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Abstract 
A methodology to create statistical arbitrage in stock Index S&P500 is presented. A synthetic asset 
based on the cointegration relationship of the stocks with Index was constructed. In order to cap-
ture the dynamic of the market time adaptive algorithms have been developed and discussed. The 
pair trading strategy was applied in different periods between S&P500 and synthetic asset and the 
results were evaluated. Different metrics have shown that the Multvariate Kalman Algorithm 
creates statistical arbitrage in index with much lower Maximum Drawdown and higher profit. The 
algorithm is neutral as the beta is close to zero and the Sharp Ratio remains high in all cases. 
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1. Introduction 
Financial markets are based on the general trading rule: buy with low price and sell with high price. The aim is 
the development of strategies with low risk and succeeds this general rule. Pure Arbitrage is a category of strat-
egies with zero risk. As an example we can refer the case of buying and selling a stock at the same time with a 
different value in two different exchanges. The profit results from the difference in prices, breaking the law of 
one price. 

Another category is the statistical arbitrage which is not risk free at all. Strategies of this type are aimed at the 
expected gain which is greater than the risk. The profit results from the mispricing of the stocks. To achieve this, 
one needs to assess whether the price of a stock is overvalued or undervalued relative to the actual value which 
is really hard to determine. The fundamentals of the stock, the demand of each period and the general economic 
environment are some of the factors that make the fair value evaluation difficult. Part of this category is the Pair 
Trading and is presented in several references as in [1]-[10]. The Pairs trading is a strategy which is based on the 
relative pricing of stocks without actually interested in the true value of them. The relative pricing is based on 
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the idea that two assets with the same features can be priced about the same price as the basis of the law of one 
price. When at a given time the stock prices are different then one is overvalued and the other undervalued rela-
tive to the actual price. The classic trading Pairs strategy derives from the characteristics of this incorrect pricing 
(mispricing) between the two stocks. 

In the current work instead of the two stocks the mispricing between the index S&P500 and a sub-set of 
stocks belonging to this is considered. This forms a portfolio consisting of one unit of the Index in long (or short) 
and the corresponding number γ (Hedge ratio) of subset’s stocks in the opposite position. Three methods 
adopted to determine the number γ (Hedge ratio): a) the ordinary, b) the rolling ordinary least squares (OLS) re-
gression and c) the Kalman filter process as it is presented below. According to the strategy, the spread of the 
index S&P500 and the stocks prices’ combination are computed and when this deviates from its historical aver-
age value then the investor bets on the return to the historical with selling and buying respectively the stocks of 
the portfolio. In practice to construct the synthetic asset is necessary to investigate the appropriate stock exhibit-
ing long relationship between them with the index. The technique used for this purpose is the Cointegration as 
this presented in [1] according to which two time series ( )~ 1tX I  and ( )~ 1tY I  are cointegrated if 

( )~ 0t taX bY I+  for , 0a b ≠  and notation I(d) means integrated order d. 
In [1] concluded that pairs who cointegrate in sample period behave better in the out-of-sample period than 

those not cointegrate in the sample period. Based on the previous, the spread of the linear combination of the 
cointegrated stocks and the S&P500 index have to be stationary process. To analyze this relationship the aug-
mented Dickey-Fuller test (ADF) was used as presented in [2]. According to the strategy the stocks are not re-
stricted to cointegrate in the out-of-sample period but it is an indication that they will present mean-reverting 
behavior. 

Additionally the log of prices used is also instead the prices as in [3]. The main reason is that log-returns are 
time additive. So, in order to calculate the return over n periods using real returns we need to calculate the prod-
uct of n numbers: ( )( ) ( )1 21 1 1 nr r r+ + + . 

If 1r  defined as: 
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Consequently the profit of spread over a period is equal to:  
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The classic application of the trading pair strategy has published in many works in the past and has been ap-
plied in practice. In [4] the author went a further step and presented an algorithm for the pair trading of a stock 
basket cointegrated with the S&P500 using constant cointegrating coefficient with a single value for all stocks 
belonging to the basket. To capture the real behavior of the markets this work presents new Time Adaptive algo-
rithms using rolling ordinary least squares (OLS) regression and Multivariate Kalman Filter process where the 
time dependent hedge ratio is computed separately for each of the stocks forming the synthetic asset creating 
thereby statistical arbitrage conditions in index S&P500 and increasing the strategy performance. 
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2. Period of Methodology 
The proposed methodology and the trading algorithm designed based on that divided in two different spaces. 
The first refers to the in sample period which is used to make all the appropriate test and construct the synthetic 
asset and the other to the out of sample period (Trading Period) where the synthetic asset trading based on the 
specific rules (Figure 1). 

