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Abstract 
This study adopts two nonparametric methods, the activity signature function 
(ASF) and ratio analysis of cojumps, to test jumps in China’s stock market. 
Jumps in the stock price, stock-index futures, and volatility of China Securities 
Index (CSI) 300 index are analyzed using data on the continuous main-contract 
price of the index. The findings are as follows. First, in the long run, the CSI 
300 index process is a continuous process exhibiting jumps at all sampling in-
tervals. In the short run, the index becomes a pure-jump process in times of 
recession while exhibiting the characteristics of a continuous or even semi-
martingale process in certain intervals. Second, the stock-index futures 
process is a continuous process with jumps at all sampling intervals and, in 
the short run, exhibits the characteristics of a pure-jump process every 6 
months. Moreover, the volatility process generally exhibits the characteristics 
of pure-jump processes. Third, the CSI 300 index price process and the con-
tinuous main-contract price process of the CSI 300 stock-index futures are 
significantly and positively related, with jumps occurring with a time lag of 
less than 5 minutes; by contrast, the volatility and price processes of the index 
are nonsignificantly related. 
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1. Introduction 

Discontinuities in asset prices and fluctuations in price are referred to as 
“jumps”. They are associated largely with information impacts or human factors. 
Theoretically, jumps in stock prices contradict the assumed continuity of asset 
prices. Capital asset pricing models may therefore vary depending on the form, 
strength, frequency, and extent of the jumps. Specifically, jump-diffusion models 
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and pure jump models conflict with each other under stochastic processes; this 
increases difficulties in asset pricing, thereby affecting the management of risks, 
the selection of investment portfolios, and the pricing of derivatives. Moreover, 
stock-price jumps magnify risks. Risks in financial assets are typically divided 
into foreseeable risks (characterized by continuity) and unforeseeable risks 
(characterized by jumps); the predictability of the former exerts less of an influ-
ence on financial markets, whereas the unpredictability of the latter, coupled 
with limitations in the dissemination of information among the markets, can 
induce information asymmetry, and subsequently, power-law distributions, in 
the markets. Excessive fluctuations in risk-asset prices may cause delays in re-
source allocation. Thus, in research focusing on financial markets under sto-
chastic processes, there has been increasing interest in investigations of jumps 
and fluctuations in asset prices, underlining the need to identify these jumps ef-
fectively. 

High-frequency data are increasingly used in studies on financial market 
models under stochastic processes. These data are a component of the micro-
structures of financial markets, whose time-dependent asset prices suggest that 
the shorter a sampling interval is, the more information a sample contains. Their 
use has become increasingly prevalent among financial analysts because the con-
tinual advancements in computer technology over the past three decades has fa-
cilitated reducing the costs of the recording, storing, processing, and transmit-
ting financial-market transaction data. 

China’s stock market is one of the most active emerging capital markets 
worldwide. It was established in the 1990s and exhibits unique characteristics 
compared with markets in Western countries with advanced economies that 
have been in effect for approximately two centuries. Information asymmetry 
causes fluctuations in stock markets, and thereby affects resource allocations in 
the markets. Compared with fluctuations in more mature stock markets, those in 
the Chinese stock market are larger and occur at a higher frequency, largely be-
cause of the immaturity of the market, which is currently in a phase of emer-
gence and transition, exhibiting notable “policy market”, temporal, and oppor-
tunistic characteristics. Moreover, the irrationality of the market structure rend-
ers market prices subject to volatility and frequent jumps, which are a cause of 
high risks in stock markets. Therefore, examining the fluctuations in the Chinese 
stock market to elucidate its gradual changes may promote rational investment 
behavior, capital operation, and stable market development. Overall, investigating 
jumps in high-frequency data for the Chinese stock market, which is characte-
rized by unusual price movements, may contribute to both practice and theory. 

In contrast to most previous China-based studies that have applied parametric 
methods, the present study uses the activity signature function (ASF), a nonpa-
rametric method based on high-frequency data that was proposed by Todoro-
vand Tauchen (2010) [1], to estimate the activity index of the continuous main- 
contract price of the China Securities Index (CSI) 300 stock-index futures and 
assess stochastic process-based stock models (which examine jump diffusion and 
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pure jumps) that are applicable to the Chinese stock market. On the basis of 
two-dimensional realized power variation proposed by Jacod and Todorov (2009) 
[2], a ratio analysis is subsequently conducted on two independent realized 
power variations to derive a ratio analysis method for cojumps. This method can 
be employed to determine the level of cojumps between different stochastic 
processes. 

2. Literature Review 
2.1. Jump-Diffusion Models and Pure-Jump Models Based on 

Stochastic Processes 

Identifying whether stochastic processes involve any jumps is crucial because 
jumps contain information pertaining to risk management, option pricing, in-
vestment portfolio selection, and optimal hedging strategies. In estimation, the 
quantiles derived from continuous and continuous-jump distributions differ. If 
changes in the price of an asset involve jumps, then the selection of investment 
portfolios can be improved considerably. Utilizing information indicated by 
jumps in volatility and price processes, Liu, and Pan [3] investigate information 
about investment strategy selection. 

