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ABSTRACT

Given the striking effects of the recent financial turmoil, and the importance of value and growth portfolios for both
local and international portfolio allocation, we investigate the effects of systemic jumps on the optimal portfolio in-
vestment strategies across value and growth equity portfolios. We find that the cost of ignoring systemic jumps is not
substantial, unless the portfolio is highly levered and the average size amplitude of the jump is large enough. From the
optimal asset allocation point of view, it seems more important the effects of few but relatively large jumps than highly
frequent but small jumps. Indeed, the period in which the value premium is higher coincides with a period of few, but
large and positive average size jumps for value stocks, and negative and very large average size jumps for growth

stocks.
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1. Introduction

The value premium is one of the most relevant anomalies
discussed in the asset pricing literature. Value stocks,
which are characterized by high book-to-market ratios,
earn higher average returns than growth stocks. In prin-
ciple, growth options strongly depend upon future eco-
nomic conditions which suggest that growth stocks
should have higher betas than value stocks. Using monthly
data from January 1963 to December 2010, the market
beta of the Fama-French growth portfolio is 1.067 while
the market beta of the value portfolio is 1.068. Although
contrary to the theoretical prediction these betas are ba-
sically the same, it turns out that the annualized average
return of the growth portfolio is 9.6% while the annua-
lized average return of the value portfolio is 16.5%. This
represents a value premium of 6.9% which is even higher
that the well known market equity premium magnitude
of 5.5% for the same sample period." A key issue of the
research agenda of the asset pricing literature is to under-
stand why value stocks earn higher average returns than
growth stocks. This paper does not pretend to answer this
question.” On the contrary, our paper takes this anomaly
as given to investigate optimal asset allocation decisions
between value and growth portfolios. In particular, the

'These numbers correspond to the 10 Fama-French monthly portfolios
sorted by book-to-market, and using a value-weighted scheme to ob-
tain the portfolio returns. The value premium using an equally-
weighted approach is an even much higher 14.0% on annual basis.
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paper investigates the effects of systemic jumps on the
asset allocation decision between these two key charac-
teristics of equity returns.

Recent financial crisis has shown that the failures of
large institutions can generate large costs on the overall
financial system. Systemic risk is one of the main issues
to be resolved by the new regulation of financial markets
over the world. It seems widely accepted that previous
regulation focuses excessively on individual institutions
ignoring critical interactions between institutions.” These
interactions are the leading source of systemic risk
around the world. From this point of view, it is important
to analyze the impact of systemic risk on portfolio asset
allocation among potential institutional investors. Given
that two of the most popular investment strategies of
large institutional investment employ value and growth
assets, this paper analyzes how relevant is to ignore sys-

’In [1] it is argued that costly reversibility and countercyclical market
price of risk cause assets in place to be harder to reduce so they, in fact
become riskier than growth options. A related argument is given in [2]
which employs nonseparability between durable and nondurable con-
sumption to show that value stocks are more procyclical than growth
stocks. This implies that they perform especially badly during eco-
nomic downturns. However, recent evidence provided in [3] shows
that the g-theory dynamic investment framework fails to explain the
value spread. This is the case despite the fact that in [4] it is argued that
a simple three-factor model inspired on the g-theory of investment is
able to explain anomalies associated with short-term prior returns,
financial distress, net stock issues, asset growth, earnings surprises,
and some valuation ratios.

3See [5] for a clarifying discussion of these issues.
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temic risk on the ex-post performance of these strategies.
We understand systemic risk as the risk arising from in-
frequent but arbitrarily large jumps that are highly corre-
lated across the world and across a large number of as-
sets.

We borrow from the mathematical jump-diffusion
model developed in [6] to recognize that jumps occurs at
the same time all over the world and across all portfolios,
but allowing that the size of the jump may be different
across them. These authors derive the optimal portfolio
weights when equity returns follow a systemic jump-
diffusion process. We calibrate the model to three mon-
thly Fama-French book-to-market portfolios where port-
folio one is composed of securities with low book-to-
market (growth stocks), portfolio 5 contains intermediate
book-to-market assets, and portfolio 10 includes secure-
ties with high book-to-market (value stocks).

It is well known that to properly describe equity-index
returns one must allow for discrete jumps. As shown,
among others, in [7] jumps play an important role for
understanding of U.S. market returns over and above
stochastic volatility and the negative relationship be-
tween return and volatility shocks. Reference [8] also
shows that the relevance of jumps characterizes the
French (CAC), German (DAX), and Spanish (IBEX-35)
equity-index European returns. One may therefore expect
jumps to impact optimal asset allocation between value
and growth portfolios. Our evidence shows that this is
not necessarily the case. We find that the effects of sys-
temic jumps are indeed not negligible from 1982 to 1997
for low levels of risk aversion (highly levered portfolios)
when the frequency of jumps is small but its average size
is large. In fact, this period is characterized by an espe-
cially large value premium. These effects may therefore
seem to be particularly relevant for the allocation of
funds between growth and value portfolios. When sys-
temic jumps are recognized, the average investor should
optimally go long in value and short in growth in higher

proportions than when assuming a pure diffusion process.

However, and rather surprisingly, an average investor
would have not been penalized ignoring systemic jumps
from 1997 to 2010 when the frequency of jumps is much
higher but the average magnitude is also smaller. The
magnitude of the average jumps size seems to be very
important to assess the impact of systemic jumps on asset
allocation between value and growth portfolios. In the
overall period and in both sub-periods, independently of
using a pure diffusion or a jump-diffusion process, value
stocks dominate growth stocks especially for highly le-
vered portfolios.

This paper is structured as follows. In Section 2, we
discuss a model of equity returns that allows for systemic
risk. Moreover, we also describe optimal portfolio weights
when equity returns have a systemic risk component.
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Section 3 discusses the estimation procedure, and Section
4 presents the key results of the paper using the Fama-
French book-to-market portfolios. Concluding remarks
are in Section 5.

2. Asset Returns, Systemic Risk, and the
Optimal Allocation of Equity-Returns

This section first present a model of asset equity returns
which is based on the asset pricing model proposed in [6].
This model introduces systemic risk by imposing jumps
that occur simultaneously across all assets but also al-
lowing for a varying distribution of the jump size across
all portfolios. Secondly, we discuss optimal portfolio
allocation given that the underlying assets follow a jump-
diffusion process with systemic jumps. We compare
these results relative to the case in which asset returns
follow a pure diffusion process.

2.1. Asset Equity Returns and Systemic Risk

There is an instantaneous riskless asset which follows the
return process given by,

dP
— =rdt 1
7 &)

where r is the constant continuous riskless rate of return.
Moreover, there are N risky assets in the economy. Each
of them follows a pure-diffusion process given by the
well known expression,

dS./ d d .

T=y‘/dt+crjd2/;]=1,2,~~~,N 2)

J

where S, is the price of assetj, Z, isa Brownian mo-
tion, ,u;.i is the drift, and O'j is the volatility, and su-
perscript d highlights the pure diffusion character of the
process. We denote by = the NxN covariance matrix
of the diffusion components where the typical component
of this matrix is o] = pjoc] with p being the
correlation between the Brownian shocks dZ; and dZ,.
In matrix notation, ‘, is the N-vector of expected re-
turns, X =o' p? (O'd) , where ¢ is the diagonal
matrix of volatilities, and p¢ is the symmetric matrix
of correlations.