2.1. In Sample Period 
The data of the in sample period used for the synthetic asset construction. Working on a daily data domain a 
year of closing prices was chosen as the in sample period for determine the set of cointegrated stocks with 
S&P500 and create the synthetic asset. 

Synthetic Asset Construction. 
The paper presents different algorithms in order to create statistical arbitrage in S&P500. The S&P500, based on 
the market capitalizations of 500 large companies equity indices, and many consider it one of the best represen-
tations of the U.S. stock market. The initial choice of stocks for cointegration test with S&P500 is made by the 
S&P100 which is a sub-set of the S&P500, and measures the performance of large cap companies in the United 
States. Constituents of the S&P100 are selected for sector balance and represent about 57% of the market capita-
lization of the S&P500 and almost 45% of the market capitalization of the U.S. equity markets. The stocks in the 
S&P100 tend to be the largest and most established companies in the S&P500 (Wikipedia).  

Using the data of a selected In Sample Period for each stock S&P 100iS ∈  the second step of Engle and 
Granger’ approach adopted. Using the logarithmic price of stocks and S&P500 the OLS regression shown below 
is performed: 

( ) ( )log logSPY i
t i t tS Sγ ε= +                                    (4) 

Τhe Augmented Dickey-Fuller unit root test applied for the stationarity of the OLS residuals. According to the 
successful stationary result a subset of the S&P100 is created and the components of this set are the candidate 
for the synthetic asset construction. Still working in the sample period a new OLS regression was carried out:  

( ) ( )log logNSPY i
t t tiS Sγ ε= +∑                                  (5) 

Or 

( ) ( )log log NSPY i
t t tiS Sγ ε= +∏                                  (6) 

Using again the Augmented Dickey-Fuller the stationarity of the new OLS residuals is examined. 
If the stationarity exist then this an evidence of mean reverting long term behavior of the spread  

( ) ( )log logNSPY i
t t tiS Sε γ= − ∑  where i

tS ∈ S  and S is the set of stock where individually and as logarithmic  

sum cointegrated with S&P500. The dimension of S is dim(S). 

2.2. Out of Sample Period-Trading Period 
According to the previous period different algorithms for synthetic asset trading are developed. The first was  
 

 
Figure 1. Period of study.                                              
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designed assumed that the cointegration coefficient is constant during the trading period.  
In that case and using the Equation (3) the profit of the strategy during the period t ÷ t + h arises from the fol-

lowing equation: 

log log
SPY i

Nt h t h
t h t SPY ii

t t

S S
S S

ε ε γ+ +
+

   
− = −   

   
∑                              (7) 

3. Time Adaptive Coefficient γ 
In reality the system of trading is dynamic and updated as new information get to in and the cointegration coefe-
cient (or the hedge ratio) cannot stay constant during the trading period. For that reason time adaptive algorithms 
are developed to capture the real conditions of the markets. 

3.1. Rolling Ordinary Least Squares (OLS) Regression 
The first one considering a rolling ordinary least squares (OLS) regression. The frequency of regression calcula-
tions raised by an optimization procedure and the cointegration coefficient calculated at each step by the regres-  
sion of ( )log SPY

tS  against the ( )log N i
ti S∏ . 

3.2. Kalman Filter Process 
The Kalman filter process can be described by three different steps: the prediction the observation and the cor-
rection. A new approach were developed using a Multivariate Kalman filter process. Based on that the hedge ra-
tio calculated separately for each stock owned in the synthetic asset and the computed vector of the calculated 
parameters at each time step has dimensions (N + 1) × 1 where N = dim(S) while the dimensions of the cova-
riance matrix is (N + 1) × (N + 1). The aim of these algorithms is to calculate at each time step the updated 
hedge ratio of the synthetic asset. Assuming that the hedge ratio and the premium follow a random walk we have: 

1t t ty y w−= +                                       (8) 

where: 
yt: is the current state of the of the parameters. 
yt-1: is the previous state of the of the parameters. 