Numerous scholars have noted the significance of jumps. In modeling mar-
kets, Bollerslev et al. (2008) [4] suggest that jump processes are a crucial source 
of information for modeling the nondiversible risks of financial markets. In the 
case of a price jump, policymaking decisions in response to variations in jumps 
should be made in a timely manner to prevent market chaos. This necessitates 
analyzing the time-series behavior of jump processes. Introducing jumps into 
asset pricing models yields considerable value but also incurs certain problems. 
Cont and Tankov (2003) [5] compare problems associated with jump processes, 
suggesting that the presence of jumps indicates that a market is incomplete and 
makes it difficult to process market data. Heston (1993) [6] argues that two- 
sided jump models are affine models and therefore allow for simplified formal 
solutions to asset prices and their closed-form derivatives. Moreover, two-sided 
jump models assume that the processes of asset prices and price variations con-
tain rare jumps, such as compound Poisson processes (finite-activity jump pro- 
cesses). Several empirical studies have used two-sided jump models with com-
pound Poisson processes (Eraker et al., 2003) [7]. In an empirical study, Wu 
(2011) [8] allows for infinite activity in jumps. Thus, many subsequent studies 
have applied jump models with stochastic volatility. The efficient method of 
Markov chain Monte Carlo (MCMC) methods (Eraker et al., 2003) [7] have been 
used to estimate the stochastic volatility jump model for the S & P 500 index. 

Virtually all studies have determined asset prices through jump-diffusion asset 
price models. However, several studies have shown that asset price stochastic 
processes can be modeled on the basis of pure-jump processes. Geman (2003) [9] 
incorporates pure-jump Lévy processes into a stock market pricing model and 
option prices. Barndorff-Nielsen and Shephard (2001) [10] propose a non- 
Gaussian Ornstein-Uhlenbeck (OU)-based model for estimating stock prices 
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and their implied volatility; this model, which contains no diffusion constituent, 
comprises only one pure-jump Lévy process with nonnegative increments (or 
subordinate process). The simulation of changes in financial-market asset prices 
through pure-jump Lévy processes has become a prominent research topic. 

2.2. Stochastic Process Models for Volatility Processes 

The concept of stochastic volatility is instrumental in research into financial 
market volatility, which provides information on asset selection and pricing. As 
early as the 1960s, Fama (1965) [11] suggests that the variation of opportunistic 
prices and the volatility of earnings occur in a stable or volatile manner. There-
fore, opportunistic prices exhibit clustering and their variance is time-dependent, 
indicating that the prices and their variance change stochastically, allowing them 
to be modeled on the basis of the theory of stochastic processes. 

Stochastic process models for volatility processes can be divided into three 
types: affine jump-diffusion, non-Gaussion OU, and index-type stochastic vola-
tility models. The affine jump-diffusion model contains a non-negative-jump 
Lévy process with finite variance, Lt. The model is extensively used to construct 
equilibrium asset pricing models and simplified asset pricing models (Merton, 
1976 [12]; Duffie et al., 2000 [13]). In most applications of the model, Lt is a 
compound Poisson process. Moreover, diffusion and jump constituents coexist 
in the model; the model is a continuous-jump process. 

The non-Gaussion OU model [10] contains a pure-jump Lévy process with 
nonnegative increments, Lt, which is also referred to as a subordinate process. 

The index-type stochastic volatility model is an EXP-OU-Γ model, which in-
cludes the process Гt. If Гt follows a Brownian motion, then the model is the dis-
crete exponential generalized autoregressive conditional heteroskedasticity 
(GARCH) model with a continuous-time limit, which is proposed by Nelson 
(1991) [14]. 

Whaley (1993) proposes compiling market volatility indices to measure mar-
ket volatility [15]. In the same year, the Chicago Board Options Exchange 
(CBOE) launched the VIX index, a volatility index based on the S & P 100 index 
(a subset of the S & P 500 index). The VIX index calculates the implied volatility 
of eight call and put options for the first- and second-month expirations to esti-
mate the volatility of the S & P 100 index over the next 30 days. Therefore, this 
index approximates market volatility processes. Todorov and Tauchen (2010) [1] 
empirically examine the VIX index, depicting the volatility of the U.S. financial 
market as a pure-jump process and showing a strong negative correlation be-
tween the price and volatility processes of U.S. stocks. No stock warrant market 
has been established in China, rendering it impossible to estimate the implied 
volatility of the Chinese stock market. Therefore, the estimation of market vola-
tility is based on its historical or realized volatility. Few studies have modeled 
market volatility on the basis of stochastic processes. 

2.3. Jump Test 

The selection of asset pricing models is based on the movement of stock prices, 
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underlining the need to detect and categorize stock-price jumps. Stock-price 
jumps can be detected through parametric methods such as the GARCH model 
or nonparametric means such as the Barndorff-Nielsen and Shephard (BNS) 
method and threshold multipower variation (TMPV). Parametric methods ap-
plied in empirical studies are based on models with unknown parameters that 
are estimated through regression analysis. If used to estimate intermediatepara-
meters, such methods cause considerable measurement errors, undermining the 
accuracy of results. Nonparametric methods have comparable advantages. 

The BNS method, which is an econometric method for testing jumps, is ex-
tensively used for nonparametrically analyzing jump behaviors. Huang and 
Tauchen (2005) [16] improve this method. Bollerslev et al. (2008) [4] use the 
method to investigate jumps in the earnings of the U.S. stock market. Ait-Sahalia 
and Jocad (2009) detect jumps on the basis of TMPV statistics for daily earnings 
and the asymptotic distribution of the statistics [17] [18]. 

Cao et al. (2010) [19] extend the Merton model under a jump-diffusion model 
to propose a jump-diffusion model of power law. Chen and Wang (2010) [20] 
conduct a systematic analysis of the continuous and jump volatility of the Chi-
nese stock market and use bipower variation with nonparametric methods and 
high-frequency data on the CSI 300 index to derive the asymptotic statistics of 
continuous and jump components of market volatility. 

