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Abstract

This paper discusses optimal portfolio with discounted stochastic cash inflows (SCI).
The cash inflows are invested into a market that is characterized by a stock and a
cash account. It is assumed that the stock and the cash inflows are stochastic and the
stock is modeled by a semi-martingale. The Inflation linked bond and the cash in-
flows are Geometric. The cash account is deterministic. We do some scientific ana-
lyses to see how the discounted stochastic cash inflow is affected by some of the pa-
rameters. Under this setting, we develop an optimal portfolio formula and later give
some numerical results.

Keywords
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1. Introduction

For example in financial mathematics, the classical model for a stock price is that of a
geometric Brownian motion. However, it is argued that this model fails to capture
properly the jumps in price changes. A more realistic model should take jumps into
account. In the Jump diffusion model, the underlying asset price has jumps super-
imposed upon a geometric Brownian motion. The model therefore consists of a noise
component generated by the Wiener process, and a jump component. It involves
modelling option prices and finding the replicating portfolio. Researchers have
increasingly been studying models from economics and from the natural sciences
where the underlying randomness contains jumps. According to Nkeki [1], the wars,

decisions of the Federal Reserve, other central banks, and other news can cause the
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stock price to make a sudden shift. To model this, one would like to represent the stock
price by a process that has jumps (Bass [2]). Liu et al (2003) [3] solved for the optimal
portfolio in a model with stochastic volatility and jumps when the investor can trade
the stock and a risk-free asset only. They also found that Liu and Pan (2003) [4] ex-
tended this paper to the case of a complete market. Arai [5] considered an incomplete
financial market composed of d risky assets and one riskless asset. Branger and Larsen
[6] solved the portfolio planning problem of an ambiguity averse investor. They
considered both an incomplete market where the investor can trade the stock and the
bond only, and a complete market, where he also has access to derivatives. In Guo and
Xu (2004) [7], researchers applied the mean-variance analysis approach to model the
portfolio selection problem. They considered a financial market containing d +1
assets: d risky stocks and one bond. The security returns are assumed to follow a
jump-diffusion process. Uncertainty is introduced by Brown motion processes and
Poisson processes The general method to solve mean-variance model is the dynamic
programming. Dynamic programming technique was firstly introduced by Richard
Bellman in the 1950s to deal with calculus of variations and optimal control prob-lems
(Weber et al [8]). Further developments have been obtained since then by a number of
scholars including Florentin (1961, 1962) and Kushner (2006), among others. In Jin
and Zhang [9], researchers solved the optimal dynamic portfolio choice problem in a
jump-diffusion model with some realistic constraints on portfolio weights, such as the
no-short-selling constraint and the no-borrowing constraint. Beginning with work of
Nkeki [1] which involves optimization of the portfolio strategy using discounted
stochastic cash inflows, this work explores optimal portfolio strategy using jump
diffussion model.

In Nkeki [1], the stock price is modelled by continuous process which is geometric
and but in this work we assume that the stock price process is driven by a sem-
imartingale; defined in Shiryaev ef al [10]. The jump diffusion model combines the
usual geometric Brownian motion for the diffusion and the general jump process such
that the jump amplitudes are normally distributed.

Semimartingales as a tool of modelling stock prices processes has a number of
advantages. For example this class contains discrete-time processes, diffusion processes,
diffusion processes with jumps, point processes with independent increments and
many other processes (Shiryaev [11]). The class of semimartingales is stable with
respect to many transformations: absolutely continuous changes of measure, time
changes, localization, changes of filtration and so on as stated in (Sharyaev [11]). Sto-
chastic integration with respect to semimartingales describes the growth of capital in
self-financing strategies. In this research, a sufficient maximum principle for the
optimal control of jump diffusions is used showing dynamic programming and going
applications to financial optimization problem in a market described by such process.
For jump diffusions with jumps, a necessary maximum principle was given by Tang
and Li, see also Kabanov and Kohlmann (Zksendal and Sulem [12]). If stochastic

control satisfies the maximum principle conditions, then the control is indeed optimal
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for the stochastic control problem. It is believed that such results involves a useful
complicated integro-differential equation (the Hamilton-Jacobi-Bellmann equation) in
the jump diffusion case. The investor’s stochastic Cash inflows (CSI) into the cash
account, on inflation-linked bond and stock were considered. Most calculations and
methods used were influenced by the works of Nkeki [1], Nkeki [13] Qksendal [14],
(Jksendal and Sulem [12], Klebaner [15] and Cont and Tankov [16].

2. Model Formulation

Let (Q,F,P) be a probability space where F =(F)_, denotes the “flow of infor-
mation” as discussed in the definition. Mathematically the latter means that F
consists of o-algebras, Le. forall s<t, 7, ¢ /£ < F . The Brownian motions
W(t)=(W' (t)w?® (t)) is a 2-dimensional process on a given filtered probability
space (Q, F.F(F ),]P’),t €[0,T], where P is the real world probability measure, ¢is
the time period, T'is the terminal time period, w! (t) is the Brownian motion with
respect to the “noise” arising from the inflation and W' (t) is the Brownian motion
with respect to the “noise” arising from the stock market.

The dynamics of the cash account with the price Q(t) is given by:
dQ(t, I (t))=Q(t)rdt (1)
Q(0)=1

where ris the short term interest as defined in Nkeki [1].
The price of the inflation-linked bond B (t, | (t)) is given by the dynamics:

dB(t,1(t))=B(t, 1 (t))[(r + o4 )dt+ o -dW (1) ] )
B(0,1(0))=b

where o, =(0,,0) is the volatility of inflation-linked bond, ¢, is the market price of

inflation risk, I, isthe inflation index at time #and has the dynamics:
di (t)=1(t)[ qdt + o, -dW (t)]

where g is the expected rate of inflation, which is the difference between nominal
interest rate, r realinterest T and o, is the volatility of inflation index.