We next allow for unexpected rare systemic events by
introducing a jump to the process given in Equation (2).
Following [6], we assume that the jump arrives at the
same time across all equity portfolios, and that all portfo-
lios jump in the same direction. Then,

ds, ~ )

S =yjdz+ajdzj+(Jj—1)dQ(z);J:1,2,..-,N 3)

J

where O is a Poisson process with common constant in-
tensity A, and (J ; —1) is the random jump magnitude
that generates the percentage change in the price of asset
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j if the Poisson event is observed. It is important to note
that the arrival of jumps occur at the same time for all
equity portfolios. We assume that the Brownian shock,
the Poisson jump, and the jump amplitude J ; are inde-
pendent, and that J, Eln(.j /.) has a Normal distribu-
tion ¥ with constant mean 7, and variance vjz. .
Therefore, the distribution of the jump size is allowed to
be different for each portfolio, although all jumps arrive
at the same time.

We define ¢ and E=o0po’ as the drift N-vector
and the NxN covariance matrix of the diffusion compo-
nents of Equation (3) respectively. It must be noted that
they are now the drift and the covariance matrix of the
diffusion components when there are jumps in the return
process. In this case, we also have an additional drift,
4, and an additional covariance matrix, X7, from the
jump components of the process. Given that we select the
parameters of the jump-diffusion process in Equation (3)
such that the first two moments for this process match
exactly the first two moments of the pure diffusion pro-
cess in Equation (2), it must be the case that,

p' =+’ @)
=343/

2.2. Portfolio Allocation

Our representative investor maximizes the expected
power utility defined on terminal wealth, ., given by
the well known expression U (W, )=W;” [1-y, where
y >0 1is the constant relative risk aversion coefficient.
We first briefly describe the optimal portfolio weights
using the pure-diffusion process given in Equation (2).
Denoting the vector of the proportions of wealth invested
in risky equity portfolios by @, the optimal portfolio
problem at ¢ is

W,
V(W,t)=max E| £ %)
{o} -y
subject to the dynamic budget constraint
% =(@'R' +r)dt+0'c'dz, (6)

t

where R’ = u‘ —1,r is the N-vector of excess returns,
o’ is the diagonal matrix of volatilities, dZ, is the
vector of diffusion shocks, and 1, is an N-vector of
ones. The solution is the vector of portfolio weights ob-
tained in [9] corresponding to the standard diffusion

process of Equation (2),
1 _
ol =—(=') R %)
e
When the process includes a jump component as in
Equation (3), the dynamics of wealth for the initial
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wealth W, =1 can be written as

%:(a}’R+r)dt+a)'6dZ, +60'jtdQ(/1) ®)

t

where R=u—1,r is the N-vector of excess returns,
o 1is the diagonal matrix of volatilities, dZ, is the
vector of diffusion shocks under a jump-diffusion pro-
cess, and jt E<]1 —l,jz —1,~-,jN —l) is the vector of
random jump amplitudes for the N equity portfolios.

One can employ stochastic dynamic programming to
solve for the optimal weights,

1
0=max U(C )+—E|dV (W ,t) |},
e{u(€)+ g lar 0.}
where in this equation, we can use the generalized jump-
diffusion Ito’s lemma to calculate the differential of the
value function, d¥ .* Then, the Hamilton-Jacobi-Bell-
man equation is

ov(w, ov(w,
0 = max . t’t)+(a)'R+r)W,—( )
{«} ot ow

oMV (W,,t)

oW’ ®

+ % o'ToW}

+ 2E[V (W, +W,a)'.7,,t)—V(W,,t)]}
The impact of the jumps in the return process is given
by the last term of Equation (9). This term employs the
fact that EdQ, = Adt, and the assumption of indepen
dence of the Poisson jump and the jump amplitude ex-
cept for the fact that the jump size is conditional on the
Poisson event happening. As usual in this type of prob-
lems, one can guess the solution to the value function as
having the following form:
1=y
V(W,t)=F(t)— (10)
1=y
Replacing this solution into the Hamilton-Jacobi-Bell-
man equation we get:

1 dF(z) ,
max{—————=+(1-y)(@'R+r)
fol {F(t) ar g 0

-7(1 —y)%a)’Za)+/IE[(l +a'J, )177 —1}}

0=

By differentiating with respect to @ we obtain the
optimal weights with systemic jumps as the solution for
each time 7 to the system of N nonlinear equations which
must be solved numerically:

0:R—72w0p+/1E[J, (1+a J)”} (12)

op*t

*Alternatively, we may employ the infinitesimal generator of the jump-
diffusion process in [10].
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It should be pointed out that if we replace Equation
(10) into the Hamilton-Jacobi-Bellman equation and eva-
luate at @,, we obtain:

1 dF(z)

F(r) dr

B

where,

k

(1 - y)(a);pR + r) - 7/(1 - ;/)—a);],Za)op
+AE [(1 + a)o'pj, )l_y - l}
We next employ the boundary condition F(T)=1 to
obtain,
F(o,t)= M) — b

Therefore, the value function is given by the expres-
sion

1-y

kt VVt ’

1=y

v(w,i)=c (13)

2.3. Certainty Equivalent Cost

As an additional analysis of the effects of ignoring sys-
temic risk on asset allocation, we can also calculate the
certainty equivalent cost (CEQ hereafter) of following an
allocation strategy that ignores the simultaneous jumps
occurred in the data. The CEQ gives the additional
amount in U.S dollars that must be added to match the
expected utility of terminal wealth under the pure-diffu-
sion suboptimal allocation to that under the optimal stra-
tegy with the jump-diffusion process of equity returns. In
other words, as in [6], we calculate CEQ as the marginal
amount of money that equalizes pure-diffusion expected
utility with the jump-diffusion expected utility. The com-
pensating CEQ wealth is therefore computed by equating
the following expressions:

v ((1+CEQW, 10, ) =V (W,.1:,,) (14)

to
Then, using Equation (10) we have that

F(t [0) ) )

> “op

CEQ= F(t;a)i,)

-1 (15)

3. The Estimation Procedureto Analyzethe
Effects of Systemic Risk

Let us start again with the pure-diffusion case given by
Equation (2). The parameters to be estimated are
{u!, =} wh ¢ and ¥ the N-vector of ex-

M, where 4° an are the N-vector of ex
pected returns and the NxN covariance matrix of the dif-
fusion components. The moment conditions for individual
equity portfolios are given by

Copyright © 2013 SciRes.

ds.
d
E’[S,jjzﬂjdt

s (16)
ds, ;
E, [—’x - J =oldt=c'c! pldt
Si Sj y J y
This implies that moment conditions { ,u“’,Z"} can be

estimated directly from the means and the covariance of
the actual sample series available.

On the other hand, to derive the four unconditional mo-
ments of the jump-diffusion process given in Equation (3),
we follow [6] to identify the characteristic function which
can be differentiated to obtain the moments of the equity
portfolio returns process. We next present a detailed ex-
position of the procedure employed to obtain the mo-
ments under the systemic-jump-diffusion process.

3.1. The Characteristic Function

We first write the previous process in log returns with
X, = 1n<S j.). It is well known that the pure-diffusion
process in Equation (2) becomes

d d
de:ajdt+0'dej, (17

where af = uf —1/2(0'? )2. As before, the model in
matrix notation is dX =a“dt+o0?dZ , where a“ is
the N-vector of expected returns, and o is the dia-
gonal matrix of volatilities. On the other hand, the
jump-diffusion return process can be written as

dX, = a;di+o,dZ, +J,dQ (18)

where «, =y, -1/2 sz. . Hence, in matrix notation, the
continuously compounded asset return vector for the
jump-diffusion model satisfies the following stochastic
differential equation dX =adt+ocdZ+JdQ , where
a is the N-vector of expected returns, o is the dia-
gonal matrix of volatilities for the jump-diffusion case,
and J is the N-vector of jump amplitudes. The N-vector
of the average size of the jumps amplitude is denoted
by 7, while the diagonal variance matrix of the size of
the jumps is denoted by v .