2.4. Cojumps between Price Processes 

Past studies on jumps have also investigated cojumps between different pricing 
processes. Relevant studies outside of China have focused predominantly on the 
cojump between constituents in stock market indicies, individual stocks, indus-
try indices, stock and bond markets, and different currency exchange rates. 
Gilder (2009) [21] identifies large cojumps between individual stocks in the U.S. 
stock market, suggesting that positive and negative cojumps are symmetrical in 
number and variation, and that jumps can be dispersed in the market. This 
finding informs risk management. Dungey and Hvozdyk (2012) [22] use the 
BNS method to test the cojump between spot and options markets for U.S. 
bonds, suggesting that cojumps normally occur in short-term options and high- 
frequency data. Moreover, although the BNS method tests cojumps nonparame-
trically and uses high-frequency data, it yields jump comovement results on a 
daily basis, resulting in the loss of real-time correlations between jumps included 
in high-frequency data. Therefore, the method can be used to test cojumps for 
financial markets with temporal asynchronicity. Jaeod and Todorov (2009) [2] 
examine the comovement between individual stocks in the U.S. stock market, 
proposing the concept of multidimensional realized power variation to estimate 
the volatility of all subprocesses. Their work provides a basis for analyzing co-
jumps nonparametrically by using high-frequency data. In summary, the analy-
sis of the comovement between financial markets typically focuses on their co-
jumps because volatile jumps (rather than continuous changes) explain the rela-
tionship between the markets. 
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The economic fundamental hypothesis and market contagion hypothesis are 
two prevailing views on the mechanism underlying the comovement between 
financial markets. The economic fundamental hypothesis, proposed with the 
conventional financial theory that investors are rational, applies to the interpre-
tation of the long-term comovement between financial markets. Specifically, 
under the efficient markets hypothesis, all investors accurately predict future 
cash flows from assets according to market information, determine a discount 
rate that accurately reflects the risk overflow, and discount the predicted future 
cash flows from assets to derive the intrinsic value of the assets. Under this hy-
pothesis, the comovement between the price processes of different assets is asso-
ciated with the fundamentals of the assets, and the economic foundation of a 
country depends on the price volatility of its capital market. This explains the 
inevitable comovement of volatility between domestic financial markets. Thus, 
the economic fundamental hypothesis accounts for long-term comovements 
between stock markets. 

The market contagion hypothesis, which is based on the framework of beha-
vioral finance, does not account for economic foundation; instead, it examines 
the investment behavior of individual investors at a microscopic level to interp-
ret investment behavior at the macroscopiclevel of financial markets. Forbes and 
Rigobon (2002) [23] elucidate this hypothesis, arguing that when a financial 
market is impacted, the comovement between the price processes of different 
markets strengthens considerably, and the more sensitive the financial market is, 
the stronger its comovement with others will be. However, in contrast to con-
ventional financial theories, the hypothesis does not assume that all investors are 
rational, because cojumps are the result of finite rational decisions made by 
market participants; this indicates that information asymmetry exists in transac-
tions in financial markets and investors, with limitations on time, effort, and the 
means for acquiring market information, are likely to engage in identical trans-
actions, exhibiting convergent or herd behavior. In addition, under this hypo-
thesis, nonfundamental factors such as market participants’ emotions and mar-
ket friction have a decisive influence on cojumps. 

Essentially, parametric methods are based on models with unknown parame-
ters that are estimated through methods such as regression analysis. If used to 
estimate intermediate parameters, the methods cause a considerable increase in 
the number of errors, thus undermining the accuracy of the results. Take for 
example a typical parametric method, the Granger causality test, which examines 
the correlation between two processes and regresses it in four steps. The method 
determines whether two processes correlate with each other, and it identifies the 
path of influence between both processes. However, it entails multiple regression 
analysis, in which the intermediate parameters are estimated and therefore the 
number of errors increases. By contrast, nonparametric methods eliminate the 
need to estimate any intermediate parameters. They involve only a correlation 
analysis of the data, thus simplifying the research effort, decreasing the number 
of errors substantially, and improving the robustness of any findings. 
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In summary, in contrast to research conducted outside of China, in which the 
discussion of comovements between different stochastic processes has increa-
singly focused on cojumps, studies in China have focused more on parameteri-
zation than on jumps or the use of models designed to analyze comovements 
between two stochastic processes. 

3. Methods 
3.1. Assumption 

Delbaen and Schachermayer (1994) [24] indicate that if arbitrage-free assump-
tions are satisfied, then any price processes for transactional securities must be 
semimartingales. Arbitrage-free assumptions underpin most studies on financial 
markets; therefore, the present study argues that financial markets in China meet 
these assumptions and that price processes for the domestic stock market and 
stock-index futures market are all semimartingales. The most common semi-
martingale used in financial-market research is the Ito semimartingale, whose 
characteristic curve, drift, diffusion, and jump compensation are absolutely con-
tinuous in time. Models in a semimartingale framework are differentiated by 
continuous martingales or jumps. Three typical models within the framework 
are as follows: 

1) Continuous model 

1 10 0
d d

t t
t s s sX b s Wσ= +∫ ∫                      (1) 

where tW  is a standard Brownian motion. 
2) Pure-jump model 

( ) ( )

( ) ( )
2 20 0

20

d _ d ,d

_ d ,d

t t
t s s

t
s

Y b s k y s y

k y s y

σ µ

σ µ

= +

′+
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                (2) 

where ( )k y  is a continuous truncated function and ( ) ( )k y y k y′ = − . 
3) Continuous-jump model 

t t tZ X Y= +                        (3) 