( )~ 0,t ww N σ  

where for the multivariate Kalman filter process  
T1 2 n

t t t t ty γ γ γ µ =  
                                (9) 

With:  

[ ]T0 0y h h h µ=                                   (10) 

h: is the cointegration coefficient from in sample period and μ0 coming from the same period. 
The vector of logarithmic price of stocks: 

( ) ( ) ( )1 2log log log 1n
t t t tx S S S =  

                         (11) 

And i
tS ∈ S  

The process following the steps as below: 
Prediction state where the next system state is predicted based on the knowledge of the previous state  

| 1 | 1ˆt t t t ty y w− −= +                                      (12) 

The covariance of prediction state is given by: 

| 1 1| 1
ˆ ˆ
t t t t wP P V− − −= +                                     (13) 

The next step concerns the measurement prediction. Given the price of the synthetic asset and the predicted 
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hedge ratio the measurement prediction are given as: 

| 1ˆˆt t t tz x y −= ⋅                                      (14) 

The residual of measurement and real value at each step calculated as: 

( ) ˆlog SPY
t t tS zε = −                                   (15) 

The variance of measurement error is equal to:  
T

| 1
ˆ

t t t t t eS x P x V−= ⋅ +⋅                                  (16) 

The Kalman Gain is the filter, which tells how much the predictions should be corrected on time step is given 
as: 

T
| 1t̂ t t

t
t

P x
K

S
− ⋅

=                                     (17) 

The last step of process is the update step where:  
The updated state is estimated as following: 

| | 1ˆ ˆt t t t t ty y K ε−= + ⋅                                   (18) 

And the Updated state covariance is equal to  

| | 1
ˆ ˆ T
t t t t t t tP P K S K−= − ⋅ ⋅                                 (19) 

All the process repeated at every time step of out of sample period. The estimation of Vw and Ve has been dis-
cussed in [11] [12]. 

3.3. Profit of Strategies 
In the case of Time Adaptive coefficient γ of the linear regression case the profit of the pair trading strategy 
raised by the following equations:  
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In the case of Multivariate Kalman Filter where the hedge ratio is different for each stock and for each time 
step in the synthetic asset it can been shown that:  

( ) ( ) ( ) ( )( )
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And finally the profit during a period t t h+  is equal to: 
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4. The Pair Trading Strategy 
The algorithm of the pair trading strategy is based on the distance of the spread from its historical mean value 
and its mean-reverting behavior. To measure this distance a normalized variable called z-score introduced as: 

[ ]
( )

t t
t

t

z
ε ε
σ ε
−

=


                                    (22) 

where: 
[ ]tε : is the mean value of the spread over a lookback period. 
( )tσ ε : is the standard deviation of the spread over the same period. 

The trading it takes place when this variable exceeds some limits based on the spread mean reverting behavior. 
Thus: 

Open-long position if lowtz z< . 
Open-short position if hightz z> . 
Exit-long position if exit-lowtz z> . 
Exit-short position if exit-hightz z< . 
When a long (short) position is opened we buy (sell) one unit of S&P500 and sell (buy) the following amount  

of stocks from synthetic asset as: ( )logN i
ti Sγ∑  in the case of constant hedge ratio, ( )logN i

t ti Sγ ∑  when the 

rolling OLS regression is applied, and ( )logN i i
t ti Sγ∑  if the Kalman Filter algorithm applied. The performance  

of strategy evaluated using the following metrics: 1) Cumulative return, 2) Annualized Return, 3) Sharpe Ratio, 
4) Maximum drawdown, 5) beta.  

5. Back Testing-Performance Evaluation 
Five different time periods was studied. In each case one year data collection was used in order to make the en-
tire test and construct the synthetic asset. After that the algorithm starts trading with ending day for all cases the 
30/12/2015. All the sample periods started at the first day of the year and ending at the last of the same year. The 
trading started on the first day the next year. In Table 1 the back testing periods are presented. In Figure 2 and 
Figure 3 the results of cumulative return of Multivariate Kalman Filter algorithm against S&P500 and its max-
imum drawdown are shown. In Figure 4 and Figure 5 the cumulative return of rolling OLS regression algo-
rithm against S&P500 and the cumulative return of rolling OLS regression algorithm against constant hedge ra-
tio are illustrated. In t Table 2 the sets of synthetic assets are presented while in Table 3 the name of symbols is 
given. In Tables 4-8 all the metrics of the algorithms are displayed. 

It can be shown that the dimension of the set and the constituents are different from period to period. This is 
an evidence of the non constant cointegration behavior of the stocks with the index but as we can see from the 
graphs the synthetic asset of each period continues to trade with profit and good metrics results. 