Suppose the financial process ( stock return) S=(S,)_ = is given on a filtered

20
probability space. Assume that S(t) is of “exponential form”.

S, =S.e™ H,=0,t>0 (3)

where H =(H, )DO
Using It6 formula for semimartingales (see Appendix) and then differentiating the

is a semi-martingale with respectto F and P.

process we have

ds, =S, dH, (4)
where
- 1
H,=H,+=(H® A —1-AH 5
= Herg (), (e 1) ®
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Using random measure if jumps (see [11])
q 1 c X
H‘:Ht+§<H >s+(e —1—x)*,u (6)
hence
] ¢, 1 c t z t z
dH, =dB (), +dH; +Ed<H ) +df (e -1)d(u-v)+df [ (e ~1-2)dv (@)
Substituting on Equation (7) into Equation (50) we have

ds, =S, d (B((p)t +H? +%<H°>s +J‘;J"Z‘ﬂ(ez —1)d(y—v)+J';J"Z‘ﬂ(ez -1- z)dv) (8)

We know that differential of our stock price can written as

dS (t) =S (t—)(adt + o, -dW (t)+ jump) 9)

where o, = (pO'S L= p’og ) and W (t) defined as before.

Now comparing Equation (8) with Equation (9), we can now see that when we

equate the predictable parts we have

1/ue
S.. [dB((p)l +Ed<H U =S_adt,

1/ye L/e
d(B(q))t+§<H >tj=adt, B((p)t+§<H ) =at (10)
Equating the continuous parts we get
dH; =g, dW,, HS =W, (11)

and the jump parts give
A [e" 1))+ (e -1-2)av) = jump

and hence we let

I\z\sl(ez _1)d(/”_")+j‘z‘ﬂ(ez -1- Z)dv =J (12)

From (11) it follows that <H ¢ >t = 0'12 t and hence it follows that

1 c _ 1 2
B(p), = at—§<H >t = (a —5 0 )t
Substituting Equation (12) into Equation (9) we have
S (1) =S (t-){adt+ AW (1) [ (¢ ~2) (=) [ (e ~1-2)dv] (13
and further simply it to
dS(t)=S(t —)(adt +o,-dW (t)+ J.\z\sl% (z)d(u-v)+ J.Mﬂ(Pz (z)d v) (14)

where ¢ (z)=¢,(z)+z=¢"-1

Using It6’s formula for jump diffusion
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1
S, =S, exp{[a —Eafjt + oW, + J.;J-‘Z‘SO(In (1-¢)+¢)v(dz,ds)

@) ) (8 [, (01 0,)) () 8

(see Appendix). Hence we define the following

MR

(15)

o, A

0 = , ﬂ, =
[ 0
The market price of the market risk is given by
p &
¢=21A=(¢']= a—r-po (16)
S

o\ 1-p?

where, ¢, is the market price of stock market risk. We assume the process P (t)

S

which is geometric and with the no arbitrage conditions applied to it obtain the

following stochastic differential equation,
dP(t) = P(t —)(—¢tth ¥ J"Z‘ql//v(dz,ds)) (17)
Using It6’s formula for jump diffusion equation on 17 we have

P(t)=P(0 )exp( A ds)j 18)

where y,(t,z)=In (1+ w(t, z)) -y (t,z) (see Appendix).
P(t) isamartingale that is always positive and satisfies E[Z (T)]=1.

Now we have the price density given by
P
At)=—"- (19)
(02
where

Az%: (0 )exp[ AW, — (r+ ~ g ]t+”<l v, (1,2) (dz,ds)) (20)

3. The Dynamics of Stochastic Cash Inflows

The dynamics of the stochastic cash inflows with process, D(t) is given by

dD(t) = D(t)(kdt + opdW (t)), D(0) =D, (21)

where o = (0'1 Neps )' is the volatility of the cash inflows and k is the expected growth

rate of the cash inflows. o is the volatility arising from inflation and o is the
volatility arising from the stock market.
Solving for D(t) we use Itd’s formula for continuous processes. Let f (t)=1InD,

and
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%dt+§—;dD(t)+%%[dD(t)T
— (D (t)(kdt+ opaW (1)) -=—— [ D(t)] et

D(t)

= (k —%aéjdt +opdW (t)

df =

dinD(t) :(k —%oﬁ}dt+o-é,dw (t)

InD(t)-In D(O):ﬁ(k—%aéjds+ﬁagdw(s)

In g(((t))) - (k —%aé jt FoLW (1)
D(t)= D(O)exp((k—%aéjuagw (t)] @)

4. The Dynamics of the Wealth Process

If X(t) is the wealth process and 6(t)=(6,,6,,6;) is the admissible portfolio
where 6, is number of units in the cash account, 6, is the number of units in the
inflation bond and 6 is the number of units in the stock. In an incomplete market

with no arbitrage we have 6, =1-6, — 6, . The dynamics of the wealth process is given
by

dX (t)=(X, (r+68)+D(t))dt+ X, (Z0) dW (t)
(23)
X0 [, o (u=v)(dz.ds) + [, (d2.05))

where
A =exp (a&t +0,0W, + .[?J‘\z\g("l (u—v)(dz,ds)+ K[j‘z‘ﬂ%" (dz, ds)) (24)
(see Appendix). For 1 =v =0 we have the dynamics of the wealth process as
dX (t) = (X, (r+@8)+D(t))dt+ X, (Z8) dw (t) (25)
For the Poisson jump measure we have the dynamics of the wealth process as
dX (t)=(X, (r+6a)+D(t))dt+ X, (26) dw (t)

_ (26)
+ Xte/i(j‘z‘ﬁ(pl (N —¥)(dz,ds)+ I‘Z‘ﬂ(sz(dz, ds))

where N is the Poisson measure and # is the compensator on the Poisson measure

N.