As mentioned before, the theoretical moments for
the jump-diffusion process are calculated using the
characteristic function which in turn can be derived
from the Kolmogorov theorem. We formally work in a
probability space (€, 3,P) where, in the jump-diffu-
sion case, both the process Q and the Brownian motion
Z generate the filtration J,. The conditional charac-
teristic function of the process X conditioned on 3, is
defined as the expected value of ¢“*7 , where
¢ =(¢.++.¢y) is the argument of the characteristic
function, ®,, given by

(. X, T.t) > @(2.8. X, )= E(° |S,) (19)

where 7=T-t.
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From the process X, we know that a,c, and A
are constant on X. Therefore, under some technical
regularity conditions discussed in [10], the conditional
characteristic function has an exponential affine form
given by

@, (T,é/,Xt ) P ARy (20)

According to the Feynman-Kac theorem, the condi-
tional characteristic function is the solution to
o0,
ot
where ¢ is the infinitesimal generator for the jump-
diffusion process X given by

o0, ) o’
(D, =| —- a+lTrace opc’'——
[2).¢ 2 0.

+/1T [@,(X+Y)-®,(X)]d¥(Y)

(D, =— , (21)

(22)

where, as already pointed out, ¥ is the jump ampli-
tude Normal distribution. The boundary condition for
the differential equation is the value of the conditional
characteristic function at the equity portfolio horizon
D, (0,§,XT)=ei4VXT . Thus, from Equation (20), it

must be the case that 4,(0,{)=0 and B, (0,{)=i¢ .

In order to find out the expressions for the functions
A,(7,¢) and B (z,{), Equation (20) is replaced into
Equation (22) to obtain

%4_ aBt Xt
or or

, (23)
' 1 T /(7
=Ba+_ BB, +/1:[0[e8( P 1]aw(r)

where X =opo’'.
Thus, the two ordinary differential equations are
o4 (z, T
_Aféz 9. Ba +%B;23t #A[ [ 1 ]aw (v)
0B, (7,¢)
or

(24)

The second expression in Equation (24) implies that

B does not depend on 7. Thus, using the boundary

condition, we obtain B, (7,{)=i{ . We now replace B

in the first equation, we integrate, and we use the re-
maining boundary condition to get

4,(r,¢)= —%§Z§+i§’a+ijr[ei“—leT(Y) T

(25)
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The integral in the right hand side of Equation (25)
can be recognized as the jump amplitude’s characteris-
tic function, given that the random variable J follows a
Normal distribution:

[ e aw(r)= exp(i('n —%nggj
ol

Therefore,
4, (r,.{)
1 o R R , (26)
= —5§Z§+1§a+/lexp 14’77—34’2 |-\t
and, finally, the characteristic function is given by
@, (7,4, X,)= exp({ié”a +%§Z§
(27)

+ﬂexp[i§’n—%é’Z"{j—i}'+ié"X,]

3.2. Unconditional M oments

Using the characteristic function one can derive the K co-
moments throughout the following expression:

e 050, (r.0.X,) |
1
0108y 08y

E[X{', X0, X3 |3, | =

¢=0 ’
(28)

where K = 27:1 k; . The gradient and the Hessian,

o®/0¢ and 0°®/6¢L" are used to find the first and
second moments respectively. For the one-period invest-
ment horizon, 7 =1, and using the conversion from the
noncentral to central moments we obtain the mean, co-
variance, coskewness, and excess kurtosis:’

y1:a+/177:(y—%a211\,j+/177 (29)

=2+ A(nn'+vIv') (30)

w, =o' 1o 0[2(1/77)(le )' +(77°2 +V21N)7],:| (31)

=0 (3, +6vin? + ) (32)

In the expressions above, / is the Nx/N matrix of ones,
and o denotes the N-times element-by-element multi-
plication. It should be noted that g and u, are N-
vectors, and g, and g, are NxN matrices.

If we now compare the mean and covariance for the

’A technical appendix is available from the authors upon re-
quest. The Appendix derives the unconditional moments using
alternative procedures. These derivations extend and complete
the mathematical technicalities suggested in [6].
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jump-diffusion process above with those for the pure-
diffusion processes for 4 =0, we observe that

w' = An (33)
' =2(nn'+vIv') (34)

Then, the diffusion moments of the jump-diffusion
process are retrieved using the expressions in Equation (4)
as:

(35)
(36)

p=p' =2
=3 -A(nn' +vIv')

From the moment conditions in Equations (29)-(32)
the parameters to be estimated are {a, 2,1,V, /1} . For the
universe of N assets there are N jump amplitude means
and N jump amplitude volatilities. This represents 2N+1
parameters to be estimated including the Poisson inten-
sity 4. On the other hand, there are N° co-skewness
moments and N excess kurtosis moments for a total of
N(N+1) moment conditions to be employed in the
generalized method of moment (GMM) estimation pro-
cedure.

3.3. Sampling Moments

The sampling mean and co-moments of a variable X with
respect to variable Y are:

T
X

m- = X

L
rE

= (=) (1=

r
Xy _ x{.r\y!
m’ =0 ¢ (q)
1=1

for »>3 and &' = (Xt -m* )/ m;" , where 6, is
the adjustment term for the unbiasedness correction.

4. Optimal Allocation for Value and Growth
Portfolioswith Systemic Risk: Empirical
Results

We estimate the model using 3 portfolios from the 10
monthly book-to-market sorted portfolios taken from
Kenneth French’s web page. Portfolio 1 contains the
companies with low book-to-market, while portfolio 10
includes assets with high book-to-market. We refer to
portfolio 1 as the growth portfolio, and portfolio 10 as
the value portfolio. We also employ portfolio 5 denoted
as the intermediate portfolio. In order to pay special at-
tention to these characteristics we use the equally-
weighted scheme of the individual stocks rather than the
more popular value-weighted portfolios. This weighting
approach also amplifies the value effect anomaly.

Copyright © 2013 SciRes.

4.1. Parameter Estimates for the Jump-Diffusion
Return Process

Table 1 reports the descriptive statistics of the three
monthly Fama-French book-to-market portfolios for the
full sample period from January 1982 to October 2010,

Table 1. Descriptive statistics for the fama-french growth
and value portfolios. (@) Moments of the monthly returns?,
(b) Correlation coefficients”.

