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ABSTRACT 

Given the striking effects of the recent financial turmoil, and the importance of value and growth portfolios for both 
local and international portfolio allocation, we investigate the effects of systemic jumps on the optimal portfolio in- 
vestment strategies across value and growth equity portfolios. We find that the cost of ignoring systemic jumps is not 
substantial, unless the portfolio is highly levered and the average size amplitude of the jump is large enough. From the 
optimal asset allocation point of view, it seems more important the effects of few but relatively large jumps than highly 
frequent but small jumps. Indeed, the period in which the value premium is higher coincides with a period of few, but 
large and positive average size jumps for value stocks, and negative and very large average size jumps for growth 
stocks. 
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1. Introduction 

The value premium is one of the most relevant anomalies 
discussed in the asset pricing literature. Value stocks, 
which are characterized by high book-to-market ratios, 
earn higher average returns than growth stocks. In prin- 
ciple, growth options strongly depend upon future eco- 
nomic conditions which suggest that growth stocks 
should have higher betas than value stocks. Using monthly 
data from January 1963 to December 2010, the market 
beta of the Fama-French growth portfolio is 1.067 while 
the market beta of the value portfolio is 1.068. Although 
contrary to the theoretical prediction these betas are ba- 
sically the same, it turns out that the annualized average 
return of the growth portfolio is 9.6% while the annua- 
lized average return of the value portfolio is 16.5%. This 
represents a value premium of 6.9% which is even higher 
that the well known market equity premium magnitude 
of 5.5% for the same sample period.1 A key issue of the 
research agenda of the asset pricing literature is to under- 
stand why value stocks earn higher average returns than 
growth stocks. This paper does not pretend to answer this 
question.2 On the contrary, our paper takes this anomaly 
as given to investigate optimal asset allocation decisions 
between value and growth portfolios. In particular, the 

paper investigates the effects of systemic jumps on the 
asset allocation decision between these two key charac- 
teristics of equity returns.  

Recent financial crisis has shown that the failures of 
large institutions can generate large costs on the overall 
financial system. Systemic risk is one of the main issues 
to be resolved by the new regulation of financial markets 
over the world. It seems widely accepted that previous 
regulation focuses excessively on individual institutions 
ignoring critical interactions between institutions.3 These 
interactions are the leading source of systemic risk 
around the world. From this point of view, it is important 
to analyze the impact of systemic risk on portfolio asset 
allocation among potential institutional investors. Given 
that two of the most popular investment strategies of 
large institutional investment employ value and growth 
assets, this paper analyzes how relevant is to ignore sys- 

2In [1] it is argued that costly reversibility and countercyclical market 
price of risk cause assets in place to be harder to reduce so they, in fact
become riskier than growth options. A related argument is given in [2] 
which employs nonseparability between durable and nondurable con-
sumption to show that value stocks are more procyclical than growth 
stocks. This implies that they perform especially badly during eco-
nomic downturns. However, recent evidence provided in [3] shows 
that the q-theory dynamic investment framework fails to explain the 
value spread. This is the case despite the fact that in [4] it is argued that 
a simple three-factor model inspired on the q-theory of investment is 
able to explain anomalies associated with short-term prior returns, 
financial distress, net stock issues, asset growth, earnings surprises, 
and some valuation ratios. 
3See [5] for a clarifying discussion of these issues. 

1These numbers correspond to the 10 Fama-French monthly portfolios 
sorted by book-to-market, and using a value-weighted scheme to ob-
tain the portfolio returns. The value premium using an equally-
weighted approach is an even much higher 14.0% on annual basis. 
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temic risk on the ex-post performance of these strategies. 
We understand systemic risk as the risk arising from in- 
frequent but arbitrarily large jumps that are highly corre- 
lated across the world and across a large number of as- 
sets. 

We borrow from the mathematical jump-diffusion 
model developed in [6] to recognize that jumps occurs at 
the same time all over the world and across all portfolios, 
but allowing that the size of the jump may be different 
across them. These authors derive the optimal portfolio 
weights when equity returns follow a systemic jump- 
diffusion process. We calibrate the model to three mon- 
thly Fama-French book-to-market portfolios where port- 
folio one is composed of securities with low book-to- 
market (growth stocks), portfolio 5 contains intermediate 
book-to-market assets, and portfolio 10 includes secure- 
ties with high book-to-market (value stocks).  

It is well known that to properly describe equity-index 
returns one must allow for discrete jumps. As shown, 
among others, in [7] jumps play an important role for 
understanding of U.S. market returns over and above 
stochastic volatility and the negative relationship be- 
tween return and volatility shocks. Reference [8] also 
shows that the relevance of jumps characterizes the 
French (CAC), German (DAX), and Spanish (IBEX-35) 
equity-index European returns. One may therefore expect 
jumps to impact optimal asset allocation between value 
and growth portfolios. Our evidence shows that this is 
not necessarily the case. We find that the effects of sys- 
temic jumps are indeed not negligible from 1982 to 1997 
for low levels of risk aversion (highly levered portfolios) 
when the frequency of jumps is small but its average size 
is large. In fact, this period is characterized by an espe- 
cially large value premium. These effects may therefore 
seem to be particularly relevant for the allocation of 
funds between growth and value portfolios. When sys- 
temic jumps are recognized, the average investor should 
optimally go long in value and short in growth in higher 
proportions than when assuming a pure diffusion process. 
However, and rather surprisingly, an average investor 
would have not been penalized ignoring systemic jumps 
from 1997 to 2010 when the frequency of jumps is much 
higher but the average magnitude is also smaller. The 
magnitude of the average jumps size seems to be very 
important to assess the impact of systemic jumps on asset 
allocation between value and growth portfolios. In the 
overall period and in both sub-periods, independently of 
using a pure diffusion or a jump-diffusion process, value 
stocks dominate growth stocks especially for highly le- 
vered portfolios. 

This paper is structured as follows. In Section 2, we 
discuss a model of equity returns that allows for systemic 
risk. Moreover, we also describe optimal portfolio weights 
when equity returns have a systemic risk component. 

Section 3 discusses the estimation procedure, and Section 
4 presents the key results of the paper using the Fama- 
French book-to-market portfolios. Concluding remarks 
are in Section 5. 