 
Table 1. Back testing periods.                                                                                           

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

In Sample Trading 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 

 In Sample Trading 

  2008 2009 2010 2011 2012 2013 2014 2015 

  In Sample Trading 

   2009 2010 2011 2012 2013 2014 2015 

   In Sample Trading 

    2010 2011 2012 2013 2014 2015 

    In Sample Trading 
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Table 2. Sets of stock in synthetic asset on each period.                                                                                           

Trading Period Stock of Synthetic Asset (Set S) Dim (S) 

2007-2015 {BRK.B, DVN, IBM, SPG} 4 

2008-2015 {CAN, BAX, BMY, DELL, EMC, GE, HAL, MDLZ, NSC, T, TXN, VZ} 12 

2009-2015 {DVN, FCX, IBM, MON, SPG} 5 

20010-2015 {APA, AXP, C, CAT, COF, FCX, IBM, MMM} 8 

2011-2015 {COST, FDX, GS, QCOM} 4 

 
Table 3. Union set of companies raised from cointegration test from all the period of study.                                              

APA APACHE CORP FDX FEDEX CORPORATION 

AXP AMERICAN EXPRESS COMPANY GE GENERAL ELECTRIC CO 

BAX BAXTER INTERNATIONAL INC GS GOLDMAN SACHS GROUP INC 

BMY RISTOL MYERS SQUIBB COMPANY HAL HALLIBURTON CO (HOLDING CO) 

BRK.B BERKSHIRE HATHWY INC (HLDG CO) B IBM INTL BUSINESS MACHINES CORP 

C CITIGROUP MDLZ MONDELEZ INTERNATIONAL INC 

CAT CATERPILLAR INC MMM 3M COMPANY 

COF CAPITAL ONE FINANCIAL CORP MON MONSANTO COMPANY 

COST COSTCO WHOLESALE CORP NSC NORFOLK SOUTHERN CORP 

DELL DELL INC QCOM QUALCOMM INC 

DVN DEVON ENERGY CORP (NEW) SPG SIMON PROPERTIES GROUP INC 

EMC EMC CORPORATION T AT&T INC. COM 

FCX FREEPORT-MCMORAN COPPER&GOLD B TXN EXAS INSTRUMENTS INC 

  VZ VERIZON COMMUNICATIONS 

 
Table 4. Statistical metrics performance for the trading period 01/01/2007-30/12/2015.                                

In Sample Period 01/01/2006-31/12/2006 

S&P500 
Out of Sample Period 01/01/2007-30/12/2015 

 
Algorithm 

MultiVariate Kalman Filter Rolling (OLS) regression Constant Hedge Ratio 

Cumulative Return % 387.069 24.637 12.678 45.592 

Annual Return % 19.261 2.481 1.337 4.268 

Sharpe Ratio 3.298 0.892 0.483 0.303 

Beta 0.019 0.017 0.027  

Maximum Drawdown % 12.642 2.925 5.666 62.453 

Duration of Maximum  
Drawdown 73.0 147.0 390.0 1365.0 
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Table 5. Statistical metrics performance for the trading period 01/01/2008-30/12/2015                                

In Sample Period 01/01/2007-31/12/2007  

Out of Sample Period 01/01/2008-30/12/2015  

 
Algorithm  

Multi Variate Kalman Filter Rolling (OLS)  
regression Constant Hedge Ratio S&P500 

Cumulative Return % 171.671 22.347 6.855 42.470 

Annual Return % 13.321 2.556 0.833 4.528 

Sharpe Ratio 1.135 0.738 0.228 0.312 

Beta −0.010 −0.005 −0.013  

Maximum Drawdown % 28.636 6.730 5.301 52.909 

Duration of Maximum  
Drawdown 175.0 404.0 628.0 154.0 

 
Table 6. Statistical metrics performance for the trading period 01/01/2010-30/12/2015                                

In Sample Period 01/01/2008-31/12/2008 

S&P500 

Out of Sample Period 01/01/2009-30/12/2015 

 

Algorithm 

MultiVariate Kalman Filter Rolling (OLS)  
regression Constant Hedge Ratio 

Cumulative Return % 278.267 28.513 13.565 121.512 

Annual Return % 20.972 3.655 1.837 12.054 

Sharpe Ratio 3.039 1.387 0.753 0.729 

Beta 0.026 −0.003 0.032  

Maximum Drawdown % 17.910 3.934 3.736 28.547 

Duration of Maximum Drawdown 69.000 290.000 367.000 203.0 

 
Table 7. Statistical metrics performance for the trading period 01/01/2010-30/12/2015                                