5. The Discounted Value of SCI

In this Section, we introduce
Definition 1. The discounted value of the expected future SCI is defined as
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¥(t)=E, (j: ’[\\((Lt’)) D(u)duJ (27)

where B, =E(-|F) is the conditional expectation with respect to the Brownian
Filtration {R}_  and A(t)=P(t)exp(-rt) is the stochastic discount factor which
adjust for nominal interest rate and market price of risks for stock and inflation-linked
bond (Nkeki [1]).
Proposition 1. If W (t) is the discounted value of the expected future SCI, then
D(t)(exp{( ~r—op8)(T J' j‘ ‘ﬂl//lv (dz, ds)} )

(Y= n+k—r—opf =

Proof. By definition 1, we have that

¥ (1)=D(1)E, [ N '/\\((lg '381)) du (29)
Applying change of variable on 30, we have
¥(1)=D(1)E, [J';t%dr (30)

starting with

%zexp{—wvr—[r+%||¢"} J IH v (dz, ds}

xexp{(k—%||o-D"2)r+o-DWT}
1 2 1y, Tt
:exp{(aD—¢)WT+(k+r—(§||aD|| Al D [ (e ds}
= eXp{(aD — )W, +(k+r-opg)r+ Ig_tf‘z‘ﬂwlv(dz, ds)}
we have
D
E{%D(T)}_exp{(k—i-r oLd z’+J IH v (dz, ds)}
and lastly
\P(t):D(t)jOT exp{(k+r ol dr+j IH yov (dz, ds)}

We further take note that for v =0 we have the discounted value of the SCI as

D(t)(exp{(k —r—opg)(T —t)—1})

Y(t)= 31
(© n+k—-r—op¢ G

The differential form of W(t) is given by
A (1) =W (1) (r+ oot + opaW (1) + [y (e2 )at| - D(t)c (32)

Equation (32) is obtained by differentiating ¥ (t) as shown in the proof below

666 0‘ , Scientific Research Publishing
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D (t)(exp {(k —r-opg)(T-t)+ f;ftf‘z‘ﬂy/lv (dz, ds)} —1)

n+k—-r—-opg

Y(t)=

differentiating both sides,

D(t )d(exp{ j J.qu//l‘/ (dz,ds } j

dw(t)= oy
) dD(t)(exp{ﬁ(T )+ ) v (d2.09)] _1j
n+p
) ~(n+B) D(t)(exp{ﬁ(T —t)+J'thj.‘z‘ﬂy/lv(dz,ds)}) .
n+p
) D (t) (kdt + o,dW (t))x(exp{ﬁ(T -t)+j§"j‘z‘ﬂwlv(dz,ds)}-1)
n+p
_(77+,B)D(t)(exp{ B(T-t)+ I I v(dz,ds) - })dt_ﬂ’L" (0
n+p B+n
) D (t) (kdt + AW (t))x(exp{ﬂ(T O+ I‘Z‘ﬂ%v(dz,ds)}—l)
n+p
) D(t)(exp{ B(T-t)+ f I||1 v(dz,ds) - })
n+p

x(=(n+ B)dt +kdt + o1,dW (t))— D(t)adt
(t)((k—B—n)dt+opdW (t))-D(t)dt

(t)((r+aD¢)dt +obdW (1) + [, pv(d2)dt] - D()ch

b d
b Y

The current discounted cash inflows can be obtained by putting t=0 into Equation
(28),

W(o)_D(O)(exp{(k_r ;ji_r G{); v (dz, dt)} ) )

If r+op¢>k and J':J-‘Z‘ﬂt//lv(dz,ds) <o we can change the horizon by allowing

our Ttogoupto « ie

D(O)(exp{( —r—opd)(T JL\1W1 (dz, dt)} )

lim¥(0) = lim

T T n+k-r—op¢
___ b
_77+k—r—0D¢

In case of deterministic case, we have ¢=0 and ¥ =0, so
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¥ (0)= (34)

andfor r>k,and T —> o we have

i (0) = im D(0)(exp{(k-r)(T)}-1) _D(0)
T T k—r r—k

Since W (0)=Y,(T,Dy,k,r,0,) is a constant, if we are interested to see how it
behaves with respect to T,D;,k,rand o, we need to take W(0) as a function of
T,D,.K,r and o, . Then we can look at the sensitivity analysis of W (O) ,

Finding partial derivatives of ¥, we obtain the followng

Differentiating ¥, with respect to 7, we have

0
= Yo=Ds exp(ﬂT +-|.\z\sll//lv(d§)) (35)
Differentiating ¥, with respectto D;, we have
0 1
— Y, ==Y, (36)
oD, D,
Differentiating ¥, with respect to &, we have
0 1 D,
Sy - 77+ﬂT—1(‘P+ 0 j+DJ (37)
oK o (77+,3)2 ((( ) ) 0 7 o
Differentiating ¥, with respect to ; we have
0 1 D
Ly == |(1- 77+,BT(‘P+ 0 j—D] (38)
e eam v 25 )0
Differentiating ¥, with respectto o, we have
0 1 D
Y, = 1- 77+,BT(‘P+ 0 ]—D] (39)
605 " (n+p) (( (e AT Yoty 5 )

where f=Kk-r—oy¢ and nz.ﬂz‘ﬂl//lv(dz) and y, =In(l+y)-y

The following calculations shows how we differentiated ¥ (0) with respect to T’

¥, = D(O)(exp(ﬂT+J'_[4y/l dz, dt)) ]

B+n
D(0) D,
(dz,dt
ﬁ+nexlo(m+I IH v (@, )) B+n
differentiating with respect to T
d T
d—T‘PO = ,3+077 exp(ﬂT +f0.[‘Z‘ﬂy/lv(dz,dt))x(ﬂ+n)

=D, exp (ﬂT + _[()T_[‘Z‘ﬂt//lv(dz, dt))

We repeated the following procedure for all other variables.