(a)
Jan 82-Oct 10 Growth BE-ME 5 Value
Mean % 0.493 1.306 1.813
Volatility % 7.681 5.356 6.314
Skewness 0.043 —0.768 —0.006
Kurtosis 3.508 3.898 4376
Mar 97-Oct 10
Mean % 0.537 1.113 1.618
Volatility % 9.053 6.046 7.452
Skewness 0.250 —0.438 —0.033
Kurtosis 2.478 1.805 2.306
Jan 82-Feb 97
Mean % 0.454 1.479 1.989
Volatility % 6.217 4.657 5.091
Skewness —0.560 —1.298 0.190
Kurtosis 4.071 8.037 8.716
(b)
Jan 82-Oct 10 Growth BE-ME 5 Value
Growth 1.000 0.892 0.819
BM-ME 5 1.000 0.890
Value 1.000
Mar 97-Oct 10 Growth BE-ME 5 Value
Growth 1.000 0.868 0.802
BM-ME 5 1.000 0.899
Value 1.000
Jan 82-Feb 97 Growth BE-ME 5 Value
Growth 1.000 0.938 0.855
BM-ME 5 1.000 0.879
Value 1.000

Panel A of this table reports the first four moments of the monthly returns
for the growth and value portfolios constructed by Fama-French using their
ten book-to-market sorted portfolios, where the first portfolio is the growth
portfolio, portfolio BE-ME 5 is the intermediate portfolio, and the last port-
folio is the value portfolio. The data for the full period goes from January
1982 to October 2010, while the sub-periods contain data from January 1982
to February 1997 and from March 1998 to October 2010. "Panel B of the
table gives the correlation coefficients among the monthly returns for the
growth, intermediate, and value portfolios.
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and two sub-periods from January 1982 to February 1997,
and from March 1997 to October 2010. Both sub-periods
contain episodes with large negative shocks. The first
sub-period includes the market crash of October 1987,
the Gulf War I in August 1990, and the Mexican crisis in
December 1994. On other hand, the second sub-period
contains the Asian crisis of July 1997, the Russian crisis
of August 1998, the bursting of the dot.com bubble, the
terrorist attack of September 2001, the outbreak of the
Gulf War II in March 2003, the beginning of the sub-
prime crisis, and the Lehmann Brothers default in Sep-
tember 2008.

Panel A of Table 1 shows that the use of the equally-
weighted growth and value portfolios leads to an impres-
sive value premium of 15.8% on annual basis for the full
sample period. Moreover, the value premium is 13.0%
and 18.4% for the second and first sub-periods respect-
tively. As expected, the annualized volatility of the
growth portfolio is higher than the corresponding volatil-
ity of the value portfolio is all three sample periods. On
annual basis, the growth volatility premium is 4.7% for
the full period, and 5.6% and 3.9% for the second and
first sub-periods respectively. Indeed, the growth portfo-
lio seems to be riskier than the value portfolio. The
problem is, of course, the enormous average return of the
value portfolio.

The third and fourth moments of both portfolios also
present an interesting behaviour. For the full period, the
growth portfolio has positive skewness, while the value
portfolio has a slightly negative skewness. Moreover,
growth stocks have lower kurtosis than the value portfo-
lio. The overall behaviour is the consequence of two very
different sub-periods. From 1997 to 2010, the value port-
folio has negative skewness, and, on the contrary, growth
stocks have positive skewness. The excess kurtosis is
similar for both portfolios. However, from 1982 to 1997,
we report a very high negative skewness for the growth
portfolio, and a positive skewness for value stocks. Simi-
larly, the behaviour of excess kurtosis is also surprising.
Value stocks present a much higher kurtosis than the
growth portfolio. The changes observed in both skewness
and kurtosis from one sub-period to the other for growth
and value portfolios are striking and deserve further at-
tention. For completeness, Figure 1 shows the density
functions for both sub-periods of the growth, intermedi-
ate and value portfolios, and the QQ plots to assess the
deviations of their returns from the Normal distribution.

Panel B of Table 1 reports the correlation coefficients
among the three book-to-market portfolios. The results
show that from 1997 to 2010 the value and growth port-
folios are less correlated than in the previous sub-period.

Panel A of Table 2 contains the parameter estimates
obtained by the generalized method of moments with the

Copyright © 2013 SciRes.

Table 2. Parameter estimates for the returns processes with
jumps. (a) Parameter estimates for the jump process?; (b)
Comparison between higher order sample moments of re-
turns and the jumps process theoretical higher order mo-
ments’

(@)
Period Jan 82-0Oct 10  Mar97-Oct 10 Jan 82 - Feb 97
1 —-0.035 0.768 =7.112
2 -3.479 -1.218 —10.088
3 —0.409 —0.280 0.523
Avg -1.307 —0.243 -5.559
1 12.804 8.761 14.506
2 8.519 5.292 10.859
3 11.117 7.091 15.891
Avg 10.814 7.048 13.752
A 0.152 0.938 0.031
Year (s) 0.55 0.09 2.72
(b)

Jan 82 - Oct 10 Growth BE-ME 5 Value
Sample Skewness 0.043 —0.768 —0.006
Model Skewness —0.006 —0.787 —0.091
Sample Kurtosis 3.508 3.898 4.376

Model Kurtosis 3.498 3.894 4.359

Mar 97-Oct 10 Growth BE-ME 5 Value
Sample Skewness 0.250 —0.438 —0.033
Model Skewness 0.226 —0.438 —0.093
Sample Kurtosis 2.478 1.805 2.306

Model Kurtosis 2.512 1.817 2.287

Jan 82-Feb 97 Growth BE-ME 5 Value
Sample Skewness —0.560 —1.298 0.190
Model Skewness —0.616 —-1.390 0.091
Sample Kurtosis 4.071 8.037 8.716

Model Kurtosis 4.066 8.045 8.674

Panel A of this table reports estimates of the parameter for the jump-diffu-
sion portfolio returns obtained by minimizing the square of the difference
between the theoretical moment conditions and the moments implied by the

data. 7., forj=1,2,3, refers to the mean of the jump size for the growth,

intermediate, and value portfolios respectively. v, , forj =1, 2, 3, is the

volatility of the jump size for the growth, intermediate, and value portfolios
respectively. These estimates are given in percentage terms. Avg gives the
average magnitude of the average and volatility jump sizes across portfolios,
A represents the frequency of the jumps, and Year (s) is the number of
a/ears necessary to observe a jump according to the jump-diffusion process.
Panel B contains the reconstructed moments that are obtained by substitut-
ing the parameter estimates in the theoretical model, and the sample mo-
ments.
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Figure 1. Density functionsand QQ plots; (a) March 1997-October 2010; (b) January 1982-February 1997.

identity matrix using Equations (29)-(32). The estimated
value for 4 of 0.152 for the full sample period implies
that on average the chance of a simultaneous jump in any
month across book-to-market portfolios is about 15%, or
one jump is expected every 6.6 months or, equivalently,
0.55 years. The average size of the jump across three
portfolios is —1.307, and it seems much higher (in abso-
lute value) for the value portfolio than for the growth
stocks. Although, the intermediate portfolio has the
highest average size of the jump, the volatilities of the

Copyright © 2013 SciRes.

size of the jumps are higher for the extreme growth and
value portfolios.

As before, the more interesting results come from the
changing behavior of the growth and value stocks across
sub-periods. The estimated value for 4 of 0.938 from
1997 to 2010 implies that on average the chance of a
simultaneous jump in any month across book-to-market
portfolios is almost 94%, or one jump is expected every
1.1 months or 0.09 years. Hence, the frequency of simul-
taneous jumps in the last sub-periods is extremely high.
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However, during this sub-period, the average size of the
jump is —0.243 which is a relatively low relative to the
estimate for the full sample period. This relatively small
average size is partly due to the compensation between
the positive average size for growth stocks, and the nega-
tive average size for value stocks. Hence, form 1997 to
2010, growth stocks have on average positive jumps,
while value stocks present on average negative jumps. At
the same time, the volatility of the size of the jumps
seems to be lower than the volatility for the full sample
period. The crisis episodes of the last decade or so, seems
to affect much more negatively value than growth stocks.
This is clearly consistent with the negative (positive)
skewness for the value (growth) stocks from 1997 to
2010. The economic implication is that value stocks
seem to be more pro-cyclical than growth stocks.

