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Abstract 
In the modern financial market the derivative pricing considers the use of historical or implied 
volatility which is actually the forward expectation of uncertainty. The common way of derivative 
pricing is to use the volatility as constant value in the well known Black Sholes equation. The aim 
of the current work was to develop a model where the uncertainty of volatility propagates to the 
derivative pricing and hedging according to the Black-Sholes PDE considering the volatility as 
stochastic process rather as a constant. A stochastic finite element method using generalized po-
lynomial chaos was used to develop an algorithm of uncertainty propagation solving finally a de-
terministic problem for derivative pricing. The output of the method leads to derivative price dis-
tribution and the results of Monte Carlo Method for the derivative’s distribution were used as the 
exact solution against those rose from the new algorithm. 
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1. Introduction 
Several works were presented in the past for uncertainty quantification of derivative pricing due to random vola-
tility. In [1] a new model for pricing and hedging derivative securities and option portfolios in an environment 
where the volatility is unknown and assumed to be ranged between two extreme values σmin and σmax was pre-
sented. The bound of volatility is computed by historical high-low peak of stock or option-implied volatilities 
and works as confidence interval for future volatility values. The derivative asset which arises as the volatility 
paths varies in such a band can be described by a non-linear PDE, which we call the Black-Scholes-Barenblatt 
equation. In [2] the pricing of contingent claims in a multidimensional frictionless security market assumed that 
the volatility of the security process is a known function of price and time. The author’s approach was under-
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pinned by the theory of totally non-linear parabolic partial differential equations and the non-stochastic approach 
to Itô’s formation. In [3] the volatility is considered as a random variable, which exhibits an adequate distribu-
tion like uniform type, Gaussian type or others. Thus the deterministic parabolic equation changes into a para-
bolic equation with stochastic input, where the solution represents a random field. Method of lines used for the 
numerical solution of the system resulting from the generalized polynomial chaos and corresponding end- 
boundary value problems of a parabolic equation was solved numerically in a Monte Carlo simulation. In [4] the 
effect of uncertainty in the volatility parameter σ on the Black-Scholes price of the European and American put 
was quantified. Probabilistic uncertainty analysis to the Black-Scholes model was carried out and the results are 
compared with those of the Uncertain Volatility model. The probability distribution for the volatility calibrated 
from historical data. The Monte Carlo (MC) and a surrogate Polynomial Chaos (PC)/MC methods were used to 
compute uncertainty bounds. The effect of the parametric uncertainty is investigated at the end. 

In the current work a robust algorithm based on the stochastic finite element method using the generalized 
polynomial chaos was developed and it is considered as a general method for derivative pricing where the vola-
tility input is considered as a random variable.  

2. Finite Element Formulation of Black-Sholes Equation 
Suppose ( ), ,Ω   is a probability space with a filtration ( ) 0t t≥

 . Where   is the σ-algebra and is consi-
dered to contain all the information that is available,   is the probability measure. Consider a market consists 
of two assets, a risk free bond of constant interest rate r and a stock with a price process tS  evolving according 
to a geometric Brownian. The dynamic of assets are given by: 

( ) ( )d dB t rB t t=                                        (1) 

( ) ( ) ( ) ( )d d dS t S t t S t W tµ σ= +                                      (2) 

where the drift rate μ and the volatility σ > 0 are assumed to be constant, and W(t) is a standard Brownian motion. 
The aim is to price a derivative of the form ( )( )S T= Φ  under uncertain volatility. In the basic theory of Black- 
Sholes the volatility of risky asset assumed to be constant which is results in mispricing of contingent claims due 
to uncertainty on the choice of the values within this model. As discussed in the previous paragraph in the current 
work the volatility considered as a stochastic process ( ) [ ]{ }, , : 0,S t Tσ ω + ∈ ×Ω  following the uncertainty of 
the market prices. The distribution of volatility assumed to be lognormal and if the price of the derivative has the 
form ( ) ( )( ), ,t V t S t ω=  which is constintent with the absence of arbitrage then the function ( )( ), ,V t S t ω  is 
the solution of the following boundary value problem: 

( ) ( ) ( ) ( ) [ ]

( ) ( )( )

2
2 2

2

1, , , , , , , , 0 in 0, ,
2

, in .

