1 1 1 , 1
1

Y Y Y Z
z

Y Y Z Z

z x f z x F z x F z F zzH x x
x F z x F z F z z f z

kk k k
k

α

α α α α αα
α

α α α α α α

β ββ α
β

− +

− − −
= ⋅ ⋅ ⋅ ⋅

−

→ + ⋅ ⋅ ⋅ ⋅ ⋅ = + →
+



 

by [C3], (B.10), Proposition A3.8 in [23], and Lemma A.3 in [1]. Moreover, we 
have 

( ) ( )
( ) ( ) 1 112

0 2 1 , 1,Y

Z

f zzH x k k
x f z

βα γα
α

α α

α− ++≤ ≤ → + →  

and thus we obtain (B.21) by applying the dominated convergence theorem. 
Proof of Theorem 2. We can verify that the random vector ( ),X Y  satisfies (a 

version of) Assumption (S) in [24] by using a standard argument. Therefore, (3.9) 
is true from (5.13) in [24]. Additionally, using Propositions 6-9, we see that for 
each 0ε > , there is an ( )0 0,1α ∈  such that 

( )
( ) [ )01 , ,1 ,

g
f
δ α

ε α α
α

− < ∈                  (B.22) 

where we denote ( ) ( )E | VaRg Y Z Zαα = =   . Moreover, it is easy to see that 
f  and g  are bounded on [ ]00,α . Therefore, combining (3.9), (3.15), and 
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(B.22), we get 

( )
( )

( ) [ ]
( )

[ ]
( ) ( ) ( ) ( )0

00 0

Euler

1

00, 0,

0

|
1

1 sup sup d d

, 1,

u u

Y Z
M

g u f u u u f u u u
M

α

α
α ααα α

δρ
α

δ φ ε φ
α

ε
α

δ

∈ ∈

−

   ≤ + +  
   

→ →

∫ ∫  

where ( )0 1
liminf M

α
δ α

→
= , which is positive due to Proposition 3. Because  

0ε >  is arbitrary, we obtain the desired assertion. 

2.3. Proof of Theorem 3 

First, note that condition [C5] immediately implies [C2] with 0 0x =  and 

( ) ( ) ( )
0

| d .X X Yf x f x Y y F y
∞

= =∫  

Second, note that by [C6], Proposition 3.1(i) in [1] (see also Remark 3.2 
therein) and Proposition A3.8 in [23], we have (B.10) and 

( ) ( )~ , .X X Yf x f x x+ →∞                    (B.23) 

To prove Theorem 3, we give the following three propositions. 
Proposition 10 ( )VaR X uYα +  is continuously differentiable in [ ]0,1u∈  

and it holds that 

( ) ( )VaR E | VaR , 0 1.X uY Y X uY X uY u
u α α
∂

+ = + = + ≤ ≤  ∂
 

Proposition 10 is obtained by an argument similar to the proof of Lemma 5.3 
in [24], using the implicit function theorem. 

Proposition 11 The function [ ]E |x Y X x=  is regularly varying with in-
dex 1κ β+ + . 

Proof. Fix any 0t > . We observe that 

[ ] [ ]

( )
( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )
( ) [ ]

1

1
0

1

0 0

E | E |

| |
d ,

|

|
sup sup E | ,

|

X X X
Y

X X X

X X X
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and therefore, using [C5], we arrive at 
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Proposition 12 [ ] [ ]E | ~ E | ,Y X x Y X Y x x= + = →∞ . 
Proof. Fix any 0ε > . Then we have 

[ ] [ ] ( ) ( )E | E | ,Y Z x Y X x A x B xε ε= − = ≤ +  
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where we denote Z X Y= +  and 
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By [C7] and the Chebyshev inequality, we get 
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for some 0C > . Because Proposition 11 tells us that [ ]1E |x x Y X xη− =  is 
regularly varying with index 0η κ β+ + > , the right-hand side of (B.24) con-
verges to zero as x →∞  (see Proposition 1.5.1 in [22]). 

Moreover, we see that 
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Here, we observe that 
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for each [ ]0,u ε∈ . Note that if 0κ ≥  (resp., 0κ < ), we have 
( ) ( )1 1 1uκ κε− ≤ − ≤  (resp., ( ) ( )1 1 1u κ κε≤ − ≤ − ). Moreover, by (B.23), 

( ) ( )X Zf x f x  converges to 1 as x →∞ , and so it is bounded. Therefore, we get 
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for some 0C′ > . 
Now we arrive at 
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by using (A.5) and (B.23). Because 0ε >  is arbitrary, we obtain the desired as-
sertion. 

Proof of Theorem 3. First, note that Proposition 10 guarantees that 
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where ( )VaRu ux X=  and ( )VaRu uz X Y= + . 
Then, fix any 0ε > . By Propositions 11-12 and Lemma A.3 in [1], we see that 
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Thus, there is an ( )0 0,1α ∈  such that 
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Therefore, we have 
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by virtue of (3.12). Because 0ε >  is arbitrary, we get that [ ] [ ]E ~ E
X X YQ QY Yα α

+
, 

1α → . Combining this result with (A.1), we obtain the desired assertion. 
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