3.2. ASF 

Intuitively, activity describes the volatility of a process or the roughness of a 
process trajectory. Stochastic processes differ in volatility and activity. The clas-
sical Blumenthal-Getoor index, proposed by Blunmenthal and Getoor (1961) 
[25], describes the activity of pure-jump processes. Ait-Sahalia and Jacod (2007) 
[26] extend this index, developing the generalized Blumenthal-Getoor index, 
which can be applied to all time-continuous processes. In statistics, the genera-
lized Blumenthal-Getoor index is formally defined as follows. The scalar process 
X is observed in a time interval [0, T]. At each subinterval [ ]1,t t−  of the inter-
val, t is an integer. With n∆  as a sampling interval, the high-frequency observed 
value for process X is derived; specifically, the value of X is observed at the tem-
poral point of [ ]1, 1 , , 1 1n n nt t t− − + ∆ − + ∆ ∆  in a subinterval, whose dura-
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tion spans 1 day, 1 week, or 1 month. In addition, the activity of process X can 
be defined at a subinterval [ ]1,t t−  according to the following equation 
(Ait-Sahalia and Jacod, 2009; Todorov and Tauchen, 2010) [1] [18] [19]: 

( ){ }, 0: inf 0 : lim , , ,
nX t t np p V X pβ ∆ →= > ∆ < ∞           (4) 

where ( ), ,t nV X p ∆  is the power variation of process X at interval [ ]1,t t− , 
which is expressed by Equation (5): 

( ) [ ] ( ]1
,1, , , 0, 0,n p

t n t iiV X p x p t T∆

=
∆ = > ∈∑            (5) 

where ( ), 1 1 1n nt i t i t ix X X− + ∆ − + − ∆= − . Power variation explains the overall level of 
volatility within a specific period. Barndorff-Nielsen and Shephard (2003) [27] 
have argued for the importance of the power variation Equation (5) in financial 
economics. 

Jacod and Shiryaev (2003) [28] verify that the activity index of semimartin-
gales lies within the interval [0, 2]. Each semimartingale can be divided into 
drifts and continuous and discontinuous local martingales. These semimartin-
gale components are ranked according to the level of activity: finite-activity 
jumps (activity level = 0) such as compound Poisson processes, infinite-activity 
finite-variation jumps (activity level = [0, 1]), infinite-variation jumps (activity 
level = [1, 2]), and continuous semimartingales (activity level = 2). Moreover, 
the activity level of a semimartingale is determined by the activity of its most ac-
tive component. For example, if process X is driven by a Brownian motion and 
jump process, then the activity level of the process is 2 (equivalent to that of the 
continuous martingale). 

If process X is not a semimartingale, its activity level is determined in a dif-
ferent manner. For example, if process X is an OU process driven by a fractional 
Brownian motion, then its activity level is determined by the level of integrity  

(δ ) of a fraction, namely, 1
0.5δ +

. Corcuera et al. (2006) [29] demonstrate how  

the activity level of process X is determined in such case. 
Finally, the activity level function is defined at time interval [ ]1,t t− , instead 

of at all sampling intervals. This allows the activity level of process X to vary with 
time. Ideally, the activity index should be the same for each time interval. 

Todorve and Tauchen [1] discuss a nonparametric method for estimating the 
activity index; this method, called the ASF, simplifies the estimation of the index. 
The ASF is expressed as follows. ( ), ,t nV X p k∆  is the power variation defined 
by Equation (5) at sampling interval nk∆ ; ,X tβ  in Equation (4) is estimated at 
period t, which spans 1 day or 1 month; and if 0n∆ → , then a convergence 
analysis is performed on ( ), ,t nV X p k∆ , as expressed by the following equa-
tions: 

1) Continuous process 

( ),1 . .
10

, , dX T t pp u c p
n T n p uV X p A uβ σ−∆ ∆ → ∫            (6) 

2) Pure-jump process 
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3) Continuous-jump process 
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with the continuous-jump process, power variation is determined by the conti-
nuous martingale when P < 2, by continuous martingales and jumps when P = 2, 
and by the jump process when P > 2. 

The convergence analysis yields Equation (9): 

( ) ( ), ,
1- 1-

, , , 0t t

p p
P

n t n T nk V p k pβ βϒ ϒ∆ ϒ ∆ →Φ ∆ →           (9) 

where ϒ  is X, Y, or Z. When 0n∆ → , the above equation is established. The 
limit of the terms on the right side of Equation (9) is related only to power p and 
does not depend on other parameters in a stochastic process. Therefore, if p is 
fixed, then the terms on the left side of the equation converge to the same value, 
regardless of the value of k. Furthermore, let the sampling intervals of two scales 
be n∆  and nk∆ ; then, the terms on the right side of the equation converge to 
the same value when 0n∆ → , as expressed by Equation (10): 

( ) ( )

( ) ( )
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n t n
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−
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∆ ϒ ∆
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∆ ϒ ∆
               (10) 

After the logarithm of the fraction is taken, the asymptotic value of the equa-
tion becomes 0, yielding the implicit function β , which is solved to obtain Eq-
uation (11): 

( ) ( )
( ) ( ) ( ),

ln
, 0

ln ln , , ln , ,t
t n t n

k p
b p p

k V p k V pϒ = >
   + ϒ ∆ − ϒ ∆   

    (11) 

where ( ),tb pϒ  is the ASF, and information about the activity level of process 
ϒ  is contained in the ASF when ( ]0,4p∈ . 

The convergence analysis of Equation (11) by Todorov and Tauchen (2010) [1] 
indicates that when the sampling frequency increases constantly (namely, 0n∆ →  
at fixed interval [t − 1, t]), the behavior of ( ),tb pϒ  is expressed as follows: 

1) ( ), 2, 0tb p pϒ → ∀ > , if ϒ  contains only continuous martingales; 
2) ( ) ( ), max , 2 , 0p

tb p p pϒ → ∀ > , if ϒ  contains continuous martingales 
with jumps; and 

3) ( ) ( ), , ,max , ,p
t t tb p p pβ βϒ ϒ ϒ→ ∀ ≠ , if ϒ  contains only pure-jump pro- 

cesses. 
Where ( ),X tb p  is locally uniform in the convergence of p. The right-hand 
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side of the equations above describes the asymptotic behavior of the ASF. For 
example, to obtain the result in [1], Equation (6) can be used to yield 

( ) ( ) ( )1
2, , 2 2
p

t n n tV X p p−∆ ≈ ∆ Φ  and ( ) ( ) ( )1
2, ,
p

t n n tV X p p−∆ ≈ ∆ Φ . 