When we have a deterministic case, differentiating ¥, partially we have the fol-

K2
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lowing

Differentiating ¥,

Differentiating ‘¥,

Differentiating ‘¥,

Differentiating ¥,

Differentiating ¥,

with respect to 7; we have

0
E‘Po =D, exp(4T)

with respect to D, , we have

1%,

0y 1L
oD, B\ D, OT
with respect to r, we have
1

0 oY,
e om0,

with respectto o, we have

Oy (1 pm) %% _
aqujf"ﬂz[(l - D°j

with respect to &, we have

0 1 oY,
8_k(\P0) :F((m _1)8_T+ Doj

(40)

(41)

(42)

(43)

(44)

Table 1 shows the sensitivity of variables. Sensitivity analysis can be incorporated

into discounted cash inflows analysis by examining how the discounted cash inflows of

each project changes with changes in the inputs used. These could include changes in

revenue assumptions, cost assumptions, tax rate assumptions, and discount rates. It

also enables management to have contingency plans in place if assumptions are not met.

It also shows that the return on the project is sensitive to changes in the projected

revenues and costs. Looking at Table 1, one can see that changing a variable can make

Table 1. Simulation of the sensitivity analysis.

KD
+%%, Scientific Research Publishing

. v, oY, Y, v, v, oY, oY, oY,
oD, oo, oo, oT or 00, 00, ok
1 1.00 -4.01 —4.83 100.4359 -50.15 -12.54 -18.05 50.15
2 2.01 -16.09 -19.36 100.87 -201.16 -50.29 —72.42 201.16
3 3.02 -36.31 —43.69 101.31 —453.93 -113.42 -163.42 453.93
4 4.04 —-64.753  —77.90 101.76 —809.34 -202.34 -291.36 809.34
5 5.05 -101.46  —122.07 102.20 -126827  -317.07 —456.58 1268.27
6 6.08 -146.53  -176.29 102.64 -1831.63  —457.91 -659.39 1831.63
7 7.11 -200.02  —240.65 103.09 -2500.31  —625.08 -900.11  2500.31
8 8.14 -262.02  —315.24 103.54 327522  -818.80  -1179.08 327522
9 9.18 -332.58  —400.14 103.99 —4157.27  —1039.32  -1496.62  4157.27
10 1022 41179  —495.44 104.45 -5147.39  —1286.85  —1853.06  5147.39
669
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an impact on the SCI. An investor must do the sensitivity analysis in order to know
changes can be made on the market to improve the results of an investment.
6. The Dynamics of the Value Process

Proposition 2. If V (t) is the value process and V (t)=¥(t)+ X (t) where ¥ is
the discounted value of the expected future SCI then the differential form of V (t) is
given by
adV (t)=(r(X, +¥,)+ AOX, + oo d¥, )dt+ (20X, + 0¥, )dW (1)
+P(t L v (dz)dt+ 20X (1) [ v (dz)dt (45)

+ 20X (t J\u‘”l p—v)(dz)dt

Proof. Differentiating V (t) and substituting Equations (32) and (26) on the dif-

ferential obtained we have
dVv (t) =d¥ (t)+dX(t)

=¥ (1)((r+0p)dt+opdW (1))+¥ (t-) [, pav(dz)dt—D(t)dt

X (t)((r+ze)dt+(za)' dw (t))dt+/wx (t-)]] g (d2)

+A0X (t —)j‘z‘ﬂyxz (u—v)(dz)dt+D(t)dt

:(r(X(t)+‘P(t))+(aD¢‘P(t)+A6X (1)) dt+ (¥ (t)op + X (1)£6) dW (1)
t=) J, v (dz)dt+ 20X (t )j _pov(dz)dt

20X (t) ],y (u-v)(d2)dt

For u=v =0, the jump part becomes zero and we obtain

dV (1) =(r(X, + ¥, )+ AOX, + oo, )dt + (20X, + op ¥, )dW (t)

7. Finding Optimal Portfolio

Theorem 3. Let X (t) be the worth process whose dynamics is defined by Equation
23), ¥ (t) the discounted value of expected future stochastic cash inflow as defined
in proportion (1), V (t) the value process as defined in proportion (2) and

-y
U(v)=
given by (9(’[)* = (9;,6’:,9;) where
HV () _UlD‘P(t)
t

the utility function and if we assume that v =0, the optimal portfolio is

; 7 X ()
[‘9;}: (O'l (a_r)+0s¢|,0(05\/]7—0| ))V*(t)_(a,of—asof’)‘}’(t)
olo, (1—p2)7X*(t) o0\ 1- P2 X (1)

and
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* S

0, =1-6, -0

V(1Y) .\ oP¥ (1) _(G. (ot—r)+as¢,p(as\/1_7_aI ))V(t)
’ (t) olo, (1—,02)}/X*(t)

o () o X (40

N (0'| o3 —007 )\P(t)
o0 4L p? X (1)
The proof is given in Appendix.
(o1 (a=r)+ ot p( 0= p" ~ o V7 (1)
olo, (1— pz)yx* (1)
(0', oy — 0.0, ) Wt
oo\ 1- P2 X (1)
temporal hedging term that offset shock from the SCI at time #