2. Asset Returns, Systemic Risk, and the  
Optimal Allocation of Equity-Returns 

This section first present a model of asset equity returns 
which is based on the asset pricing model proposed in [6]. 
This model introduces systemic risk by imposing jumps 
that occur simultaneously across all assets but also al- 
lowing for a varying distribution of the jump size across 
all portfolios. Secondly, we discuss optimal portfolio 
allocation given that the underlying assets follow a jump- 
diffusion process with systemic jumps. We compare 
these results relative to the case in which asset returns 
follow a pure diffusion process. 

2.1. Asset Equity Returns and Systemic Risk 

There is an instantaneous riskless asset which follows the 
return process given by, 

dP
rdt

P
                   (1) 

where r is the constant continuous riskless rate of return. 
Moreover, there are N risky assets in the economy. Each 
of them follows a pure-diffusion process given by the 
well known expression, 

;  1,2, ,j d d
j j j

j

dS
dt dZ j N

S
            (2) 

where jS  is the price of asset j, jZ  is a Brownian mo- 
tion, d

j  is the drift, and d
j  is the volatility, and su- 

perscript d highlights the pure diffusion character of the 
process. We denote by d  the NxN covariance matrix 
of the diffusion components where the typical component 
of this matrix is ij ij i j

d d d d     with d
ij  being the 

correlation between the Brownian shocks jdZ  and i . 
In matrix notation, 

dZ
d  is
d

 the N-vector of expected re- 
turns, d d d    , where d  is the diagonal 
matrix of volatilities, and d  is the symmetric matrix 
of correlations. 

We next allow for unexpected rare systemic events by 
introducing a jump to the process given in Equation (2). 
Following [6], we assume that the jump arrives at the 
same time across all equity portfolios, and that all portfo- 
lios jump in the same direction. Then, 

   1 ;  1,2, ,j
j j j j

j

dS
dt dZ J dQ j N

S
         (3) 

where Q is a Poisson process with common constant in- 
tensity  , and  1jJ   is the random jump magnitude 
that generates the percentage change in the price of asset 
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j if the Poisson event is observed. It is important to note 
that the arrival of jumps occur at the same time for all 
equity portfolios. We assume that the Brownian shock, 
the Poisson jump, and the jump amplitude jJ  are inde- 
pendent, and that  lnj jJ J   has a Normal distribu- 
tion  with constant mean  j  and variance 2

j . 
Therefore, the distribution of the jump size is allowed to 
be different for each portfolio, although all jumps arrive 
at the same time. 

We define   and     as the drift N-vector 
and the NxN covariance matrix of the diffusion compo- 
nents of Equation (3) respectively. It must be noted that 
they are now the drift and the covariance matrix of the 
diffusion components when there are jumps in the return 
process. In this case, we also have an additional drift, 

J , and an additional covariance matrix, J , from the 
jump components of the process. Given that we select the 
parameters of the jump-diffusion process in Equation (3) 
such that the first two moments for this process match 
exactly the first two moments of the pure diffusion pro- 
cess in Equation (2), it must be the case that, 

d J

d J

   

    
                (4) 

2.2. Portfolio Allocation 

Our representative investor maximizes the expected 
power utility defined on terminal wealth, , given by 
the well known expression 

TW
  1W 1

T TU W   , where 
0   is the constant relative risk aversion coefficient. 

We first briefly describe the optimal portfolio weights 
using the pure-diffusion process given in Equation (2). 
Denoting the vector of the proportions of wealth invested 
in risky equity portfolios by  , the optimal portfolio 
problem at t is 

 
 

1

1
TW

, maxt t E


V W




 


 
  

           (5) 

subject to the dynamic budget constraint 

 dR r 

1N r

dt
t

t

dW
dZ

W
 dt         (6) 

where  is the N-vector of excess returns, d dR  
d  is the diagonal matrix of volatilities, t  is the 

vector of diffusion shocks, and 1
dZ

N  is an N-vector of 
ones. The solution is the vector of portfolio weights ob- 
tained in [9] corresponding to the standard diffusion 
process of Equation (2), 

  11d d
op Rd




                  (7) 

When the process includes a jump component as in 
Equation (3), the dynamics of wealth for the initial 

wealth 0 1W   can be written as 

  t
t t

t

dW
R r dt dZ J dQ

W
               (8) 

where 1NR r   is the N-vector of excess returns, 
  is the diagonal matrix of volatilities, t  is the 
vector of diffusion shocks under a jump-diffusion pro- 
cess, and N

dZ

 1 21, 1, , 1t J J J J       is the vector of 
random jump amplitudes for the N equity portfolios. 

One can employ stochastic dynamic programming to 
solve for the optimal weights, 

 
   1

0 max ,t tU C E dV W t
dt

      
, 

where in this equation, we can use the generalized jump- 
diffusion Ito´s lemma to calculate the differential of the 
value function, .4 Then, the Hamilton-Jacobi-Bell- 
man equation is 

dV
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            , ,
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   (9) 

The impact of the jumps in the return process is given 
by the last term of Equation (9). This term employs the 
fact that tEdQ dt , and the assumption of indepen 
dence of the Poisson jump and the jump amplitude ex- 
cept for the fact that the jump size is conditional on the 
Poisson event happening. As usual in this type of prob- 
lems, one can guess the solution to the value function as 
having the following form: 

   
1

,
1

t
t

W
V W t F t










             (10) 

Replacing this solution into the Hamilton-Jacobi-Bell- 
man equation we get: 

   
    

   1

d1
0 max 1

d

1
    1 1 1

2 t

F t
R r

F t t

E J





 

     


    


          


   (11) 

By differentiating with respect to   we obtain the 
optimal weights with systemic jumps as the solution for 
each time t to the system of N nonlinear equations which 
must be solved numerically: 

 0 1op t op tR E J J


   
       

        (12) 

4Alternatively, we may employ the infinitesimal generator of the jump-
diffusion process in [10]. 
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It should be pointed out that if we replace Equation 
(10) into the Hamilton-Jacobi-Bellman equation and eva- 
luate at op  we obtain: 

 
 d1

d

F t
k

F t t
  , 

where, 

    

 1
1

1 1
2

1 1

op op op

op t

k R r

E J


    

 


     

     



 

We next employ the boundary condition   1F T   to 
obtain, 

   , e ek T t kF t     

Therefore, the value function is given by the expres- 
sion 

 
1

, e
1

k t
t

W
V W t











              (13) 