Once again, the estimation results are very different
for the first sub-period from 1982 to 1997. The estimated
value for 4 0f0.031 from 1982 to 1997 implies that, on
average, the chance of a simultaneous jump in any month
across book-to-market portfolios is about 3%, or one
jump is expected every 32.3 months or 2.7 years. Hence,
the frequency of simultaneous jumps in the first sub-
period is much lower than in the most recent sub-period.
This is, by itself, a relevant result. During the last four-
teen years, there seems to be many more systemic jump
episodes than during the previous fifteen years. Some-
how surprisingly, however, the average size of the jump
from 1982 to 1997 is strongly negative and much larger
in absolute value than during the last sub-period. Also,
the volatility of the size of the jumps is much larger than
the volatility reported from 1997 to 2010. Interestingly,
the average size of the jump is positive (negative) for
value (growth) stocks which are precisely the opposite
reported from 1997 to 2010. Again, this is consistent
with the negative (positive) skewness for the growth
(value) portfolio shown in Table 1. It is also important to
point out that it is precisely in this sub-period when the
value premium is as high as 18.4% on annual basis. The
jumps of the first sub-period are therefore much less fre-
quent but of larger magnitude than the jumps observed
from 1997 to 2010. The relatively few but larger jumps
affect more negatively growth stocks, while very fre-
quent although smaller jumps impact more negatively
value stocks. Again, it should be recalled that the value
premium is much larger from 1982 to 1997 than from
1997 to 2010.

Panel B of Table 2 compares the reconstructed mo-
ments that are obtained by substituting the parameter
estimates in the theoretical jump-diffusion model and the
sample moments. As before, the comparison exercise is
performed for each of the three sample periods. Overall,
the jump-diffusion model captures very well the sample
excess kurtosis for all time periods and portfolios. How-

Copyright © 2013 SciRes.

ever, the model seems to have more problems fitting the
magnitudes of the asymmetry of the distribution of re-
turns. This is especially true for the value portfolio,
where the theoretical process overstates the magnitude of
skewness. This result comes basically from the bad per-
formance of the model capturing the skewness of value
stocks from 1997 to 2010. The jump-diffusion process
generates much more negative skewness than the one
observed in the data.

4.2. Portfolio Weights

We want to solve numerically Equation (12) to obtain the
optimal weights when the return process follows the
jump-diffusion model of Equation (3). The parameters
we employ for the return process are those reported in
Panel A of Table 2. We also assume that the annualized
risk-free rate is equal to 6%, and we solve for optimal
weights assuming 10 alternative values of the relative
risk aversion coefficient. As the benchmark case, we use
the pure-diffusion model where the optimal weights are
given by the well known expression in Equation (7).

Panel A of Table 3 contains the equity portfolio allo-
cation results for the benchmark case, while Panel B re-
ports the results for the jump-diffusion model. The re-
sults show that, independently of the sample period em-
ployed and the level of risk aversion, value stocks re-
ceive a higher investment proportion of funds than
growth stocks. The optimal allocation implies in all cases
to go long in the value portfolio and short on the growth
portfolio. This is also true whether we recognize simul-
taneous jumps across assets or not. This is, of course,
what a zero-cost investment on the HML portfolio in [11]
precisely does. Surprisingly, for the full sample period,
the intermediate book-to-market portfolio dominates the
value portfolio due to the large weights this portfolio gets
from 1982 to 1997. For this first sub-period, it must be
pointed out that, when we incorporate jumps, the value
portfolio indeed gets more proportion of wealth than the
intermediate portfolio but only for the most levered posi-
tion. It is interesting to observe the important impact that
jumps have in this case for the nonconservative investor.
The proportion invested in the intermediate assets de-
creases from 28.7% without jumps to 17.4% with jumps,
while the same proportions go from 14.0% to 18.5% for
the value portfolio.

Finally, the value portfolio dominates the investment
in the risky component of the optimal asset allocation for
the 1997 to 2010 sub-period independently of recognize-
ing jumps or not.

From Panel C of Table 3, where we report the differ-
ences in weights between the benchmark case and the
jump-diffusion model, we observe that, for the overall
sample period, the recognition of jumps diminishes the
differences in the sense of increasing the long position on
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Table 3. Portfolio Weights. (a) Diffusion Weights®, (b) Jump-diffusion (Systemic) Weights”; (c) Diffusion-Jump Weight Dif-
ferences”.

(a)

5 V  Riskless Risky vy G 5 V  Riskless Risky vy G 5 \% Riskless  Risky

=<
Q

—_

-9.27 739 695 —4.07 5.07 1 -396 1.83 455 -1.42 242 1 —-30.03 28.68 14.02 -11.68 12.68

2 —4.64 3.69 348 -—154 254 2 -198 091 228 —0.21 121 2 -15.01 1434 7.01 —5.34 6.34
3 -3.09 246 232 —-0.69 1.69 3 -132 061 1.52 0.19 0.81 3 -10.01 956  4.67 -3.23 423
4 -232 185 174 -0.27 127 4 -099 046 1.14 0.39 061 4 -751 717 351 -2.17 3.17
5 -1.85 148 139 —0.01 1.01 5 =079 037 091 0.52 048 5 —-6.01 574 280 -1.54 2.54
6 -1.55 123 1.16 0.15 085 6 -0.66 030 0.76 0.60 040 6 —5.00 478 234 -1.11 2.11
7 -132 1.06 0.99 0.28 072 7 -057 026 0.65 0.65 035 7 —-429 410 2.00 —0.81 1.81
8 -1.16 092 0.87 0.37 063 8 -049 023 0.57 0.70 030 &8 375 359 175 —0.58 1.58
9 -1.03 082 0.77 0.44 056 9 -044 0.20 0.51 0.73 027 9 334 319 156 —0.41 1.41
10 -0.93 0.74 0.70 0.49 051 10 -0.40 0.18 0.46 0.76 024 10 -3.00 287 140 -0.27 1.27
Jan 82-Oct 10 Mar 97-Oct 10 Jan 82-Feb 97
(b)
Y G 5 \Y% Riskless Risky vy G 5 \Y Riskless Risky vy G 5 \Y% Riskless Risky