Subsequently, simple algebra is used to derive an asymptotic limit of 2 for 
( ),X tb p  in this case. Similar convergence analyses lead to the limits in the other 

two cases. Moreover, because the ASF is a graphical nonparametierized method 
(Todorovand Tauchen, 2010) [1], the ASF image of a process indicates which 
stochastic process the process belongs to. 

In a limited sample, the realization of ( ),X tb p  is the infinitely differentiable 
function of p. An asymptotic analysis suggests that an inflection point may exist 
in the proximity of ,X tp β≈ , the p-image of ( ),X tb p , and the kurtosis of the 
point reflects the precision of activity-level estimation. In addition, when p > 2, 
the behavior of the ASF determines whether any jumps exist in process X at in-
terval [t − 1, 1] and how strong these jumps are; in addition, it suggests that 
process X is established even when it is controlled by a semimartingale, and that 
jump components are extremely weak (if they meet the Poisson process). Thus, 
if a function is created with p as an independent variable and ( ),tb pϒ  as a de-
pendent variable, as indicated by Equation (11), then the ASF can be adopted to 
estimate the activity index of process ϒ  and identify the semimartingale of ϒ . 

The ASF images of a stochastic process with only a continuous martingale, a 
pure-jump stochastic process, and a continuous-jump stochastic process are 
shown respectively in Figures 1-3. 

Outliers are removed from the results to ensure that the ASF is robust. Todo-
rovand Tauchen (2010) [1] introduce the concept of quantiles into the ASF. Spe-
cifically, let 

( ) ( ){ } ( ), 1,2, ,
The th quartiles, 0,1q X t t N

B p b p q q
=

= ∈


      (12) 

which denote the qth quantile of ( ),X tb p  for each power p. ( )qB p  is defined 
as the quantile ASF (QASF). Over the range of ( ]0,4p∈ , the most informative 
plots are derived from the lower and upper quartiles: ( )0.25B p , ( )0.75B p , and 
the median ( )0.50B p . Robust methods, such as using quantiles to eliminate 
 

 
Figure 1. ASF image of a continuous process. 
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Figure 2. ASF image of a pure-jump process. 

 

 
Figure 3. ASF image of a continuous-jump process. 

 
outliers, are crucial to the processing of datasets with extreme observations. In 
an empirical analysis through the QASF, the activity index of a stochastic 
process can be estimated by observing the image ( )0.5B p  and the existence of 
jumps can be determined by observing the curve slope on the image ( )0.75B p . 

3.3. Ratio Analysis of Cojumps 

In their analysis of cojumps between individual stocks in the U.S. stock market, 
Jaeod and Todorov [2] propose multidimensional realized power variation to es-
timate the volatility of all subprocesses, which is expressed by Equation (13): 

( ) ( ) ( )

1 2 2

1 11 1 1 1
1

, , 2,
n

n nn nt n t i t it i t i
i

V X Y X X Y Y
∆

− + ∆ − + ∆− + − ∆ − + − ∆
=

∆ = − −∑      (13) 

where X and Y are the subprocesses of a two-dimensional stochastic process, and 

( )1 1 1n nt i t iX X− + ∆ − + − ∆−  and ( )1 1 1n nt i t iY Y− + ∆ − + − ∆−  are the increments of both subpro-
cesses at neighboring sampling intervals. 

On the basis of the concept of two-dimensional power variation, this study 
derives a method for estimating the level of jump synchronicity in subprocesses. 
Considering the relationship between a two-dimensional stochastic process and 
the power variation of its subprocesses, assume that 
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( ) ( )

2, , 2,
, 4, , 4,
t n

XY
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                 (14) 

namely, 
21 2 2
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1

1 14 4
, ,

1 1

n

n n

t i t i
i

XY

t i t i
i i

x y
R

x y

∆

=
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= =

 
 
 =
∑

∑ ∑
                    (15) 

The numerator is expanded as follows and defined as R1: 
4 4 4 4 4 4 2 2 2 2 2 2 2 2
,1 ,1 ,2 ,2 , , ,1 ,1 ,2 ,2 ,1 ,1 ,3 ,3

2 2 2 2
, 1 , 1 , -1 , 1

2 2

2
t t t t t n t n t t t t t t t t

t n t n t n t n

x y x y x y x y x y x y x y

x y x y− − −

+ + + + +

+ +





 

The denominator is expanded as follows and defined as R2: 
4 4 4 4 4 4 4 4 4 4 4 4
,1 ,1 ,1 ,2 ,1 , ,2 ,1 ,2 ,2 ,2 ,

4 4 4 4 4 4
, ,1 ,1 ,2 , ,

t t t t t t n t t t t t t n

t n t t t t n t n

x y x y x y x y x y x y

x y x y x y

+ + + + + + +

+ + + + +

 

 

 

Because of the existence of an inequality 
4 4 4 4 2 2 2 2
, , , , , , , ,2t i t j t j t i t i t i t j t jx y x y x y x y+ ≥                  (16) 

Therefore, 1 2R R≤  is established, namely, 0 1XYR≤ ≤ . 
If 0n∆ →  is established, then continuities are expressed by Equation (17): 

( )

( )

, 1 1 1

, 1 1 1

0

0
n n

n n

t i t i t i

t i t i t i

x X X

y Y Y
− + ∆ − + − ∆

− + ∆ − + − ∆

= − →
 = − →

                (17) 

and jumps are expressed by Equation (18): 

( )

( )

, 1 1 1

, 1 1 1

n n

n n

t i t i t i

t i t i t i

x X X X

y Y Y Y
− + ∆ − + − ∆

− + ∆ − + − ∆

= − = ∆
 = − = ∆

               (18) 

If jumps exist in both subprocesses, then the jump synchronicity of the sub-
processes occurs in two extreme conditions: all jumps are either synchronous or 
asynchronous. If XYR  is derived under two extreme conditions, then it is dis-
tributed between both outliers under normal conditions. 