In Sample Period 01/01/2009-31/12/2009  

Out of Sample Period 01/01/2010-30/12/2015  

 
Algorithm  

Multi Variate Kalman Filter Rolling (OLS)  
regression Constant Hedge Ratio S&P500 

Cumulative Return % 111.149 18.375 9.123 81.733 

Annual Return % 13.294 2.857 1.469 10.491 

Sharpe Ratio 2.313 1.154 0.617 0.709 

Beta −0.007 −0.015 0.060  

Maximum Drawdown % 10.025 5.959 5.145 23.420 

Duration of Maximum Drawdown 223.0 393.0 770.0 203.0 
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Table 8. Statistical metrics performance for the trading period 01/01/2011-30/12/2015                                

In Sample Period 01/01/2010-31/12/2010 

 Out of Sample Period 01/01/2011-30/12/2015 

 

Algorithm 

MultiVariate Kalman Filter Rolling (OLS)  
regression Constant Hedge Ratio S&P500 

Cumulative Return % 81.346 14.694 5.063 62.094 

Annual Return % 12.674 2.787 0.995 10.167 

Sharpe Ratio 2.643 1.408 0.532 0.706 

Beta −0.003 −0.002 0.040  

Maximum Drawdown % 8.515 2.070 3.373 20.889 

Duration of Maximum Drawdown 125.0 143.0 255.0 203.0 

 

 
Figure 2. Cumulative return and drawdown diagram for multivariate kalman filter algorithm for the trading periods starting 
at 2007, 2008 and ending at 2015.                                                                                           

 
Comparing the metrics of each period of study it is clear the Multivariate Kalman Filter algorithm gives the 

better results among the other and the Index S&P500. In the first period where the Index presents the higher 
Maximum Drawdown equal to 62% and cumulative returns (CR) equal to 45.59% (Annualized percentage APR = 
4.26%) the Multivariate Kalman filter algorithm (MKFA) gives the highest cumulative rate result = 387% (with 
APR = 19.26%) with a reasonable Maximum Drawdown (MDD) = 12.64 and duration = 73 days. The MKFA in 
other cases shows max CR = 278% (APR = 20.9%) and Sharpe Ratio = 3.039 while in trading period 2008-2015 
present the higher MDD = 28.63 with duration = 175 days. At the same period the Index presents MDD = 52.9% 
with duration = 154 days. The profit from MKFA given by CR = 172% (APR = 13.32) and on the other hand 
S&P500 has CR = 42.47% (APR = 4.52%). In this period the MKFA has the lowest SR = 1.13 but still higher 
than Index. The lower CR of MKFA given in the period 2011-2015 and equal to 81.34% (APR = 12.67%) with 
MDD = 8.51% and duration = 125 days. In this trading period the index has CR = 62% (APR = 10.16%) but  
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Figure 3. Cumulative return and drawdown diagram for multivariate kalman filter algorithm for the trading periods starting 
at 2009, 2010, 2011 and ending at 2015.                                                                                           
 

 
Figure 4. Cumulative return of rolling ols regression algorithm against S&P500 and algorithm with constant hedge ratio, for 
trading period starting AT 2007, 2008, 2009 and ending at 2015.                                                                                           
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Figure 5. Cumulative return of rolling OLS regression algorithm against S&P500 and algorithm with constant hedge ratio, 
for trading period starting at 2010, 2011 and ending at 2015.                                                                  
 
with higher MDD = 23.42 and duration = 203. The SR of MKFA is still higher and equal to 2.313. In the last 
periods the profits declined but kept higher profit and Sharp Ratio than S&P500. 

The second algorithm of rolling OLS regression gives lower cumulative profit than Index but has almost 
doubled Sharp Ratio than S&P500 in all cases. Finally the evaluation of metrics has shown that the MKFA can 
beat the market as it creates statistical arbitrage condition in Index. 

6. Conclusion 
Mean-reverting algorithms with time adaptive hedge ratio are presented. A methodology of a synthetic asset 
construction based on the stocks of S&P500 has been discussed. The criterion of the selection was the cointegra-
tion relationship of individual stocks as the logarithmic sum of them with S&P500. The results of back testing 
show that for different period of study the form and the dimension of the synthetic asset are different. Pair trad-
ing strategy was adopted and the evaluation of the metrics results presented better behavior of MKFA among the 
others and beat the market. In the last periods the profits declined but it was still higher than S&P500 with much 
higher Sharp Ratio. The algorithm defended better its profit as the Maximum Draw down was quite lower than 
Index. 
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