V V VS t S S t rS S t rV S t T
t SS

V T s S T

ω σ ω ω ω +

∂ ∂ ∂
+ + − = × ×Ω

∂ ∂∂
 = Φ





       (3) 

In essence the solution of the problem is a function of the form tu ∈ ×Ω→   for every fixed t, i.e. a sto-
chastic process and is not a deterministic function. 

To solve the problem, we switch to the log-price process ( ) ( )( )logX t S t=  which is the solution of the equ-
ation: 

( ) ( )21d d d .
2

X t r t W tσ σ = − + 
 

                                 (4) 

The infinitesimal generator for this process has constant coefficients: 

2 21 1 .
2 2

BS
xx xrσ σ= ∂ + − 

 
 

∂                                   (5) 

Thus by setting ( ) ( ), , , log ,V t S u T t Sω ω= −  the Equation (3) becomes: 

[ ]

( ) ( )
0 in 0, ,

0, e in .

BS

x

u u ru T
t

V x

+
∂ − + = × ×Ω ∂

 = Φ

 


                              (6) 

In order to solve the problem according to the finite element method in the current paper we consider a linear  
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element with nodes ( )( ) , 1, 2i
iN x i = . To each node iN  there is a hat function iϕ . To solve the problem as-  

suming a test v function belongs to the space: 

{ } ( )1
1 2 0, , , .h

NV span H Dϕ ϕ ϕ= ⊂                                        (7) 

Using a test function v and integrating by parts over the domain D the variational formulation of the Black- 
Scholes equation has the following form: 

( ) ( ) ( ) ( )

( ) ( )

2 21 1, , , , 0,
2 2

0 e .

t x x x

x

u v u v r u v r u v

u

σ σ  ∂ + ∂ ∂ + − ∂ + =   
 = Φ

                     (8) 

Using the matrix notation the equation takes the following form:  

( ) ( )

( ) ( )

21 0
Δ 2

0 ex

du u r u
t

u

σ + + ⋅ + − ⋅ =

 = Φ

M K C M C
                            (9) 

where:  

( ) ( )
( ) ( )
( ) ( )

d ,

d ,

d .

i jD

i jD

i jD

x

x

x

ϕ ϕ

ϕ ϕ

ϕ ϕ

 =
 = ∇ ∇


= ∇

∫
∫
∫

M x x

K x x

C x x

                                 (10) 

3. Stochastic Galerkin Solution 
Assuming that the volatility of stock ( )( ), , ωt xσ ξ  for [ ]0, ,T D∈ ∈t x  and ∈Ωω  dependent of a random 
variable :Ω→Γ ⊂ ξ . To compute the statistical moments of the problem we perform a change of variable 

( ): ξ ω=y . Τhe calculating procedure for the expected value using instead of the abstract space Ω  of random 
variable ξ its figure leads to solve a deterministic problem in space D×Γ ⊂   instead of space D×Ω . By 
performing such replacements in fact a deterministic problem is solved, in contrast to the case of Monte Carlo 
where a large number of problems carried out. 

The author has presented a stochastic finite element procedure to solve boundary problems using polynomial 
chaos [5]-[9]. The outcome derivative price of the problem is given by the polynomial chaos expansion as: 

( ) ( ) ( )1, , ,Q
kku u κψ

=
= ∑t x y t x y                                (11) 

where the order Q and the formula ψ of Polynomial Chaos are given in Appendix.  
According that and using the inner product of the equation on each polynomial of the kS  base we get: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

1 1 1

, 1 , , , 0.
Δ 2

Q Q Q
k

k k p
k k k

du
u r u

t κ κ κψ σ ψ ψ ψ
= = =

+ + ⋅ + − ⋅ =∑ ∑ ∑
t x

y M K C t x y M C t x y     (12) 

Making the replacement of matrices and assuming ( )ρ y  the density function we take the equation: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