If all jumps in both subprocesses are synchronous, then 

, ,

, ,

0
0 0

t i t i

t i t j

x y X Y
x y

= ∆ ⋅ ∆ ≠
 → ∆ ⋅ =

                  (19) 

With the cross term eliminated, the equation becomes 
4 4 4 4 4 4

1 2 ,1 ,1 ,2 ,2 , ,t t t t t n t nR R x y x y x y= → + + +            (20) 

Therefore, 1XYR → . 
If all jumps in the subprocesses are asynchronous, then 

, , 0 0t i t ix y X→ ⋅∆ =                    (21) 

Because 0n∆ → , there must be 
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, , 0t i t jx y X Y= ∆ ⋅ ∆ ≠                      (22) 

1 20, 0R R→ ≠  is established, namely, 0XYR →  
Then 1 20, 0R R→ ≠  is established, namely, 0XYR → . 
The analysis of the cojump of both subprocesses involves estimating the syn-

chronicity of jumps and determining the directions of the jumps (namely, 
whether the jumps correlate positively or negatively). Examining the correlations 
between jumps is relatively simple when using the proposed method. If 0n∆ →  
is established, then the scale of the two-dimensional power variation represents 
the extent to which jumps contribute to the volatility of processes. On the basis 
of their sign, ,t ix  and ,t iy  are split into power variations due to jumps in the 
same direction and those in the opposite direction, which are denoted respec-
tively as is ( ), , 2,t nV X Y +∆  and ( ), , 2,t nV X Y −∆ . Thus, 

( ) ( ) ( ), , 2, , , 2, , , 2,t n t n t nV X Y V X Y V X Y+ −∆ = ∆ + ∆         (23) 

The ratio of the power variation of jumps in the same direction to that of all 
jumps indicates that 1) the closer the correlation between jumps in both sub-
processes is to 1, the more positive the correlation is; 2) the closer the correlation 
is to 0, the more negative it is, and 3) a correlation approximating 0.5 suggests 
no notable positivity or negativity. 

( )
( )

, , 2,

, , 2,
t n

XY
t n

V X Y
r

V X Y

+

−=
∆

∆
                     (24) 

3.4. Instantaneous Historical Volatility 

Volatility is a measure of the fluctuation of target asset-price processes. Actual 
asset-price processes are stochastic and cannot be estimated accurately. There-
fore, actual volatility processes are also stochastic, and each moment of volatility 
defies accurate estimation. Volatility is calculated in terms of historical, implied, 
and realized volatility. The estimation of realized volatility, which is based on 
high-frequency data, is the most suitable for the present study. However, because 
high-frequency data are essential to volatility analysis and estimating the volatil-
ity of these data necessitates data of higher frequency, this study does not simu-
late actual volatility processes on the basis of realized volatility. Implied volatility, 
which is derived by incorporating warrant prices into warrant-price models, is 
the expected value of the actual volatility and has high representativeness. For 
example, the CBOE developed the VIX index by measuring the volatility of the 
option prices of the S & P 500 index, and the VIX index shares numerous statis-
tical characteristics with actual volatility. However, the volatility processes of the 
Chinese stock market cannot be estimated because no warrant market has been 
established in China, rendering it impossible to determine the prices of Chinese 
warrants. Accordingly, the present study estimates the instantaneous historical 
volatility to simulate actual volatility processes. The estimation is expressed by 
Equation (25): 
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where nσ  is the volatility between the n-1and n sampling points, Si is the asset 
price at time t, and ( )1lni i iu S S −=  is the earnings rate. To obtain high-fre- 
quency data, the instantaneous historical volatility is estimated using the histor-
ical volatility estimates at three sampling intervals as the volatility estimate of 
5-minute closing price data at the last time point of the data. In other words, the 
historical volatility is estimated for each set of three intervals (through the slid-
ing window method), and the estimation results are used as the high-frequency 
data needed to examine actual volatility processes. 

4. Empirical Results 

This study uses high-frequency data on the CSI 300 index for the period from 
April 8, 2005 (when the index was published) to December 31, 2012; and on the 
continuous main-contract prices of the CSI 300 stock-index futures for the pe-
riod between April 16, 2010 (when the stock-index futures opened) and June 31, 
2012. The sampling interval is 5 minutes.1 On the basis of the sliding-window es-
timation of the historical volatility, the historical volatility estimates at three sam-
pling intervals are used as the volatility estimate of 5-minute closing price data at 
the last time point of the data to replace high-frequency data for examining ac-
tual volatility processes. All data are derived from the Wind Economic Database. 

4.1. CSI 300 Index Model 

As illustrated in the previous section, the ASF involves a convergence analysis 
conducted at the sampling interval 0n∆ → . Therefore, when the function is 
used to test models, the sampling interval must be adequately small relative to 
the time interval [ ]1,t t− . The 5-minute sampling interval in this study can be 
adjusted by setting the time interval to 1 day or 1 month. Accordingly, this study 
compares the ASF results obtained at daily and monthly intervals to elucidate 
any limitations regarding the application of the function. 