From Equation (71), represents the

classical portfolio strategy at time ¢ and represents the inter-

Some Numerical Values

Figure 1 was obtained by setting T =10, ¢, =0.08, r=0.04, k=0.099, «=0.09,
o, =[0.25,0.36], 0,=0.4, 0,=04, D=100, p=0.6 and y=05 in Equation
(70). This figure shows that when t =0, the portfolio value is 0.151 which is equivalent
to 15.1% when the value of the wealth is 40,000 and the portfolio value is 0.159 which is
equivalent to 15.9% when the value of the wealth is 1,000,000. When t=10, the
portfolio value is 0.16 which is equivalent to 16% when the value of the wealth is 40,000

portfolio value

time, t 0 o X

Figure 1. Portfolio value in inflation-linked bond.
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and the portfolio value is 0.1604 which is equivalent to 16.04% when the value of the
wealth is 1,000,000. This shows that there is a huge increase on the portfolio value from
t=0 to t=10 when the value of the wealth is small and there in less change when
the value of the wealth is large.

Figure 2 was obtained by setting T =10, ¢, =0.08, r=0.04, k=0.099, «=0.09,
oy = [0.25;0.36] , 0,=04, 0,=04, D=100, p=0.6 and y=0.5 in Equation
(71). This figure shows that when t =0, the portfolio value is 0.907 which is equivalent
to 90.7% when the value of the wealth is 40,000 and the portfolio value is 0.9019 which
is equivalent to 90.19% when the value of the wealth is 1,000,000. When t =10, the
portfolio value is 0.9017 which is equivalent to 90.17% when the value of the wealth is
40,000 and the portfolio value is 0.9017 which is equivalent to 90.17% when the value of
the wealth is 1,000,000. This shows that there is a huge decrease on the portfolio value
from t=0 to t=10 when the value of the wealth is small and there in less change
when the value of the wealth is large.

Figure 3 was obtained by setting T =10, ¢, =0.08, r=0.04, k=0.099, «=0.09,
oy = [0.25;0.36] , 0,=04, 0,=04, D=100, p=0.6 and y=05 in Equation
(72). This figure shows that when t=0, the portfolio value is —0.057 which is
equivalent to —5.7% when the value of the wealth is 40,000 and the portfolio value is
—0.0613 which is equivalent to —6.13% when the value of the wealth is 1,000,000. When
t =10, the portfolio value is —0.0615 which is equivalent to —6.15% when the value of
the wealth is 40,000 and the portfolio value is —0.0613 which is equivalent to 6.13%
when the value of the wealth is 1,000,000. This shows that there is a huge decrease on
the portfolio value from t=0 to t=10 when the value of the wealth is small and

N R

portfolio value

0 o

time,t

Figure 2. Portfolio value in stock.
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-0.057 -,
0.058 4.

0,059 .

portfolio value

time, t 0 o X

Figure 3. Portfolio value in cash account.

there in less change when the value of the wealth is large.
For v =0, we have a problem because we cannot solve the equation explicitly. we

need to come up with a computer program.

8. Conclusion

Semimartingales seems to model financial processes better since the cater for the jumps
that occur in the system. The continuous processes may be convenient because one can
easily produce results. For example, in our situation we managed to find the portfolio
for continuous processes but we couldn’t for the ones with jumps. This work can be

extended designing a MATLAB program that will solve the equation for portfolio 4.
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Appendix
Appendix A

Assume that f =e"™ and f e(C?. Using It6 formula for sememartingales (see Jacod
[?], Protter [?], Shiryaev [11], Shiryaev [10]) f , one obtains

f( jf )dH, += jf" )d<H°>S

+Z|: (HS)_ ( S—)_f( S—)AHS:|

O<s<t

(47)

X

to find our SDE, assume that f(X)=e" and substitute on Equation (47). Simplifying

will give the following results

e =e +j;(eHs- ), dH, +%f;(eHs- )”d<H°>S +3 {e“s e — (e )' AHS}

O<s<t

(48)
el + [ e dH, +%J.;eHS* (He), Ozt[e —e" —e"™AH, |
<8<
Differentiating will give;
de/" :0+dJ';eHS*dHS+1d.[;e“S* d(H °> +d0<zs<t[e e AH, |
HedH, + = e “d(HC) +[eM —e™ —eaH, ]
HodH, += e “d(HC) +(eM e —eMAH), AH, =H —H_
HedH, + = e ~d(H°) +el (e —1-AH,)
1 c
H‘{dH +2d<H ) +(e —1-AH )}
1
et {dH +2d<H°>t+d0§q e 1—AHS)}
1
=eH‘d{Ht + 2( ) +0<zs<l(e l—AHS)}
de" =e"-dH, (49)
Now the differential of the stock process is given by
ds, =S,_dH, (50)
where
N 1. .
H, =H, +E<H ). +0§ﬁ(eA”s —1—AHS) (51)
then, using Ito’s formula for semimartingales (Protter [?]), we have
Y=o+ [ (e )’ dX, +£J';(exsf )" d(xe) + > (exs —e —(e XS*) AX j
2 0O<s<t (52)

=% +J-;exsfdxS +%J‘;exsfd<x°>s + Y (% —e —eXaX,)