1 -888 587 7.17 -3.16 4.16

—_

-393 166 4.54 -1.26 226 1 2670 17.44 1850 —8.24 9.24

2 —449 314 356 -1.21 221 2 -197 085 227 -0.15 .15 2 -13.74 10.09 8.60 -3.94 4.94
3 -3.01 214 236 —0.50 150 3 -131 057 1.51 0.23 077 3 -926 7.06 558 —2.38 3.38
4 226 162 1.77 -0.13 1.13 4 —099 043 1.14 0.42 058 4 —-698 543 413 -1.57 2.57
5 -1.81 131 142 0.09 091 5 -0.79 035 091 0.53 047 5 560 441 328 —-1.08 2.08
6 -151 1.09 1.18 0.24 076 6 —0.66 0.29 0.76 0.61 039 6 —-468 371 271 —0.74 1.74
7 -129 094 1.01 0.35 065 7 -056 025 0.65 0.67 033 7 —-4.02 320 232 —0.50 1.50
8§ -1.13 082 0.88 0.43 057 8 -049 022 0.57 0.71 029 & 352 28I 2.02 —0.32 1.32
9 -1.01 073 0.79 0.49 051 9 -044 0.19 0.50 0.74 026 9 313 251 1.79 -0.17 1.17
10 -091 0.66 0.71 0.54 046 10 —0.39 0.17 045 0.77 023 10 -2.82 227 1.6l —0.06 1.06
Jan 82-Oct 10 Mar 97-Oct 10 Jan 82-Feb 97
(©)
Y G 5 \ Riskless Risky vy G 5 V  Riskless Risky vy G 5 \Y% Riskless Risky
1 -0.394 1518 —-0216 —0.908 0.908 1 -0.021 0.167 0.015 -0.161 0.161 1 -3.327 11.241 —4.478 -3.437 3.437
2 —0.143 0551 —-0.078 —0.330 0.330 2 -0.008 0.062 0.006 -0.060 0.060 2 -1.275 4.255 -1.585 -1.394 1.394
3 -0.084 0.323 —0.046 -0.193 0.193 3 —0.005 0.037 0.003 -0.035 0.035 3 -0.752 2497 -0.905 -0.840 0.840
4 -0.059 0226 -0.032 —0.135 0.135 4 -0.003 0.026 0.002 -0.025 0.025 4 -0.526 1.743 -0.622 -0.594 0.594
5 -0.045 0.173 -0.024 -0.103 0.103 5 -0.002 0.020 0.002 -0.019 0.019 5 -0.402 1331 -0471 -0.458 0.458
6 -0.036 0.139 —-0.020 -0.083 0.083 6 -0.002 0.016 0.001 -0.016 0.016 6 -0.325 1.074 -0.377 -0.371 0.371
7 -0.030 0.117 -0.017 -0.070 0.070 7 —0.002 0.013 0.001 -0.013 0.013 7 -0.272 0.899 -0.315 -0.312 0312
8 -0.026 0.101 —0.014 -0.060 0.060 8 —0.001 0.012 0.001 -0.011 0.011 8 -0.234 0.773 -0.269 —0.269 0.269
9 -0.023 0.088 —0.012 -0.053 0.053 9 —0.001 0.010 0.001 -0.010 0.010 9 -0.205 0.677 -0.235 -0.236 0.236

10 —0.020 0.078 -0.011 -0.047 0.047 10 -0.001 0.009 0.001 -0.009 0.009 10 -0.183 0.602 -0.209 -0.211 0.211
Jan 82-Oct 10 Mar 97-Oct 10 Jan 82-Feb 97

“Panel A of this table gives the portfolio weights for an investor who selects investments in three equity portfolios (growth, intermediate, value) and the riskless
asset to maximize expected power utility of terminal wealth with constant relative risk aversion. The investor optimizes expected utility ignoring systemic
jumps and assumes a pure diffusion process for portfolio returns. y is the relative risk aversion coefficient, G, 5, and V indicate the growth, intermediate
portfolio, and value portfolios respectively. Risky is the total weight given to all three equity portfolios. “Panel B reports the optimal weights when the investor
recognized systemic jumps. “Panel C contains the differences between the optimal weights for pure diffusion and the weights for the jump-diffusion process.
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the value portfolio while, at the same, it suggests not
short-selling as much on the growth portfolio.® The rec-
ognition of jumps implies to put relatively fewer funds in
the risky portfolio for all levels of risk aversion, although
this seems to be especially the case for the nonconserva-
tive investors and, therefore, for the most levered posi-
tions. However, the main point is that the value portfolio
gets more weights for all y. At the end, at least from
1982 to 2010, the use of systemic jumps in the optimal
allocation of funds, increases the proportion of value
stocks, reduces the amount of short-selling in the growth
stocks, and diminishes the proportion of funds invested
in the intermediate portfolio.

As in other cases, the results of the full sample period
seem to be the consequences of two different sub-periods.
The effects of jumps from 1997 to 2010 are, to all effects,
negligible. The differences of optimal weights between
the benchmark case and the jump-diffusion model are
therefore basically zero except, if anything, for the highly
levered position. The main effects of jumps come from
the first sub-period. From 1982 to 1997, there were very
few jumps but with a relatively very large average size.
In fact, the average jump size for the value portfolio is
positive, which makes the proportion of funds invested in
value to increase importantly and, especially, for the
most levered portfolios. These effects can be seen di-
rectly from Panel C of Table 3 and they are also re-
flected in Figure 2. By recognizing systemic jumps, op-
timal asset allocation increases significantly for value
stocks and for all levels of risk aversion, although more
for the less conservative more levered case. At the same
time, jumps reduce considerably the proportion invested
in the intermediate portfolio. As a consequence of recog-
nizing jumps, there is also a reduction in the short-selling
proportions of growth stocks.

The same conclusion is obtained by the results shown
in Table 4. We report the percentages of the growth,
intermediate, and value portfolios in the total proportion
invested in risky assets. We observe that the spread be-
tween the proportions invested in value and growth as-
sets is higher in the first than in the second sub-period. It
is also the case, that the spread in the first sub-period is
particularly important for the most levered portfolios,
although the relevance of risk aversion is negligible in
the last sub-period.

We may conclude that systemic jumps across portfo-
lios seem to be important for asset allocation as long as
the average magnitude of the jumps is large enough.
From the point of view of asset allocation, it is therefore
more important the amplitude than the frequency of the

A negative sign for the value portfolio in Panel C indicates that the
recognition of simultaneous jumps makes the investor to allocate more
funds in the value portfolio. A negative sign on the growth portfolio
implies that the recommendation would be to short-sale growth stocks
in less proportion than the case of the pure-diffusion benchmark.

Copyright © 2013 SciRes.

Table 4. Composition of the Risky Portfolios. (a) Jump-
diffusion (Systemic) Weights?, (b) Diffusion Weights’.

(a)

Y Growth BE-ME 5 Value Spread
1 —1.73887 0.73449 2.00438 3.74324
2 —1.71023 0.73976 1.97047 3.68070
3 —1.70098 0.74148 1.95950 3.66048
4 —1.69639 0.74241 1.95398 3.65037
5 —1.69365 0.74290 1.95075 3.64440
6 —1.69186 0.74311 1.94875 3.64061
7 —1.69055 0.74349 1.94706 3.63761
8 —1.68959 0.74359 1.94600 3.63559
9 —1.68886 0.74384 1.94502 3.63387
10 —1.68822 0.74396 1.94427 3.63249
Mar 97-Oct 10
Y Growth BE-ME 5 Value Spread
1 —2.89047 1.88793 2.00254 4.89302
2 —2.77956 2.04046 1.73909 4.51865
3 —2.73519 2.08690 1.64829 4.38348
4 —2.71186 2.10849 1.60337 431523
5 —2.69756 2.12084 1.57672 4.27428
6 —2.68791 2.12879 1.55912 4.24703
7 —2.68097 2.13433 1.54664 422761
8 —2.67574 2.13840 1.53734 421308
9 —2.67166 2.14153 1.53013 420179
10 —2.66839 2.14399 1.52439 4.19278
Jan 82-Feb 97
(b)

Growth BE-ME 5 Value Spread
—1.63194 0.75446 1.87748 3.50942
Mar 97-Oct 10
Growth BE-ME 5 Value Spread
-2.36914 2.26287 1.10627 3.47541

Jan 82-Feb 97

*Panel A of this table contains the composition of the risky portfolios for
alternative levels of relative risk aversion, which is obtained by dividing the
weight for each portfolio by the total amount invested in risky portfolios. It
assumes the jump-diffusion process. Panel B contains the same results
assuming the pure diffusion process. It should be noted that the weights do
not depend on the level of relative risk aversion when the simple diffusion
process is employed in the estimation.

jumps. In our specific sample, jumps turn out to be rele-
vant for value stocks given the combination of a large
and positive average jump size. Jumps also seems to fa-
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vor value stocks even with a negative average size jump
as in the full sample period, but this is relatively less im-
portant and, in any case, the possible effects are just
concentrated in highly levered portfolios.