High-frequency discrete data on CSI 300 index processes between April 8, 
2005, and December 31, 2012, are analyzed on the basis of the aforementioned 
procedure to yield three quantiles lines of bX,t(p) at both daily and monthly in-
tervals (Figure 4 and Figure 5, respectively), the results of which suggest that 
the CSI 300 index process is a continuous-jump process, validating the jump- 
diffusion model proposed by Merton (1976) [12], and that pure-jump models 
are not representative of active stock markets. Moreover, results from the exten-
sion of the Merton model are acceptable. Cao et al. (2011) [20] observe that 
jump sizes and intervals in jump-diffusion models conform to power laws, and 
they adapt the Merton model to be a power-law jump-diffusion model. 

 

 

1Sampling is conducted at a 5-minute interval to prevent noise due to microstructural noise (Ander-
sen, 2001; Koopman, 2005). 
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Figure 4. ASF curve for the CSI 300 index at daily intervals (from top 
to bottom: 0.75 quantile, 0.50 quantile, and 0.25 quantile). 

 

 
Figure 5. ASF curve for the CSI 300 index at monthly intervals (from 
top to bottom: 0.75 quantile, 0.50 quantile, and 0.25 quantile). 

 
The high-frequency discrete data are divided into 93 monthly subintervals, 

and data for each subinterval are processed on the basis of the aforementioned 
procedure to derive 0.25 ASF quantile curves with daily intervals. The curves are 
divided into four types, depending on the curvature. 

The first curve type depicts the CSI 300 index process as a continuous-jump 
process (Figure 6(a)). The ASF curves associated with 84 of the 93 monthly 
subintervals belong to this type, corresponding to the test results of the CSI 300 
index model for most of the data. The second curve type characterizes the CSI 
300 index process as a pure jump process (Figure 6(b)); this type of curve covers 
7 months (July-October 2008, March-April 2009, and January 2010). The pure 
jump process indicates high volatility or a substantial sudden change in price 
within stock markets, and this typically occurs in times of market instability, 
particularly in the 2008 financial crisis. In the third curve type, the CSI 300 index  
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(a)                                                           (b) 

     
(c)                                                           (d) 

Figure 6. ASF curves for the CSI 300 index. (a) April 2005; (b) July 2008; (c) September 2005; (d) November 2006. 
 
contains no jump (Figure 6(c)), and the index process remains a continuous- 
martingale process throughout the 93 monthly subintervals. As such, the stock 
market shows stable price volatility. This process normally occurs in times of 
market stability such as in September 2005. In the fourth curve type, the CSI 300 
index process is a fractional Brownian motion or a type of non-semi-martingale 
process (Figure 6(d)). Such a process is evident in data for November 2006; 
however, it cannot be specifically classified in the present study because the ASF 
categorizes only semimartingales. 

The long-term trend of the CSI 300 index indicates that the price process of 
the Chinese stock market is a continuous-martingale process with jumps. The 
short-term trend in the index contradicts the overall trend for certain periods 
but conforms to most of the other periods, exhibiting normal fluctuations in 
stock-market prices. 

4.2. Futures Main-Contract Price of the CSI 300 Index 

High-frequency discrete data on the continuous main-contract price process of 



Y. Li, T. F. Jiang 
 

483 

the CSI 300 stock-index futures are analyzed through the procedure described in 
Section 4.1 to yield three quantiles of bX,t(p) at both daily and monthly intervals 
(Figure 7 and Figure 8, respectively), suggesting that this continuous main- 
contract price process is a continuous-jump process. Thus, continuous stochas-
tic processes with jumps describe the volatility of stock-index futures markets, 
although related studies in the literature are scant. 

The high-frequency discrete data spanning from April 16, 2010, to June 31, 
2012, are divided into 27 monthly subintervals, and each subinterval is processed  

 

 
Figure 7. ASF curve for the main-contract price for the CSI 300 stock-index futures at 
daily intervals (from top to bottom: 0.75 quantile, 0.50 quantile, and 0.25 quantile). 

 

 
Figure 8. ASF curve for the main-contract price for the CSI 300 stock-index futures at 
monthly intervals (from top to bottom: 0.75 quantile, 0.50 quantile, and 0.25 quantile). 
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through the procedure described in Section 4.1 to derive 0.50 ASF quantile 
curves with daily intervals. The curves are divided into two types, depending on 
the curvature. The first curve type describes the continuous main-contract price 
process of the CSI 300 stock-index futures as a continuous-jump process (Figure 
9(a)), which corresponds to the test results of the CSI 300 index model for most 
of the data. The ASF curves of 23 of the 27 monthly subintervals belong to this 
type. The second curve type characterizes the continuous main-contract price 
process of the CSI 300 stock-index futures as a pure jump process, which ap-
pears in the ASF curves of the remaining four monthly subintervals. Accordingly, 
high volatility in the stock-index futures market is concentrated in the first few 
months of the launch of the market and exhibits some periodic changes within 6 
months and 1 year of its launch. 

The long-term trend in the continuous main-contract price process of the CSI 
300 stock-index futures suggests that the prices of Chinese stock-index futures 
entail continuous-martingale processes with jumps. The short-term trend in the 
price process contradicts the overall trend at certain periods but conforms to 
most of the other periods. Moreover, compared with Figure 3 and Figure 7, 
Figure 4 and Figure 8 display more notable inflection points on the curves and 
less space between the quantiles, suggesting that images obtained at monthly in-
tervals [t − 1, t] are more accurate than those obtained at daily intervals. The rel-
ative sampling interval for the monthly intervals (1/1,056) is higher than that for 
the daily intervals (1/48). Accordingly, the ASF is based on high-frequency data; 
the higher the frequency is, the more accurate the results derived from the func-
tion will be. 