2.3. Certainty Equivalent Cost 

As an additional analysis of the effects of ignoring sys- 
temic risk on asset allocation, we can also calculate the 
certainty equivalent cost (CEQ hereafter) of following an 
allocation strategy that ignores the simultaneous jumps 
occurred in the data. The CEQ gives the additional 
amount in U.S dollars that must be added to match the 
expected utility of terminal wealth under the pure-diffu- 
sion suboptimal allocation to that under the optimal stra- 
tegy with the jump-diffusion process of equity returns. In 
other words, as in [6], we calculate CEQ as the marginal 
amount of money that equalizes pure-diffusion expected 
utility with the jump-diffusion expected utility. The com- 
pensating CEQ wealth is therefore computed by equating 
the following expressions: 

   1 , ; , ;d
t op t opV CEQ W t V W t         (14) 

Then, using Equation (10) we have that 

 
 

 1 1

;
1

;
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d
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F t
CEQ
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3. The Estimation Procedure to Analyze the  
Effects of Systemic Risk 

Let us start again with the pure-diffusion case given by 
Equation (2). The parameters to be estimated are 

 where  ,d d  d  and  are the N-vector of ex- 
pected returns and the NxN covariance matrix of the dif- 
fusion components. The moment conditions for individual 
equity portfolios are given by 

d

j d
t j

j

j d d d di
t ij i

i j

dS
E dt

S

dSdS
E dt

S S



   

 
 

 
 

   
 

j ij dt



      (16) 

This implies that moment conditions  can be 
estimated directly from the means and the covariance of 
the actual sample series available. 

 ,d d 

On the other hand, to derive the four unconditional mo- 
ments of the jump-diffusion process given in Equation (3), 
we follow [6] to identify the characteristic function which 
can be differentiated to obtain the moments of the equity 
portfolio returns process. We next present a detailed ex- 
position of the procedure employed to obtain the mo- 
ments under the systemic-jump-diffusion process. 

3.1. The Characteristic Function 

We first write the previous process in log returns with 
 lnj jX S . It is well known that the pure-diffusion 

process in Equation (2) becomes 
d d

j j jdX dt dZ   j ,           (17) 

where  2
1 2d d d   j j . As before, the model in 

matrix notation is , where 
j

d ddX dt dZ   d  is 
the N-vector of expected returns, and d  is the dia- 
gonal matrix of volatilities. On the other hand, the 
jump-diffusion return process can be written as 

 j j j j jdX dt dZ J dQ            (18) 

where 21 2j j j    . Hence, in matrix notation, the 
continuously compounded asset return vector for the 
jump-diffusion model satisfies the following stochastic 
differential equation dX dt dZ JdQ    , where 
  is the N-vector of expected returns,   is the dia- 
gonal matrix of volatilities for the jump-diffusion case, 
and J is the N-vector of jump amplitudes. The N-vector 
of the average size of the jumps amplitude is denoted 
by  , while the diagonal variance matrix of the size of 
the jumps is denoted by  . 

As mentioned before, the theoretical moments for 
the jump-diffusion process are calculated using the 
characteristic function which in turn can be derived 
from the Kolmogorov theorem. We formally work in a 
probability space  , ,    where, in the jump-diffu- 
sion case, both the process Q and the Brownian motion 
Z generate the filtration t . The conditional charac- 
teristic function of the process X conditioned on t  is 
defined as the expected value of , where 

1

e Ti X 

 , , N    
t

 is the argument of the characteristic 
function,  , given by 

    , , , , , e Ti X
T tX T t X E        t     (19) 

where T t   . 
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From the process X, we know that , ,   and   
are constant on X. Therefore, under some technical 
regularity conditions discussed in [10], the conditional 
characteristic function has an exponential affine form 
given by 

     , ,, , e t tA B
t tX        tX          (20) 

According to the Feynman-Kac theorem, the condi- 
tional characteristic function is the solution to 

t
t t


  


 ,                (21) 

where  is the infinitesimal generator for the jump- 
diffusion process X given by 
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2

1
Trace

2

      d

t t
t

t t
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X Y X
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and

,   (22) 

where, as already pointed out,  is the jump ampli- 
tude Normal distribution. The boundary condition for 
the differential equation is the value of the conditional 
characteristic function at the equity portfolio horizon 

. Thus, from Equation (20), it 
must be the case that  0, 0TA    iT



  i0, , e TX
T TX   

  0,B   . 
t the expressions for the functions 

 ,tA
In order to find ou

   and  ,tB   , Equa ) is replaced into 
Equation (22) to obtain 

tion (20

   ,1
e 1 d
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A B
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        Y

,   (23) 

where    . 
Thus, the two ordinary differential equations are 

     

 

,, 1
e 1 d
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(24) 

The second expression in Equation (24) implies that 
B does not depend on  . Thus, using the boundary 
condition, we obtain  , itB    . We now replace B 
in the first equation, we integrate, and we use the re- 
maining boundary condition to get 

   i1
, i e 1 d

2 N

Y
tA 

The integral in the right hand side of Equation (25) 
can be recognized as the jump amplitude’s characteris- 
tic function, given that the random variable J follows a 
Normal distribution: 

 i 1
e d exp i

2N

Y JY    



      
   

Therefore, 

 ,

1 1
i exp i

2 2

t

J

A  

                          

, (26) 

and, finally, the characteristic function is given by 

  1
, , exp i

2

1
exp i i

2

t t

J
t

X
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      (27) 

3.2. Unconditional Moments 

Using the characteristic function one can derive the K co- 
moments throughout the following expression: 

 
1 2

1 21 2
1 2 0

, ,
, , , iN

N

K
t tkk k K
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where 
1

N

jj
K k


  . The gradient and the Hessian,  

Y        




         






 

(25) 

   and 2      are used to find the first and 
second moments respectively. For the one-period invest- 
ment horizon, 1  , and using the conversion from the 
noncentral to central moments we obtain the mean, co- 
variance, coskewness, and excess kurtosis:5 

2
1

1
1

2 N           
 

        (29) 

 2 I                     (30) 

    1 2 2 2
3 2 1 1N NI        

      
  (31) 

 4 4 2 2 4
4 3 1 6N                 (32) 