O<s<t
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and in differential form, this can be expressed as

dy, =e*-dX, +%ex‘*d<xc>l +e%t —e%- —eX-AX, =e"rdX, +%ex‘*d<x°>1 +elMe X X AX |

:extfdx[+%extfd<x°> +e¥ (e¥ —1-AX,) (53)

d{er( X (e —1—Axs)}=vtd>21,

O<s<t

Appendix B

Assuming Y, =InS, and substituting it on the formula we get

10° Y, o
[dS ] .ﬂ <0{|n(8t -S¢)-InS +—L P

dy, = N gt +%[dst]° !
at oS, 208 t

t«plj (c2)

oY,
+ Zso[ln(st—st%) InS, +ast stgpzj (dz)+[ (In(S,~Si@,)-InS,)(—-v)(dz)
= adt + o, dW, —lo-fdt+ H<O(In(l—gol)+gol)v(dz)

+ M(()(In(l ?,) +(p2 +J.]R< In (1- goz -v)(dz)
1 t
InSt—InSO:(a—EJfJHcert+IOIZ<O(In(1—(01)+gol)v(dz,ds)

+ [ (N (L= 02) 40, v (dz.ds) + [ [ (In(L-,)) (s~ v) (dz,5)

1
S, =S, exp {(a —Ealzjt +oW, + J.;.ﬂz\go(ln (1-p)+ (ol)v(dz, ds)
(54)

”M@ n(L-g,)+¢,)v (dz,ds)+J';_[R(In(l—(pz))(y—v)(dz,ds)}

Appendix C
Let f(t,R)=Y,=InP(t) and

2
d, =6—Ydt N gpe 16Y[dP]
oP 20

* z<l(Y (t'P(t_)_f(tlz))_Y(t’P(t_))_g—lf(t,z)jv(dt,dz)

11[

~ 2 (P(-gaw,))-2 [ P(gaw,)]

+jx<1[ln(P(t -)+P(t=)y(t,z))-InP(t-)-——=P(t-)w(t, Z)Jv(dt’dz)

{ P(t—)(l-i—ly(t,z))_
P(t-)

= —gdW, — ¢ dt+L " (In(1+y (t2) =y (t,2))v(dt,dz)

= —pdW, ——¢ “dt+

|zl<1
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dInP(t) = —gdw, — ¢ “dt+ [ (In(L+y (t2))-w(t 2))v(dt dz)

InP(t)-InP(0 )=—¢\Nt—5¢t+j0LZ|51(ln 1+y/(t,z))—y/(t,z))v(dz,ds)

n Pt
P()

P(O) ( ¢9‘Nt_—¢2t+.[jl ‘q(ln 1+w(t, Z)) w(t ,Z))v(dz,ds)J

=gt [ (n (L (62)) -y (t2)) v (e )

P(t)=P(0 )exp( oL ] (e y (2)- w(,z))v(dz,ds))

(55)
=P(0 )exp( AN, —= ¢t+Hugy1 (t,2) (dz,ds)j

Appendix D

ax (1) - x (e, (24 x 1, () 2 )

B(t(1(1)))
(Otdt+0'1 -dW (t))+ SSt (.[prl(ﬂ v)(dz,ds)+_[‘z‘ﬂg02v(dz,d5))

dB(t 1(t)) do(t)
B(t(1(1))) ()

= X (t)8, (t)(adt + o, -dW (t))+%( J i (=v)(d2.ds)+ [ _pov (d2.05))

%)
Q(t)

+ X (t)6,(t) +D(t)dt

+X(1)6 (1) +X(1)6 (1)

+D(t)dt

)05 (t)
+X ()6, (t)((r+o,4, )dt+o5dW (t))+ X (t)(1-6, (1) -6, (t))(rdt)+ D(t)dt
= X (00, (1)t AW (1)) 2( [ (u=v)(d.05)+ [,_puv (c2.))

()6 (D)((r+ 01, )dt+ogdW (¢ ))+X( )(1-0, (1)=6, (1)) (rdt) + D(t)dt
= X (1) (1) (et + o, - QW (1)) + X (1) ( (J“q)l y1—v)(dz, ds)
+ 2 (V)(¢2.85))+ X (1)6, (1)((r+ o )t + oW (1))

+X (t)(1-6,(t)-6, (t))(rdt)+ D(t)dt

= X ()6, (@—r)dt+ X (1)6,0,4,dt+ X (t)dt+ X () #So,0W (1)

+X (t)6,0BdW (t)+ X (t)Hsﬂ(I‘ AV v)(dz,ds)+j‘z‘gl¢2v(dz,ds))+ D(t)dt
= X (1)(6,.6, )'[“ ;rjdmx (t)dt+ X ()(6.6, ) (:1de (t)

171 B

+X(t)

PX(0)(6:,6,) @( J,utp () (02.05) [ _pov(e2,5) )+ D (1)t

- X (t){(r +OA)d+(20) AW (1) + 02 (], g (1—v)(cz,06)+ j‘z‘ﬂ%v(dz,ds))% D(t)dt
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then
dX (t)= (X, (r+68)+D(t))dt+ X, (20) dW (t)

X0 [, o (u=v)(dz.ds) ¢ J o (c205))

where
A= exp(a&t +0,0W, + _[;tj"z‘ﬂgol (u—v)(dz,ds)+ .[jtj“z‘ﬂ%v (dz, ds))

with st=t—t— and oW, =W, -W_
A was found by simply dividing S, by S_ ie

) S exp(at+olW +” o (u=v)( dz,ds)+j;.[‘z‘gl¢2 (v)(dz,ds))

s exp(at + oW, +J' .[ngol p—v)(dz,ds) +.[tfj'z‘ﬂ¢2v(dz,ds))