4.3. Certainty Equivalent Costs

We next analyze the effect on utility of the optimal port-
folio strategy that recognizes the occurrence of systemic
jumps across book-to-market assets relative to the strat-
egy that ignores these simultaneous jumps. We employ
the CEQ given in Equation (15) that calculates the addi-
tional wealth per $1000 of investment needed to raise the
expected utility of terminal wealth under the nonoptimal
portfolio strategy to that under the optimal investment
strategy. We consider the effects for investment horizons
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+1 7 Growth 1

— Intermediate 5

{—— Value 10
—— Riskless

Participation

2 4 6 8 10
Relative Risk Aversion Coefficient y

Jump Diffusion Portfolio Weights
Period: Mar 97 - Oct 10

4—\\ : Growth 1
\ — Intermediate 5
B : — Value 10
\ Riskless
2 i\\\
e
= ™ TS :
S Ipn e ; 4
= ~—_ —— &
R e — = o
L2 0f ]
=1
£
-1t
=21
=30
2 4 6 8 10

Relative Risk Aversion Coefficient y

@

(b

G. PENAGOS, G. RUBIO

of 1 to 5 years and for levels of risk aversion of 2 to 10.

Table 5 reports the results. As before, the effects of
frequent but relatively small jumps observed from 1997
to 2010 is negligible. Even the U.S. dollar consequences
of the nonoptimal strategy over the full sample period are
very small. For highly risk-taken investors and over a 5
years horizon, the cost of ignoring jumps is only about
$2.00.

All the relevant effects come, once again, from the
1982 to 1997 sub-period in which the average size jump
seems to be high enough to impact the portfolio alloca-
tion of equity portfolios. As we observe, the CEQ de-
creases as risk aversion increases. This suggests that, as
he becomes more risk averse, the investor holds a smaller
proportion of his wealth in risky portfolios and, therefore,
both the exposure to simultaneous jumps and the effects

Standard Diffusion Portfolio Weights
Period: Jan 82 - Feb 97

— Growth 1
— Intermediate 5||
—— Value 10

—— Riskless

Participation

2 4 6 8 10
Relative Risk Aversion Coefficient y

Jump Diffusion Portfolio Weights
Period: Jan 82 - Feb 97

: Growth 1

\ — Intermediate 5

— Value 10
Riskless

Participation

2 4 6 8
Relative Risk Aversion Coefficient y

10

Figure 2. Portfolio weights and relative risk aversion. (a) Pure-diffusion process; (b) Jump-diffusion process; This figure
shows the portfolio weights for the growth, intermediate and value Fama-French portfolios for alternative levels of relative
risk aversion. Panel A contains the weights for the pure-diffusion process, while Panel B gives the weights for the jump-dif-
fusion process. The first figure of each pand corresponds to the last sample period from March 1997 to October 2010, and
the second figure of each panel correspondsto the first sample period from January 1982 to February 1997.
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on CEQ are smaller. However, when the investor is will-
ing to accept higher risks, his optimal portfolio becomes
much more levered to buy additional risky assets. Then,
the consequences of ignoring systemic jumps should be
higher. This is exactly what we observe from Table 5

Table 5. Certainty equivalent cost of ignoring systemic
jumps.

y One year Two years Three years Four years Five years
2 0.40 0.79 1.19 1.59 1.99
3 0.19 0.38 0.58 0.77 0.96
4 0.12 0.24 0.36 0.49 0.61
5 0.09 0.17 0.26 0.35 0.44
6 0.07 0.14 0.20 0.27 0.34
7 0.06 0.11 0.17 0.22 0.28
8 0.05 0.09 0.14 0.19 0.23
9 0.04 0.08 0.12 0.16 0.20
10 0.04 0.07 0.11 0.14 0.18
Jan 82-Oct 10
Y One year Two years Three years Four years Five years
2 0.01 0.03 0.04 0.06 0.07
3 0.01 0.01 0.02 0.03 0.04
4 0.00 0.01 0.01 0.02 0.02
5 0.00 0.01 0.01 0.01 0.02
6 0.00 0.01 0.01 0.01 0.01
7 0.00 0.00 0.01 0.01 0.01
8 0.00 0.00 0.01 0.01 0.01
9 0.00 0.00 0.00 0.01 0.01
10 0.00 0.00 0.00 0.01 0.01
Mar 97-Oct 10
Y One year Two years Three years Four years Five years
2 48.40 99.14 152.34 208.12 266.59
3 11.50 23.12 34.88 46.78 58.81
4 6.01 12.06 18.14 24.26 30.42
5 3.94 7.90 11.88 15.87 19.88
6 2.89 5.80 8.71 11.62 14.55
7 2.27 4.54 6.82 9.10 11.39
8 1.86 3.72 5.58 7.45 9.32
9 1.57 3.14 4.71 6.29 7.87
10 1.36 271 4.07 5.43 6.80

Jan 82-Feb 97

This table reports the certainty equivalent costs (CEQ) of ignoring systemic
jumps calculated as the additional wealth per $1,000 of investment needed
to raise the expected utility of terminal wealth under the suboptimal portfo-
lio strategy to that under the optimal investment strategy. The table contains
the CEQ for investment horizons of 1 to 5 years, and for levels of relative

risk aversion (;/) from 2 to 10.
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and Figure 3. For highly levered portfolios, the CEQ
goes from $48.40 for a 1-year horizon to $266.50 for the
longest horizon per $1000 of investment. It should not be
surprising that the higher the leverage position of an in-
vestment is, the higher the impact of jumps on portfolio
strategies. It should be recognized however, that the dol-
lar effects diminish very rapidly as the investor becomes
more risk averse. For y =4, even for the longest hori-
zon of 5 years, the CEQ is $30.42 per $1000 which does
not seem to be substantial.
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Figure 3. Certainty equivalent cost of ignoring systemic
jumps. This figure shows the certainty equivalent costs
(CEQ) of ignoring systemic jumps calculated as the addi-
tional wealth per $1,000 of investment needed to raise the
expected utility of terminal wealth under the suboptimal
portfolio strategy to that under the optimal investment
strategy. The figure contains the CEQ for investment hori-
zons of 1to 5 years, and for levels of relative risk aversion

() from 2to 10. The first figure corresponds to the last

sample period from March 1997 to October 2010, and the
second figure of each panel corresponds to the first sample
period from January 1982 to February 1997.
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4.4. Sample Aver age Riskless Rate

In the previous discussion, we impose a 0.5% monthly
riskless rate for the full sample period and for both sub-
periods. Although this is a reasonable riskless rate for the
first sub-period, it may be too high for the second sub-
period. For this reason, we estimate again the model from
1997 to 2010 imposing the actual average riskless rate of
0.5% per month or 3% per year. It must be noted that the
interest rate affects the parameter estimates and, there-
fore, it may have consequences for the general conclu-
sions about the optimal portfolio allocation during the
second sub-period.

Table 6 reports the results affected by the riskless rate.
The empirical evidence is almost identical to the evi-
dence contained in Tables 2, 3 and 5. The average size of
jumps is even slightly lower, and the frequency of the
jumps is now 1.231 relative to the previous estimate of
0.938. Thus, the frequency of the simultaneous jumps is
higher than the one reported in Table 2. Once again, this
sub-period is characterized by many jumps of small av-
erage amplitude. The effects of jumps on the portfolio
weights and on the cost of ignoring jumps are very simi-
lar to the previously reported results. As expected, given
that now the risk-free investment offers a lower rate, the
optimal amount of the risky portfolios is higher with re-
spect to the allocation shown in previous tables. However,
the effects about the distribution of resources among
book-to-market portfolios with or without jumps are neg-
ligible. All our previous conclusions remain the same

Table 6. Jump diffusion parameter and weight estimates
March 1997-October 2010 for the sample average annua-
lized riskless rate of 3%. (a) Parameter estimates for the
jump process’; (b) Comparison between higher order sam-
ple moments of returns and the jumps process theoretical
higher order moments’; (c) Diffusion weights, jump-diffu-
sion weights and certainty equivalent costs (CEQ)°®.