In the expressions above, I is the NxN matrix of ones, 
and  denotes the N-times element-by-element multi- 
plication. It should be noted that 1


  and 4  are N- 

vectors, and 2  and 3  are NxN matrices. 
If we now compare the mean and covariance for the 

5A technical appendix is available from the authors upon re-
quest. The Appendix derives the unconditional moments using 
alternative procedures. These derivations extend and complete 
the mathematical technicalities suggested in [6]. 
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jump-diffusion process above with those for the pure- 
diffusion processes for 0  , we observe that 

J                   (33) 

J I                    (34) 

Then, the diffusion moments of the jump-diffusion 
process are retrieved using the expressions in Equation (4) 
as: 

d                    (35) 

d I                     (36) 

From the moment conditions in Equations (29)-(32) 
the parameters to be estimated are  , , , ,    . For the 
universe of N assets there are N jump amplitude means 
and N jump amplitude volatilities. This represents 2N+1 
parameters to be estimated including the Poisson inten- 
sity  . On the other hand, there are  co-skewness 
moments and N excess kurtosis moments for a total of 

 moment conditions to be employed in the 
generalized method of moment (GMM) estimation pro- 
cedure. 

2N

  1N N

3.3. Sampling Moments 

The sampling mean and co-moments of a variable X with 
respect to variable Y are: 

1

1 T
X

t
t

m X
T 

   

  2
1

1

1

T
XY X Y

t t
t

m X m Y
T 

 
  m  

  1

1

T rXY X Y
r r t t

t

m   




   

for  and 3r    2
X X XY
t tX m m   , where r  is 

the adjustment term for the unbiasedness correction. 

4. Optimal Allocation for Value and Growth  
Portfolios with Systemic Risk: Empirical  
Results 

We estimate the model using 3 portfolios from the 10 
monthly book-to-market sorted portfolios taken from 
Kenneth French’s web page. Portfolio 1 contains the 
companies with low book-to-market, while portfolio 10 
includes assets with high book-to-market. We refer to 
portfolio 1 as the growth portfolio, and portfolio 10 as 
the value portfolio. We also employ portfolio 5 denoted 
as the intermediate portfolio. In order to pay special at- 
tention to these characteristics we use the equally- 
weighted scheme of the individual stocks rather than the 
more popular value-weighted portfolios. This weighting 

4.1. Parameter Estimates for the Jump-Diff

approach also amplifies the value effect anomaly. 

usion  
Return Process 

mont ook-to-market portfolios for the 
Table 1 reports the descriptive statistics of the three 

hly Fama-French b
full sample period from January 1982 to October 2010,  
 
Table 1. Descriptive statistics for the fama-french growth 
nd value portfolios. (a) Moments of the monthly returnsa; a

(b) Correlation coefficientsb. 

(a) 

Jan 82-Oct 10 Growth BE-ME 5 Value 

Mean % 0.493 1.306 1.813 

Volatility % 7.681 5.356 6.314 

Skewness 0.043 −0.768 −0.006 

Kurtosis 3.508 3.898 4.376 

Mar 97-Oct 10    

Mean % 0.537 1.113 1.618 

Volatility % 9.053 6.046 7.452 

Skewness 0.250 −0.438 −0.033 

Kurtosis 2.478 1.805 2.306 

Jan 82-Feb 97    

Mean % 0.454 1.479 1.989 

Volatility % 6.217 4.657 5.091 

Skewness −0.560 −1.298 0.190 

Kurtosis 4.071 8.037 8.716 

(b) 

Jan 82-Oct 10 Growth BE-ME 5 Value 

Growth 1.000 0.892 0.819 

BM-ME 5  1.000 0.890 

Value   1.000 

Mar 97-Oct 10 Growth BE-ME 5 Value 

Growth 1.000 0.868 0.802 

BM-ME 5  1.000 0.899 

Value   1.000 

Jan 82-Feb 97 Growth BE-ME 5 Value 

Growth 1.000 0.938 0.855 

BM-ME 5  1.000 0.879 

Value   1.000 

aPanel A  reports the first four mome  monthly ns 
for the gr  value portfolios constructed by ma-French eir 

 of this table nts of the  retur
owth and Fa using th

ten book-to-market sorted portfolios, where the first portfolio is the growth 
portfolio, portfolio BE-ME 5 is the intermediate portfolio, and the last port- 
folio is the value portfolio. The data for the full period goes from January 
1982 to October 2010, while the sub-periods contain data from January 1982 
to February 1997 and from March 1998 to October 2010. bPanel B of the 
table gives the correlation coefficients among the monthly returns for the 
growth, intermediate, and value portfolios. 
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and two sub-periods from January 1982 to February 1997, 
and from March 1997 to October 2010. Both sub-periods 
contain episodes with large negative shocks. The first 
sub-period includes the market crash of October 1987, 
the Gulf War I in August 1990, and the Mexican crisis in 
December 1994. On other hand, the second sub-period 
contains the Asian crisis of July 1997, the Russian crisis 
of August 1998, the bursting of the dot.com bubble, the 
terrorist attack of September 2001, the outbreak of the 
Gulf War II in March 2003, the beginning of the sub- 
prime crisis, and the Lehmann Brothers default in Sep- 
tember 2008. 

Panel A of Table 1 shows that the use of the equally- 
weighted growth and value portfolios leads to an impres- 
si

sting behaviour. For the full period, the 
gr

 
sh

 

Ta

ve value premium of 15.8% on annual basis for the full 
sample period. Moreover, the value premium is 13.0% 
and 18.4% for the second and first sub-periods respect- 
tively. As expected, the annualized volatility of the 
growth portfolio is higher than the corresponding volatil- 
ity of the value portfolio is all three sample periods. On 
annual basis, the growth volatility premium is 4.7% for 
the full period, and 5.6% and 3.9% for the second and 
first sub-periods respectively. Indeed, the growth portfo- 
lio seems to be riskier than the value portfolio. The 
problem is, of course, the enormous average return of the 
value portfolio. 