=exp(a(t—t )+ 07 (W, =W, jj o (u-v)(dz, ds)+.[:7 IZISlgozv(dz,ds))

—exp(a5t+oléW +f7 j o (u=v)(dz,ds)+ [ j‘z‘ﬂ%v(dz,ds))

Appendix E

Let f=C" and define Y (t)= f(t,V (t))z f(t,X (t),‘P(t)). Then Y (t) is a sto-
chastic process with jumps and

of

ay (t) = g:(t KO (0) s 2 X 0¥ ()0 (1)
ot :
X O F)ar ()
1 o°f

a0 oo o]

1 o°f

X OO ov ]

82f

(t)(t X ()% () 89 ()0 (1)

of

+[1F(LV (t-)+x (6 z,0))- f(LV (1)) - ax()(tv(t ))Kl(t,z,a))}v(dz)

of

+I{f -)+5, (1,2, a) f(t,V (t—))—ax—t)(t,v (t—))/c2 (t,z,a))}v(dz)
{f +K2 t Z, a) f(t,V (t—))}(y—v)(dz)

of

LV (t-)+x;(t z,0))- F(tV (t_))_é"l‘(t)(t'v (t—));g(t,z,w)}v(dz)
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(
+Lﬂ{f (LV (t-)+x, (L z,0))— f(LV (t-)) - = (LV (t-))x, (1, Z,a))}v(dz)
{

take Y = f (t,V (t)) and substituting on 58 to have
)< of

of

oX (1)

* e (X O YOI (- oop)dt- oot ]

E(t, X (t), ¥ (t))dt+ (t X (), ¥ (1)) X, (r+A0)dt+TodW, ]

+1%(tlx(t),\}l(t))[xt(r+A9)dt+29th]z

1 0%f 2

+Em(t, X (1), ¥ (t))[(r+A0)dt+TodW, |
o* f

v (t)ox (1)

(X (1), ¥ (1)) X, (r+A0)dt+20dW, ][ ¥, (r +opg)dt+ opdW, |

of

+[1 LV (t-)+x (L z,0)) - F(LV (=) ———=(tLV (1)) (t, z,a))}v(dz)

X (t)

{
o] {f(t,v (t) 41 (t.2,0)~ £ (LV () =2 (1 (1)), (t.z,w)}vwz)
{
{

oX (1)

+ (VY (t-)+ x5 (L 2,0)) - F(LV( —))—i(t,v (t=))ms (8, z,a))}v(dz)

¥ (t
of

(t,X (t),‘P(t))dt+m(t, X (1), ¥ (1)) X, (r+A0)dt+zodw, |

~—

of

+———(t, X (1), (1)) ¥, (r + opg)dt + opdW, |

o (t)
1 &%*f

tooambX (1), ¥ (1))(X720%dt)

X2 (t)
1 o°f

(X (0.0 () (opan)

oV (t)
(X (1), ¥(t))(X,¥,0,20dt)

of

+j‘z‘ﬂ f(tLV(t-)+x(tz,0)-f(LV(t-)-—=(tV(t-))x (t,Z,a))}v(dz)

oX (1)
of
oX (t)
N f (t,V (t-)+x,(t, Z,a)))— f (t,V (t —))}(,u—v)(dz)

of

Jrj‘z‘Sl f(LV (t-)+ 5 (tz.w))- F(LV (t=))-———(tV (t-))x (t, Z,a))}v(dz)

oY (t)

Choosing f (t,V (t))=J(t,V(t)) such that for a given portfolio strategy ¢ (not
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necessarily optimum, we introduce the associated utility
I(tX9,0) =By, [U(V/(T))] (57)

Substituting x; = X0l¢,, k, =X0A¢, and x, =Yy, wenow have
dJ(tV (1)) =3, dt+J, [ x(r+A0)dt+26dW, |

1
+3y [¥(r+op0)dt +O'DdW1:|+EJXX (x22292dt)

-i—%\]W (‘PZG,'DO'Ddt)+ Jyw (XY o, z0dt)

=(J[ +X(r+A60)J, +¥(r+o,0)J, +%x222¢92‘]XX

+%‘P20,§JW +X¥op20,, jdt +(Z0J, + 053y ) dW,

+j‘z‘s J(v+x04p,)—J (V) - I, X020, v (dz)

Integrating both sides we get

I(TV(T))=I(LV () + [ (3, +x(r+A6) 3, +¥(r+000)d,
+%X22292Jxx +%‘PZO'SJ\P\1, + x‘PaDZQJX\P]ds
+[(x203, +0,3, )dW,
+H4ﬁ{3 (V+X04,)— 3 (V) 3, X020, } v(dz,ds)
+““{J v+ X040, )~ (v) - 3,X0%¢, }v (dz,ds)
+jjo1{J V+x02p;) - 3 (V)} (u—v)(dz,ds)
+J.:j‘z‘<1{*] VW, )= J (V) -3y Wy, v (dz,ds)

Taking the expectations on both sides we have
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By [3(TV(T))]
=J(tV(1)+ Etw“ (I, +x(r+A0)J, +¥(r+op0)dy

; Y262y + XV o,260d ]ds

+ Lyex? 0°J, +
2

+.[tTIz\g1{J (v+x04 (g +,))-23 (v)—JXXH/I(gol+¢2)}v(dz,ds)
fjlzl<1 (J(v+¥y,) J(v)—J\P‘Pyxl}v(dz,ds):'

For simplicity we have

By v [J (TV(T ))]

=J(t,x,‘{’)+Et'X,W[f(JS+x(r+A6’)JX+\P(r+o—D¢)J\P
+%x2226?2.]XX +%\P20§JW + x‘PaDZHJWjds