,
d d

,
d d

1 e , e d d d
2

, d d

ln ln

Qnnode
ik

k p i jD
i k

Qnnode
ik

k p i jD
i k

Qnnode

ik k p i j i jD D
i k

Qnnode

ik k p i j i jD
i k

u
x y

t
u

x y
t

u x x y

r u x x

µ σ

ρ ψ ψ ϕ ϕ

ρ ψ ψ ϕ ϕ

ρ ψ ψ ϕ ϕ ϕ ϕ

ρ ψ ψ ϕ ϕ ϕ ϕ

Γ

Γ

Γ

∂
⋅

∂
∂

+ ⋅
∂

+ ∇ ⋅∇ + ∇ ⋅

+ ⋅ ∇ ⋅

∑ ∑ ∫ ∫

∑ ∑ ∫ ∫

∑ ∑ ∫ ∫ ∫

∑ ∑ ∫

y

t x
y y y x x

t x
y y y x x

t x y y y x x x x

t x y y y x x x x( )d 0.
D

y
Γ

=∫ ∫

    (13) 
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This is equivalent with: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2d 1, e e ,
d 2

, 0.

ln ln
k p k p

k p

u u u
t
r u

µ σψ ψ ψ ψ

ψ ψ

⊗ ⋅ + + ⊗ ⋅

+ − ⊗ ⋅ =

yM y y t x K C y y t x

M C y y t x
           (14) 

To simplify the form make the following: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )2 2

,

1 e e .
2

ln ln

k p

BSP
k p k prµ σ

ψ ψ

ψ ψ ψ ψ

 = ⊗



= + ⊗ + − ⊗


y

MP M y y

K C y y M C y y
            (15) 

4. Time Discretization 
According to the previous replacement we discretize the Equation (14) using the theta-scheme with constant 
time step Δt. The finite element mesh considered as uniform and the Equation (14) takes the following form:   

( )1 1 0.BSP n BSP nu uθ θ++ + − =MP                               (15) 

Equivalent 

( ) ( )( )1 .1BSP n BSP nu uθ θ++ = − −MP MP                           (16) 

The statistical moments of the outcome derivative price arise by the properties of the Polynomial of Chaos 
expansion: 

The expected value: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0
10

1
0

, , , , , ,
P K

k k
kk

u u u u uκ κψ ψ ψ
==

 
= = + =           

 
∑∑t x y t x y t x y t x y t x





         (17) 

and the variance: 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

22
0

0

2 2 2

0

, , , , , ,

, .

K

k
k

K

k
k

u u u u

u

κ

κ

σ ψ

σ ψ

=

=

 
= − = −       

 

 ⇒ =  

∑

∑

t x y t x y t x y t x

t x y

   


             (18) 

5. Numerical Example  
For the numerical example of derivative pricing a plain vanilla European Put Option was chosen. The historical 
data of S&P 500 was used to compute the mean value and the volatility of the index volatility. Based on the 
mean and max value of volatility and its mean volatility of volatility the option price has been calculated with 
expiration time T = 90/360 and strike price K = 1200. The statistical value of historical data for volatility for a 
period from 2000-2014 are given in Table 1. In Figure 1 and Figure 2 the Daily Return and the volatility of 
S&P 500 are presented. 

To verify the model we compare the results with those raised by the Monte Carlo method which is treated as 
the exact solution. The computational implementation of the Monte Carlo Method leads to the random process  

generation of kσ  and the requested ( ),V t S  gets a new value ( ){ }K
k k

V S  for each realization, where  

( ) ( ),k kV S V S= σ . At the end of all simulations the statistical moment are calculated.  
The expected value and the variance are given by:   

( )( ) ( )

( )( ) ( )( ) ( )( )
1

2

1

1, ,

1,
1

.

K

k
k

K

k k
k

V t S V S
K

Var V t S V S V S
K

=

=


=


 = − −

∑

∑




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Figure 1. Daily returns of S&P 500 for the period 2000-2014 (Yahoo finance).                               

 

 
Figure 2. 30 day volatility of S&P 500 for the period 2000-2014 (Yahoo finance).                          

 
Table 1. Statistical values of volatility of S&P 500 for the period 2000-2014.                                                                  

Volatility of S&P 500 2000-2014 

Min Mean Max Vol of Vol 

5.01% 17.20% 86.35% 10.58% 

 
Two different cases were carried out (Table 2). 
In the Figure 3 and Figure 4 the results of the statistical moments of the derivative pricing are presented and 

high accuracy is realized. The effect of volatility uncertainty on the statistical moments of option price presented 
in Figure 5 and Figure 6. For 10 values of index volatility of volatility with a mean value equal to 40% and in-
put parameters as before, 10 different calculations were carried out and the results are presented. The increase of 
vol of vol causes a decrease in expected option price of 12% approximately at the maxim while results a huge 
increment on its volatility as presented in Figure 6. 