The third and fourth moments of both portfolios also 
present an intere

owth portfolio has positive skewness, while the value 
portfolio has a slightly negative skewness. Moreover, 
growth stocks have lower kurtosis than the value portfo- 
lio. The overall behaviour is the consequence of two very 
different sub-periods. From 1997 to 2010, the value port- 
folio has negative skewness, and, on the contrary, growth 
stocks have positive skewness. The excess kurtosis is 
similar for both portfolios. However, from 1982 to 1997, 
we report a very high negative skewness for the growth 
portfolio, and a positive skewness for value stocks. Simi- 
larly, the behaviour of excess kurtosis is also surprising. 
Value stocks present a much higher kurtosis than the 
growth portfolio. The changes observed in both skewness 
and kurtosis from one sub-period to the other for growth 
and value portfolios are striking and deserve further at-
tention. For completeness, Figure 1 shows the density 
functions for both sub-periods of the growth, intermedi-
ate and value portfolios, and the QQ plots to assess the 
deviations of their returns from the Normal distribution. 

Panel B of Table 1 reports the correlation coefficients 
among the three book-to-market portfolios. The results

ow that from 1997 to 2010 the value and growth port- 
folios are less correlated than in the previous sub-period. 

Panel A of Table 2 contains the parameter estimates 
obtained by the generalized method of moments with the 

ble 2. Parameter estimates for the returns processes with 
jumps. (a) Parameter estimates for the jump processa; (b) 
Comparison between higher order sample moments of re- 
turns and the jumps process theoretical higher order mo- 
mentsb. 

(a) 

Period Jan 82 - Oct 10 M  97 - Oct 10 ar Jan 82 - Feb 97

1  −0.035 0.768 −7.112 

2  −3.479 −1.218 −10.088 

3  −0.409 −0.280 0.523 

Avg −1.307 −0.243 −5.559 

1  12.804 8.761 14.506 

2  8.519 5.292 10.859 

3  11.117 7.091 15.891 

Avg 10.814 7.048 13.752 

 0.152 0.938 0.031 λ

Year (s) 0.55 0.09 2.72 

(b) 

Jan 82 - Oct 10 Growth BE-ME 5 Value 

mple Skewness 0.043 −0.768 Sa −0.006 

Model Skewness −0.006 −0.787 −0.091 

Sample Kurtosis 3.508 3.898 4.376 

Model Kurtosis 3.498 3.894 4.359 

Mar 97-Oct 10 Growth BE-ME 5 Value 

mple Skewness 0.250 −0.438 Sa −0.033 

Model Skewness 0.226 −0.438 −0.093 

Sample Kurtosis 2.478 1.805 2.306 

Model Kurtosis 2.512 1.817 2.287 

Jan 82-Feb 97 Growth BE-ME 5 Value 

Sample Skewness −0.560 −1.298 0.190 

Model Skewness −0.616 −1.390 0.091 

Sample Kurtosis 4.071 8.037 8.716 

Model Kurtosis 4.066 8.045 8.674 

aPanel A of ports estim he para  the jum fu-
sion tained b izing th  of the e 

 

this table re
portfolio returns ob

ates of t
y minim

meter for
e square

p-dif
 differenc

between the theoretical moment conditions and the moments implied by the

data. j , for j = 1, 2, 3, refers to the mean of the jump size for the growth, 

intermediate, and value portfolios respectively. j , for j = 1, 2, 3, is the 

volatility of the jump size for the growth, intermediate, and value portfolios 
respectively. These estimates are given in percen e terms. Avg gives the 
average magnitude of the average and volatility jump sizes across portfolios, 

tag

  represents the frequency of the jumps, and Year (s) is the number of 
years necessary to observe a jump according to the jump-diffusion process. 
bPanel B contains the reconstructed moments that are obtained by substitut-
ing the parameter estimates in the theoretical model, and the sample mo-
ments.  
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(a) 

 
(b) 

Figure 1. Density functions and QQ plots; (a) March 1997-October 2010; (b) January 1982-February 1997. 
 

entity id matrix using Equations (29)-(32). The estimated 
value for   of 0.152 for the full sample period implies 
that on average the chance of a simultaneous jump in any 
month across book-to-market portfolios is about 15%, or 
one jump is expected every 6.6 months or, equivalently, 
0.55 years. The average size of the jump across three 
portfolios is −1.307, and it seems much higher (in abso- 
lute value) for the value portfolio than for the growth 
stocks. Although, the intermediate portfolio has the 
highest average size of the jump, the volatilities of the 

value portfolios. 
As before, the more interesting results come from the 

changing behavior of the growth and value stocks across 
sub-periods. The estimated value for 

size of the jumps are higher for the extreme growth and 

  of 0.938 from 
1997 to 2010 implies that on average the chance of a 
simultaneous jump in any month across book-to-market 
portfolios is almost 94%, or one jump i  expected every 
1.1 months or 0.09 years. Hence, the frequency of simul- 
taneous jumps in the last sub-periods is extremely high. 

s
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However, during this sub-period, the average size of the 
jump is −0.243 which is a relatively low relative to the 
estimate for the full sample period. This relatively small 
average size is partly due to the compensation between 
the positive average size for growth stocks, and the nega- 
tive average size for value stocks. Hence, form 1997 to 
2010, growth stocks have on average positive jumps, 
while value stocks present on average negative jumps. At 
the same time, the volatility of the size of the jumps 
seems to be lower than the volatility for the full sample 
period. The crisis episodes of the last decade or so, seems 
to affect much more negatively value than growth stocks. 
This is clearly consistent with the negative (positive) 
skewness for the value (growth) stocks from 1997 to 
2010. The economic implication is that value stocks 
seem to be more pro-cyclical than growth stocks.  

Once again, the estimation results are very different 
for the first sub-period from 1982 to 1997. The estimated 
value for   of 0.031 from 1982 to 1997 implies that, on 
average, the chance of a simultaneous jump in any month 
ac

ts. As before, the comparison exercise is 
pe

e return process follows the 
Equation (3). The parameters 

rocess are those reported in 

em- 
pl

nition of jumps diminishes the 
di  

ross book-to-market portfolios is about 3%, or one 
jump is expected every 32.3 months or 2.7 years. Hence, 
the frequency of simultaneous jumps in the first sub- 
period is much lower than in the most recent sub-period. 
This is, by itself, a relevant result. During the last four- 
teen years, there seems to be many more systemic jump 
episodes than during the previous fifteen years. Some- 
how surprisingly, however, the average size of the jump 
from 1982 to 1997 is strongly negative and much larger 
in absolute value than during the last sub-period. Also, 
the volatility of the size of the jumps is much larger than 
the volatility reported from 1997 to 2010. Interestingly, 
the average size of the jump is positive (negative) for 
value (growth) stocks which are precisely the opposite 
reported from 1997 to 2010. Again, this is consistent 
with the negative (positive) skewness for the growth 
(value) portfolio shown in Table 1. It is also important to 
point out that it is precisely in this sub-period when the 
value premium is as high as 18.4% on annual basis. The 
jumps of the first sub-period are therefore much less fre- 
quent but of larger magnitude than the jumps observed 
from 1997 to 2010. The relatively few but larger jumps 
affect more negatively growth stocks, while very fre- 
quent although smaller jumps impact more negatively 
value stocks. Again, it should be recalled that the value 
premium is much larger from 1982 to 1997 than from 
1997 to 2010. 