(a)
m 2 3 Avg
0.707 —1.033 -0.211 -0.179
1 2 3 Avg
8.161 4.953 6.618 6.577
A Year (s)
1.231 0.07
(b)
Growth BM - ME 5 Value
Sample Skewness 0.250 —0.438 —0.033
Model Skewness 0.235 —0.429 —0.082
Sample Kurtosis 2.478 1.805 2.306
Model Kurtosis 2.476 1.808 2.301
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(©
Diffusion weights

G 5 \% Riskless Risky
1 —4.45 322 4.45 -2.22 322
2 —2.23 1.61 2.23 —-0.61 1.61
3 —1.48 1.07 1.48 -0.07 1.07
4 -1.11 0.80 1.11 0.20 0.80
5 —0.89 0.64 0.89 0.36 0.64
6 -0.74 0.54 0.74 0.46 0.54
7 —0.64 0.46 0.64 0.54 0.46
8 —0.56 0.40 0.56 0.60 0.40
9 —0.49 0.36 0.49 0.64 0.36
10 —0.45 0.32 0.45 0.68 0.32

Jump Diffusion Weights

G 5 \% Riskless Risky
1 —4.42 2.95 4.42 —-1.95 2.95
2 —2.22 1.51 221 —-0.51 1.51
3 —1.48 1.01 1.48 —0.01 1.01
4 -1.11 0.76 1.11 0.24 0.76
5 —0.89 0.61 0.89 0.39 0.61
6 —0.74 0.51 0.74 0.49 0.51
7 —0.63 0.44 0.63 0.56 0.44
8 —0.55 0.38 0.55 0.62 0.38
9 —0.49 0.34 0.49 0.66 0.34
10 —-0.44 0.31 0.44 0.69 0.31

Certainty Equivalent Cost

G 5 v Riskless Risky
2 0.04 0.08 0.12 0.17 0.21
3 0.02 0.04 0.06 0.09 0.11
4 0.01 0.03 0.04 0.06 0.07
5 0.01 0.02 0.03 0.04 0.05
6 0.01 0.02 0.02 0.03 0.04
7 0.01 0.01 0.02 0.03 0.03
8 0.01 0.01 0.02 0.02 0.03
9 0.00 0.01 0.01 0.02 0.02
10 0.00 0.01 0.01 0.02 0.02

"Panel A reports the estimates of the parameters for the jump-diffusion
portfolio returns for an annualized riskless rate of 3%. "Panel B contains the
reconstructed moments and the sample moments. “Panel C these tables gives
the portfolio weights for an investor who ignoring systemic jumps, the
optimal weights when the investor recognized systemic jumps and the cer-
tainty equivalent costs (CEQ) of ignoring systemic jumps calculated as the
additional wealth per $1,000 of investment needed to raise the expected
utility of terminal wealth under the suboptimal portfolio strategy to that
under the optimal investment strategy.

even with a much lower riskless rate.
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4.5. Specification Testswith a Pre-Specified
Weighting Matrix

Up to now, the statistical performance of the model has
been very informal. Intentionally, our discussion has
been based mainly on economic intuition rather than sta-
tistical formality. We finally want to test the overall fit of
the model. The test-statistic is the GMM test of overiden-
tification restrictions.

We denote by f,(6) the K-vector of moment condi-
tions containing the pricing errors generated by the
jump-diffusion model at time ¢, and by & the set of pa-
rameters to be estimated. The corresponding sample av-
erages are denoted by g, (). Then, the GMM estimator
procedure minimizes the quadratic form
g (49), W,g,(0) where W, is a weighting squared
matrix. The evaluation of the model performance is car-
ried out by testing the null hypothesis T [Dist(ﬁ)] =0,

with Dist =4/ g, (6)' W,g,(0) where the weighting ma-

trix, W, is in our case the identity matrix. If the weighting
A\ 2

matrix is optimal, T [Dist(ﬁ)} is asymptotically dis-

tributed as a Chi-square with K—P—/ degrees of freedom,
where P is the number of parameters. However, for any
other weighting matrix (including the identity matrix),
the distribution of the test statistic is unknown. Reference

A2
[12] shows that, in this case, T [Dist(@ﬂ is asymptoti-

cally distributed as a weighted sum of K—P—-/ indepen-
dent Chi-squares random variables with one degree of
freedom. That is

K-P-1

T[Dz’st(é)]z —5 Y A2 (1) (7)

where A4, for i=12,---,K—P—1, are the positive ei-
genvalues of the following matrix:

A=Slw) [IK -(my? )71 D, (Dw,D,)"

oo ()

in which X"? means the upper-triangular matrix from
the Choleski decomposition of X, and /[, is a K-di-
mensional identity matrix. Moreover, S, and D, are
given by,

> 1(6)1(6)

ST — =1
T
o (6)/2(9)
D, :%

Therefore, in order to test the different models we es-
timate, we proceed in the following way. First, we esti-
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mate the matrix A4 and compute its nonzero K—P-I
eigenvalues. Second, we generate {v,,},

h=12,---,100, i=1,2,---,K—P—1, independent ran-
dom draws froma y’ (1) distribution. For each 4,

u, =ZK_P_1 Av,, is computed. Then we compute the

h i=1
N2
number of cases for which u, >T [Dist(&)} . Let p de-

note the percentage of this number. We repeat this pro-
cedure 1000 times. Finally, the p-value for the speci-
fication test of the model is the average of the p values
for the 1000 replications.

It turns out that we are not able to reject the jump-
diffusion model in any of the alternative sample periods
employed in the estimation. The p-values for the full
sample period, the first sub-period, and the second sub-
period are 0.257, 0.103, and 0.676 respectively. These
results suggest that the jump-diffusion model fits the
actual data better from 1997 to 2010 than from 1982 to
1997. This is the case despite the poor reconstruction of
the actual skewness for the value portfolio from 1997 to
2010.

4.6. Conclusions

Given the tendency of globalization and increasing inte-
gration of financial markets, it is generally accepted that
equity portfolios of different characteristics and also in-
ternational equities are characterized by simultaneous
jumps. We investigate the effects of these jumps on op-
timal portfolio allocation using value and growth stocks
and two different sub-periods. It seems that the effects of
systemic jumps may be potentially substantial as long as
market equity returns experiment very large average
(negative) sizes. However, it does not seem to be relevant
that stock markets experience very frequent jumps if they
are not large enough to impact the most levered portfo-
lios. All potentially relevant effects are concentrated in
portfolios financed with a considerable amount of lever-
age. In fact, for conservative investors with low leverage
positions the potential effects of systemic jumps on the
optimal allocation of resources are not substantial even
under large average size jumps. Finally, the value pre-
mium is particularly high when the average size of the
jumps of value stocks is positive, large and relatively
infrequent, while the average size of growth stocks is
also very large but negative. It seems therefore plausible
to conclude that the magnitude of the value premium is
closely related to the characteristics of the jumps experi-
enced by value and growth stocks.
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