6. Conclusion 
A new algorithm of volatility uncertainty propagation in the derivative pricing and hedging procedure was pre-
sented according to the Black-Sholes PDE. A stochastic finite element method using generalized polynomial 
chaos was used to develop an algorithm of uncertainty propagation solving finally a deterministic problem for 
the derivative pricing. The results of Monte Carlo Method for the derivative’s distribution were used as the exact 
solution against those rose from the new algorithm. The method leads to high accuracy and eliminates the large 
number of the Monte Carlo Method’s simulations. The model applied using the historical data of S&P 500 for  
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Table 2. Cases of analysis.                                                                                                                                   

 Mean of volatility Volatility of volatility 

Case I 18.7% 10.6% 

Case II 86.35% 10.6% 

 

 
Figure 3. Option price expected value.                                                                                                                                   
 

 
Figure 4. Volatility of option price.                                                                                       
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Figure 5. Expected option price ATM via stock volatility of volatility.                                   

 

 
Figure 6. Volatility of option price ATM via stock volatility of volatility.                                   

 
the period 2000-2014. The mean value and the volatility of volatility of index are used for the pricing of a plain 
vanilla European put option considering the volatility parameter as a stochastic process. The effect of index vo-
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latility of volatility on the derivative price distribution was analyzed and the results were presented by the two 
methods. High uncertainty of index volatility leads to a highly non linear increase of option price volatility as 
the results of analysis are shown. 
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Appendix 
Galerkin Approximation and Generalized Polynomial of Chaos  
In order to solve the problem 3 we have to create the new space ( )( )2 1

0,pL H DΓ . For that reason the subspace 
( )2k

pS L⊂ Γ  is considered as [10]. 

{ }1 2, , , .kS span κψ ψ ψ=                                  (A.1) 

Using the dyadic product of the space ,h kV S  the space ( )( )2 1
0,pL H DΓ  created. Thus 

{ }, 1, , , 1, , .hk h k
i jV V V span i N j Qϕψ= ⊗ = = =                     (A.2) 

The space hkV  has dimension QN and regards the test function v. In the case where exists BN  finite ele-
ment supported by boundaries condition then the subspace of solution belongs is: 

{ }1 2 , , .,hk hk
N N N NBW V span ϕ ϕ ϕ+ + += ⊕                           (A.3) 

Assuming that the k
iS  represents a space of univariate orthonormal polynomial of variable iy ι⊂ Γ ⊂   

with order k or lower and:  

( ){ }, 0,1, 2, , , 1, , .
i

k i
i a i iS span P y a k i M= = =                        (A.4) 

The tensor product of the M k
iS  subspace results the space of the Generalized Polynomial Chaos: 

1 2 .k
MS S S S⊗ ⊗ ⊗=                                   (A.5) 

And using (A4) 

( ){ }1 : 0,1, , , 1, , ,
i

Mk i
a i iiS span P y a k i M a k

=
= = = ≤∏                     (A.6) 

where 
1

M
iia a

=
= ∑ . 

And  

( ) ( )!dim
! !

k M k
Q S

M k
+

= = .                                (A.7) 

Xiu & Karniadakis [11] show the application of the method for different kind of orthonormal polynomials and 
in the current paper the Hermite polynomial was used with the following characteristics: 

0 1, 0, 0iP P i= = >  

( ) ( ) ( )dm n m n n mnP P P P ρ γ δ
Γ

= =∫ y y y y                          (A.8) 

where: 
2

n nPγ = : are the normalization factors, mnδ  is the Kronecker delta. 

( ) 21 e
2π

y

ρ
−

=y : is the density function and  

( ) 2 2d1 e e
d

y yn
n

n nP
y

−
= − .                                 (A.9) 

For a 3rd order of one dimension of uncertainty the Hermite Polynomial Chaos is given by: 
( ) ( )0 1y P yοψ = = , ( ) ( )1 1y P y yψ = = , ( ) ( ) 2

2 2 1y P y yψ = = − . 
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