4.3. Volatility of the CSI 300 Index 

The historical volatility of the CSI 300 index is estimated through the ASF to 
yield three quantiles of bX,t(p) at monthly intervals (Figure 10), suggesting that  
 

     
(a)                                                           (b) 

Figure 9. ASF curves for the continuous main-contract price process of the CSI 300 stock-index futures; (a) November 2010; (b) 
September 2010. 
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Figure 10. ASF curve for the instantaneous historical volatility of the CSI 300 index. 

 
pure jump processes characterize the volatility of stock market prices. The VIX 
index, which reflects the volatility of U.S. financial markets, has been proved to 
be a pure jump process, and the present study shows that the volatility of Chi-
nese financial markets is also a pure jump process. In summary, despite limited 
data, this study uses not only historical data but also stochastic process models 
to estimate the volatility of Chinese financial markets. 

4.4. Cojumps 

Cojumps are tested typically through a ratio analysis, which examines the dis-
tribution of cojumps expressed as a ratio between 0 and 1 or determines the dis-
tance from the mean and median of the ratio at all intervals t to 1. 

The synchronicity of jump processes between CSI 300 future and spot indices 
is investigated. Under synchronous temporal conditions, RXY is estimated for 
each trading day, and its distribution, which ranges between 0 and 1, is pre-
sented in the form of a histogram (Figure 11(a)). The mean of the 535 RXY val-
ues is 0.81; 489 of them range between 0.6 and 1, suggesting that under syn-
chronous temporal conditions, the occurrence of jumps is highly synchronous 
between the CSI 300 index process and the continuous main-contract price 
process of the CSI 300 stock-index futures. 

Under an asynchronous temporal condition (when the time of stock-index 
futures surpasses the CSI 300 index by 5 minutes), RXY is estimated for each 
trading day, and its distribution, which ranges between 0 and 1, is presented in 
the form of a histogram (Figure 11(b)). The mean of the 535 RXY values is 0.665; 
359 of them range between 0.6 and 1, suggesting that under asynchronous tem-
poral conditions, the occurrence of jumps is highly synchronous between in the  
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(a) 

 
(b) 

Figure 11. Histogram of the RXY distributions of CSI 300 future and spot indices. (a) Synchronous temporal conditions; (b) 
Asynchronous temporal conditions. 
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CSI 300 index process and the continuous main-contract price process of the 
CSI 300 stock-index futures, but the synchronicity is lower than under syn-
chronous temporal conditions. This finding suggests that stock-index futures 
prices predict prices in stock markets. Moreover, information technologies are 
increasingly used in financial markettrading. The ongoing development of In-
ternet technologies has expedited the dissemination of price information among 
financial markets, allowing investors to synergize information from different 
markets and make investment decisions in a matter of 5 minutes; this has also 
shortened the lag time in their response to the markets. 

The positive and negative correlations of jumps are tested by estimating XYr  
to determine the proportion of positive cojumps among all jumps for a two-  
dimensional process formed by the CSI 300 index process and the continuous 
main-contract price process of the CSI 300 stock-index futures. The mean and 
median of XYr  are respectively 0.993 and 0.998, indicating that the volatility of 
both processes essentially moves in the same direction and that jumps in the 
processes show strong positive correlations. 

The synchronicity of jumps between the CSI 300 index and its volatility is de-
termined by calculating RXY for each trading day, the results of which are shown 
in Figure 12. The mean of the 1,883 RXY values is 0.474; 496 of them range be-
tween 0.6 and 1, suggesting low synchronicity in the occurrence of jumps between 
the CST 300 index process and its volatility process. This undermines the need 
to examine the positive and negative correlations of jumps for both processes. 

 

 
Figure 12. Histogram of the RXY distributions of the CSI 300 index and its instantaneous historical volatility. 
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5. Conclusions 

The findings of this study yield the following conclusions. First, the CSI 300 in-
dex fundamentally involves a continuous-jump process, supporting the jump- 
diffusion model proposed by Mertaon (1976) [12]. Moreover, the activity indices 
of pure-jump models are inconsistent with any actual price processes and are 
therefore not representative of any active stock markets. In the price process of 
the Chinese stock market, the form of jump depends on continuous volatility 
processes; therefore, the analysis and expansion of pure-jump models are based 
on the Merton model. The CSI 300 index exhibits the characteristics of pure- 
jump or continuous processes in certain periods, making it necessary to adjust 
the price-volatility model for the index on the basis of macroeconomic factors 
and relevant policies. 

Second, the continuous main-contract price process of the CSI 300 stock-in- 
dex futures agrees with continuous-martingale processes with jumps, indicating 
that continuous stochastic processes with jumps describe the volatility of stock- 
index futures markets. This may provide fresh insights into research on stock- 
index futures markets. Furthermore, in line with the CSI 300 index process, the 
continuous main-contract price process of the CSI 300 stock-index futures exhi-
bits the characteristics of continuous-jump processes at most times and the cha-
racteristics of pure-jump processes at certain times. Thus, the price process 
model for the CSI 300 stock-index futures should be adjusted depending on ac-
tual circumstances. 

Third, the volatility process of the CSI 300 index suggests that this process fits 
pure-jump processes more closely than it does other stochastic processes. This 
finding corresponds with those of Todorov and Tauchen that the VIX index is a 
pure-jump process. This contributes theoretically to the predication of the vola-
tility of Chinese financial markets because parameterizing the time of volatility 
and fitting it with a pure-jump process may reflect the actual market volatility 
more closely. 

Third, the analysis of cojumps suggests that jumps in the CSI 300 index price 
process and the continuous main-contract price process of the CSI 300 stock- 
index futures occur simultaneously in most cases (with a time lag of less than 5 
minutes) and share a strong positive relationship. As such, the formulation of 
strategies on risk management and portfolio construction in the stock market or 
stock-index futures market in China should involve modeling the volatility of 
different markets. The price process of the Chinese stock market and the price 
volatility of the market show no notable cojump, although whether such a co-
jump may ever occur during the development of the market necessitates further 
research. 
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