Panel B of Table 2 compares the reconstructed mo- 
ments that are obtained by substituting the parameter 
estimates in the theoretical jump-diffusion model and the 
sample momen

rformed for each of the three sample periods. Overall, 
the jump-diffusion model captures very well the sample 
excess kurtosis for all time periods and portfolios. How- 

ever, the model seems to have more problems fitting the 
magnitudes of the asymmetry of the distribution of re- 
turns. This is especially true for the value portfolio, 
where the theoretical process overstates the magnitude of 
skewness. This result comes basically from the bad per- 
formance of the model capturing the skewness of value 
stocks from 1997 to 2010. The jump-diffusion process 
generates much more negative skewness than the one 
observed in the data. 

4.2. Portfolio Weights 

We want to solve numerically Equation (12) to obtain the 
optimal weights when th
jump-diffusion model of 
we employ for the return p
Panel A of Table 2. We also assume that the annualized 
risk-free rate is equal to 6%, and we solve for optimal 
weights assuming 10 alternative values of the relative 
risk aversion coefficient. As the benchmark case, we use 
the pure-diffusion model where the optimal weights are 
given by the well known expression in Equation (7). 

Panel A of Table 3 contains the equity portfolio allo- 
cation results for the benchmark case, while Panel B re- 
ports the results for the jump-diffusion model. The re- 
sults show that, independently of the sample period 

oyed and the level of risk aversion, value stocks re- 
ceive a higher investment proportion of funds than 
growth stocks. The optimal allocation implies in all cases 
to go long in the value portfolio and short on the growth 
portfolio. This is also true whether we recognize simul- 
taneous jumps across assets or not. This is, of course, 
what a zero-cost investment on the HML portfolio in [11] 
precisely does. Surprisingly, for the full sample period, 
the intermediate book-to-market portfolio dominates the 
value portfolio due to the large weights this portfolio gets 
from 1982 to 1997. For this first sub-period, it must be 
pointed out that, when we incorporate jumps, the value 
portfolio indeed gets more proportion of wealth than the 
intermediate portfolio but only for the most levered posi- 
tion. It is interesting to observe the important impact that 
jumps have in this case for the nonconservative investor. 
The proportion invested in the intermediate assets de- 
creases from 28.7% without jumps to 17.4% with jumps, 
while the same proportions go from 14.0% to 18.5% for 
the value portfolio. 

Finally, the value portfolio dominates the investment 
in the risky component of the optimal asset allocation for 
the 1997 to 2010 sub-period independently of recognize- 
ing jumps or not. 

From Panel C of Table 3, where we report the differ- 
ences in weights between the benchmark case and the 
jump-diffusion model, we observe that, for the overall 
sample period, the recog

fferences in the sense of increasing the long position on 
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(a) 

 
Table 3. Portfolio Weights. (a) Diffusion Weightsa; (b) Jump-diffusion (Systemic) Weightsb; (c) Diffusion-Jump Weight Dif-
ferencesc. 

γ G 5 V Riskless Risky γ G 5 V Riskless Risky γ G 5 V Riskless Risky

1 −9.27 7.39 6.95 −4.07 5.07 1 −3.96 1.83 4.55 −1.42 2.42 1 −30.03 28.68 14.02 −11.68 12.68

2 −  4.64 3.  69 3  .48 −1.54 2.54 2 −1.98 0.91 2.28 −0.21 1.21 2 −1 15.0 1  4.34 7  .01 −5.34 6.34

3 −3.09 2.46 2.32 −0.69 1.69 3 −1.32 0.61 1.52 0.19 0.81 3 −10.01 9.56 4.67 −3.23 4.23

4 −2.32 1.85 1.74 −0.27 1.27 4 −0.99 0.46 1.14 0.39 0.61 4 −7.51 7.17 3.51 −2.17 3.17

5 −1.85 1.48 1.39 −0.01 1.01 5 −0.79 0.37 0.91 0.52 0.48 5 −6.01 5.74 2.80 −1.54 2.54

6 −1.55 1.23 1.16 0.15 0.85 6 −0.66 0.30 0.76 0.60 0.40 6 −5.00 4.78 2.34 −1.11 2.11

7 −1.32 1.06 0.99 0.28 0.72 7 −0.57 0.26 0.65 0.65 0.35 7 −4.29 4.10 2.00 −0.81 1.81

8 −1.16 0.92 0.87 0.37 0.63 8 −0.49 0.23 0.57 0.70 0.30 8 −3.75 3.59 1.75 −0.58 1.58

9 −1.03 0.82 0.77 0.44 0.56 9 −0.44 0.20 0.51 0.73 0.27 9 −3.34 3.19 1.56 −0.41 1.41

10 −0.93 0.74 0.70 0.49 0.51 10 −0.40 0.18 0.46 0.76 0.24 10 −3.00 2.87 1.40 −0.27 1.27

 Jan 82-Oct 10  Ma Oct 10 r 97-  Jan 82-Feb 97 

(b) 

γ G 5 V Riskless Risky γ G 5 V Riskless Risky γ G 5 V Riskless Risky

1 −8.88 5.87 7.17 −3.16 4.16 1 −3.93 1.66 4.54 −1.26 2.26 1 −26.70 17.44 18.50 −8.24 9.24

2 −  4.49 3.  14 3  .56 −1.21 2.21 2 −1.97 0.85 2.27 −0.15 1.15 2 −13.74 1  0.09 8  .60 −3.94 4.94

3 −3.01 2.14 2.36 −0.50 1.50 3 −1.31 0.57 1.51 0.23 0.77 3 −9.26 7.06 5.58 −2.38 3.38