[l (v x02p,) =23 (v) - 3, x00y, v (dz.ds)
.[.[Im (V+¥y,) J(v)—JW\Py/l}v(dz,ds)J

Where y, =@ +¢, and J(t,V(t))=J(t,x,¥). Since we know that
J (T,VO(T)):U (V”(T)) , we now have

By [U (VO (T))]
=J(t,X,‘I’)JrEt,X,WUT(JS+X(I’+A9)JX+‘I’(I’+O—D¢)JW
1 202, 1,22
+EX 2°0°J,, +E‘I’ 05 gy +x‘I’aDZ¢9JW)ds
[, f3 (e x0Ry,) =23 (v) = 3 x00 v (0, ds)
IL2\<1 V+\IJW1 J(v)_‘]‘l‘\}ll//1}v(dzids):|
Which gives us
(X ) =E [U (V”(T))]—IE}LX,\YU:(JS+x(r+A9)Jx+‘I’(r+aD¢)‘]\P
+%X22292\]XX +%\P20[2)JW + X‘I’JDZHJWjds
+J.tT-‘-Z\S1{J (V+X04y,) -2 (V) I, X024y, }v(dz,ds)
J.J-|z|<1 v+\Pl//1 J(V)_JW\P‘»Vl}V(dZde)J

By Equation (57), we have the integral on the right hand side being equals to zero.
That is
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]Etw[_[ (J +X(r+A0)J, +¥(r+op4)J,
+%X22292~]XX +%\p20éJW + x\I’oDZHijds
+LT.[\Z\<1{J(V+X%%)_2J (v)— 3,04y, }v(dz,ds)

Ijm<1 (V+¥y,) J(v)—JT‘Pz//l}v(dz,ds)}:o

Differentiating both sides we obtain following partial differential equation with
jumps.
Jo+X(r+A0)J, +¥(r+op¢)J,
+ Loy 0°J, + ;‘I’ZaéJW +x¥o,20d,,

+J"Z‘Sl{\] (V+x04y,) -2 (V) - I X0y, }v(dz)

+J"Z‘Sl{\] (V+¥yy) -3 (V)= Py, v (dz)=0
Consider the value function

V(t,x,¥)=supJ(t,x,¥,0) (58)
9

where Jis as in Equation (57) Under technical conditions, the value function Vsatisfies

U +sup[ X*20°U, + AU, +XxP oz,

+ j‘z‘ﬂ{u (V+Xx01y,) —UXXBM//Z}v(dZ)} +%‘{’20',§UW (59)
+¥(r+op4)U, + erxJ'MSl{U (V+¥y,)-33(V)-Uy¥y,}v(dz)=0
This takes us to the H]B equation;
Uy (t,v) + max L7 (t,x, ¥) =0 (60)
where £’ is the second linear operator for jump diffusion. Hence

LU =x(r+A0)U, +¥(r+o,9)U, +;x22 U,

1
+E‘P20§UW +x¥Po,ZU,, (61)
+j e {U(v+x02p,)-2U (v)-U,x02p, }v(dz)
+I\<1 (V+¥y,)-U(v)-Uy, Py, }v(dz)
Taking our utility function as
v
U = 62
vV)=17 S (62)

We consider the function of ¢ which is
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r(0)= 1 X220V, + AU, +x¥o,Z0U
: (63)
+ |z|sl{U (V +X0Ay, ) -U, x4y, } v(dz)
Differentiating U (v) and substitute on (63), we get
F(H) = —%XZyZZQZV*%l +AOVT — 7/X\PO.D2€V—7—1
(64)

1 L,
+J'|lel{—l_y(v+x9,1%) 7 _y ’Xt%l//z}v(dz)
Since F(B) is a concave function of @, to find its maximum we differentiate (64)

with respectto @ to obtain

ir(er) =—XZ N+ AV — yxP o v
00 (65)

* -[|z|s1{X/W2 (v+x04y,) " _VﬁXﬂl//z}V(dZ)

For v =0 we can solve for # because we have a linear equation below
XAV —yXPEPN T — yx P o Ev T =0 (66)
XAV pxWop v
- }/Xzzzv-y-l - }/X222V—y—1
AV Yo, IPAV ¥l

- [2 OS> 7X X

and 6 will be given by
. IZPAVI(L) woy

= - (67)
rx(t) X
substituting £,A and " as defined , we obtain the following
gV () o (Y)
X (1) @ X (1)
g = > . (68)
o, (a—r)+0'50',p(0'3\/1—p _0'|)V (t) (G|O'2D—p0301D)‘P(t)
yoto, (1-p*) X (1) oo, 1- PP X7 (1)
gV () o ¥(Y)
P o X (t) o X (t)
.= Tz . (69)
(asj (GI (a_r)+as¢|/7(0's 1-p* -0, ))V (t) (UlazD—szalD)‘I’(t)
0'520, (1—p2)7x*(t) 0,0, \/1—p2X*(t)
where
V() aY(Y)
=X ) e x (1) 70
and
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(Uu (a—r)+0'5¢,p(05\/]7—al ))V*(t) (cr,o'zD—crsalD)‘I’(t)

= : - (71)
S O'SZO'| (1—p2))/X (t) O.SO.I\/l_pZX*(t)
We can now see that
6, -1-6, -6,
V(1Y) +O'lD‘I’(t)_(O'I (a_r)+0's¢|,0(0'5\/1—,02 -0, ))V*(t) -
= G|7/X*(t) Glx*(t) O-szal (1_p2)7/x*(t)

N (0', oy —o.00 )‘P(t)
o0\ P X (1)

o
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