4 −2.26 1.62 1.77 −0.13 1.13 4 −0.99 0.43 1.14 0.42 0.58 4 −6.98 5.43 4.13 −1.57 2.57

5 −1.81 1.31 1.42 0.09 0.91 5 −0.79 0.35 0.91 0.53 0.47 5 −5.60 4.41 3.28 −1.08 2.08

6 −1.51 1.09 1.18 0.24 0.76 6 −0.66 0.29 0.76 0.61 0.39 6 −4.68 3.71 2.71 −0.74 1.74

7 −1.29 0.94 1.01 0.35 0.65 7 −0.56 0.25 0.65 0.67 0.33 7 −4.02 3.20 2.32 −0.50 1.50

8 −1.13 0.82 0.88 0.43 0.57 8 −0.49 0.22 0.57 0.71 0.29 8 −3.52 2.81 2.02 −0.32 1.32

9 −1.01 0.73 0.79 0.49 0.51 9 −0.44 0.19 0.50 0.74 0.26 9 −3.13 2.51 1.79 −0.17 1.17

10 −0.91 0.66 0.71 0.54 0.46 10 −0.39 0.17 0.45 0.77 0.23 10 −2.82 2.27 1.61 −0.06 1.06

 Jan 82-Oct 10  Ma Oct 10 r 97-  Jan 82-Feb 97 

(c) 

γ G 5 V Riskless Risky γ G 5 V Riskless Risky γ G 5 V Riskless Risky

1 −0.394 1.518 −0.216 −0.908 0.908 1 −0.021 0.167 0.015 −0.161 0.161 1 −3.327 11.241 −4.478 −3.437 3.437

2 −0 3 .14 0.  551 −0 8 .07 −0.330 0.330 2 −0 8.00 0.062 0.006 −0.060 0.060 2 −1 5.27 4.  255 −1 5 .58 −1.394 1.394

3 −0.084 0.323 −0.046 −0.193 0.193 3 −0.005 0.037 0.003 −0.035 0.035 3 −0.752 2.497 −0.905 −0.840 0.840

4 −0.059 0.226 −0.032 −0.135 0.135 4 −0.003 0.026 0.002 −0.025 0.025 4 −0.526 1.743 −0.622 −0.594 0.594

5 −0.045 0.173 −0.024 −0.103 0.103 5 −0.002 0.020 0.002 −0.019 0.019 5 −0.402 1.331 −0.471 −0.458 0.458

6 −0.036 0.139 −0.020 −0.083 0.083 6 −0.002 0.016 0.001 −0.016 0.016 6 −0.325 1.074 −0.377 −0.371 0.371

7 −0.030 0.117 −0.017 −0.070 0.070 7 −0.002 0.013 0.001 −0.013 0.013 7 −0.272 0.899 −0.315 −0.312 0.312

8 −0.026 0.101 −0.014 −0.060 0.060 8 −0.001 0.012 0.001 −0.011 0.011 8 −0.234 0.773 −0.269 −0.269 0.269

9 −0.023 0.088 −0.012 −0.053 0.053 9 −0.001 0.010 0.001 −0.010 0.010 9 −0.205 0.677 −0.235 −0.236 0.236

10 −0.020 0.078 −0.011 −0.047 0.047 10 −0.001 0.009 0.001 −0.009 0.009 10 −0.183 0.602 −0.209 −0.211 0.211

 Jan 82-Oct 10  Mar 97-Oct 10 Jan 82-Feb 97 

a ig o  en e e t l he  
a e of  t e sio  i i  s  
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portfolio, and value portfolios respectively. Risky is the total weight given to all three equity portfolios. Panel B reports the optimal weights when the investor 
recognized systemic jumps. cPanel C contains the differences between the optimal weights for pure diffusion and the weights for the jump-diffusion process. 
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the value portfolio while, at the same, it suggests not 
short-selling as much on the growth portfolio.6 The rec- 

gnition of jumps implies to put relatively fewer funds in o
the risky portfolio for all levels of risk aversion, although 
this seems to be especially the case for the nonconserva- 
tive investors and, therefore, for the most levered posi- 
tions. However, the main point is that the value portfolio 
gets more weights for all  . At the end, at least from 
1982 to 2010, the use of systemic jumps in the optimal 
allocation of funds, increases the proportion of value 
stocks, reduces the amount of short-selling in the growth 
stocks, and diminishes the proportion of funds invested 
in the intermediate portfolio.  

As in other cases, the results of the full sample period 
seem to be the consequences of two different sub-periods. 
The effects of jumps from 1997 to 2010 are, to all effects, 
ne

os in the total proportion 
in

ude of the jumps is large enough. 
Fr

gligible. The differences of optimal weights between 
the benchmark case and the jump-diffusion model are 
therefore basically zero except, if anything, for the highly 
levered position. The main effects of jumps come from 
the first sub-period. From 1982 to 1997, there were very 
few jumps but with a relatively very large average size. 
In fact, the average jump size for the value portfolio is 
positive, which makes the proportion of funds invested in 
value to increase importantly and, especially, for the 
most levered portfolios. These effects can be seen di- 
rectly from Panel C of Table 3 and they are also re- 
flected in Figure 2. By recognizing systemic jumps, op- 
timal asset allocation increases significantly for value 
stocks and for all levels of risk aversion, although more 
for the less conservative more levered case. At the same 
time, jumps reduce considerably the proportion invested 
in the intermediate portfolio. As a consequence of recog- 
nizing jumps, there is also a reduction in the short-selling 
proportions of growth stocks.  

The same conclusion is obtained by the results shown 
in Table 4. We report the percentages of the growth, 
intermediate, and value portfoli

vested in risky assets. We observe that the spread be- 
tween the proportions invested in value and growth as- 
sets is higher in the first than in the second sub-period. It 
is also the case, that the spread in the first sub-period is 
particularly important for the most levered portfolios, 
although the relevance of risk aversion is negligible in 
the last sub-period. 

We may conclude that systemic jumps across portfo- 
lios seem to be important for asset allocation as long as 
the average magnit

om the point of view of asset allocation, it is therefore 
more important the amplitude than the frequency of the  

γ Growth BE-ME 5 Value Spread 

Table 4. Composition of the Risky Portfolios. (a) Jump- 
diffusion (Systemic) Weightsa; (b) Diffusion Weightsb. 

(a) 

1 −1.73887 0.73449 2.00438 3.74324 

2 −1.71023 0.73976 1.97047 3.68070 

3 −1.70098 0.74148 1.95950 3.66048 

4 −1.69639 0.7424 1.95398 3.65037 

− 1. 3.

ct 10 

1 

5 1.69365 0.74290 95075 64440 

6 −1.69186 0.74311 1.94875 3.64061 

7 −1.69055 0.74349 1.94706 3.63761 

8 −1.68959 0.74359 1.94600 3.63559 

9 −1.68886 0.74384 1.94502 3.63387 

10 −1.68822 0.74396 1.94427 3.63249 

Mar 97-O

 
γ Growth BE-ME 5 Value Spread 

1 −2.89047 1.88793 2.00254 4.89302 

2 −2.77956 2.04046 1.73909 4.51865 

3 −2.73519 1.64829 4.38348 

4 −2.71186 2.10849 1.60337 4.31523 

 

b 97 

2.08690 

5 −2.69756 2.12084 1.57672 4.27428 

6 −2.68791 2.12879 1.55912 4.24703 

7 −2.68097 2.13433 1.54664 4.22761 

8 −2.67574 2.13840 1.53734 4.21308 

9 −2.67166 2.14153 1.53013 4.20179 

10 −2.66839 2.14399 1.52439 4.19278 

Jan 82-Fe

(b) 

Growth BE-ME 5 Value Spread 

−1.63194 0.75446 1.87748 3.50942 

Mar 97-Oct 10 

Growth BE-ME 5 Value Spread 

−2.36914 2.26287 1.10627 3.47541 

Jan 82-Feb 97 

aPan  table c  compos e risky  for 
alternative levels of relative r h is obtained by dividing the 
weight for each portfolio by the total amount i isky por os. It 
assum mp-diffu bPane ains the  
assum re diffus  It shou d that the o 
not he level  risk ave  the si n 
process is employed in the est
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imation. 
6A negative sign for the value portfolio in Panel C indicates that the 
recognition of simultaneous jumps makes the investor to allocate more 
funds in the value portfolio. A negative sign on the growth portfolio 
implies that the recommendation would be to short-sale growth stocks 
in less proportion than the case of the pure-diffusion benchmark. 

jumps. In our specific sample, jumps turn out to be rele- 
vant for value stocks given the combination of a large 
and positive average jump size. Jumps also seems to fa- 
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vor value stocks even with a negative average size jump 
as in the full sample period, but this is relatively less im- 
portant and, in any case, the possible effects are just 

s. We employ 
calculates the addi- 
 needed to raise the 

concentrated in highly levered portfolios. 

4.3. Certainty Equivalent Costs 

We next analyze the effect on utility of the optimal port- 
folio strategy that recognizes the occurrence of systemic 
jumps across book-to-market assets relative to the strat- 
egy that ignores these simultaneous jump
the CEQ given in Equation (15) that 
tional wealth per $1000 of investment
expected utility of terminal wealth under the nonoptimal 
portfolio strategy to that under the optimal investment 
strategy. We consider the effects for investment horizons 
 

of 1 to 5 years and for levels of risk aversion of 2 to 10.  
Table 5 reports the results. As before, the effects of 

frequent but relatively small jumps observed from 1997 
to 2010 is negligible. Even the U.S. dollar consequences 
of the nonoptimal strategy over the full sample period are 
very small. For highly risk-taken investors and over a 5 
years horizon, the cost of ignoring jumps is only about 
$2.00. 

All the relevant effects come, once again, from the 
1982 to 1997 sub-period in which the average size jump 
seems to be high enough to impact the portfolio alloca- 
tion of equity portfolios. As we observe, the CEQ de- 
creases as risk aversion increases. This suggests that, as 
he becomes more risk averse, the investor holds a smaller 
proportion of his wealth in risky portfolios and, therefore, 
both the exposure to simultaneous jumps and the effects 

 
(a) 

 
(b) 

Figure 2. Portfolio weights and relative risk aversion. (a) Pure-diffusion process; (b) Jump-diffusion process; This figure 
shows the portfolio weights for the growth, intermediate and value Fama-French portfolios for alternative levels of relative 
risk aversion. Panel A contains the weights for the pure-diffusion process, while Panel B gives the weights for the jump-dif- 
fusion process. The first figure of each panel corresponds to the last sample period from March 1997 to October 2010, and 
the second figure of each panel corresponds to the first sample period from January 1982 to February 1997.  
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on CEQ are smaller. However, when the investor is will- 
ing to accept higher risks, his optimal portfolio becomes 
much more levered to buy additional risky assets. Then, 
the consequences of ignoring systemic jumps should be 
higher. This is exactly what we observe from Table 5  
 
Table 5. Certainty equivalent cost of ignoring systemic 
jumpsa. 

γ One year Two years Three years Four years Five years

2 0.40 0.79 1.19 1.59 1.99 

3 0.19 0.38 0.58 0.77 0.96 

4 0.12 0.24 0.36 0.49 0.61 

5 0.09 0.17 0.26 0.35 0.44 

6 0.07 0.14 0.20 0.27 0.34 

7 0.06 0.11 0.17 0.22 0.28 

8 0.05 0.09 0.14 0.19 0.23 

9 0.04 0.08 0.12 0.16 0.20 

10 0.04 0.07 0.11 0.14 0.18 

Jan 82-Oct 10 

γ One year Two years Three years Four years Five years

2 0.01 0.03 0.04 0.06 0.07 

3 0.01 0.01 0.02 0.03 0.04 

4 0.00 0.01 0.01 0.02 0.02 

5 0.00 0.01 0.01 0.01 0.02 

6 0.00 0.01 0.01 0.01 0.01 

7 0.00 0.00 0.01 0.01 0.01 

8 0.00 0.00 0.01 0.01 0.01 

9 0.00 0.00 0.00 0.01 0.01 

10 0.00 0.00 0.00 0.01 0.01 

Mar 97 0 -Oct 1

γ One year Tw rs o yea Three years Fo s ur year Fi rsve yea

2 48.40 99.14 1  52.34 2  08.12 2  66.59

3 11.50 23.12 34.88 46.78 58.81 

4 6.01 12.06 18.14 24.26 30.42 

5 3.94 7.90 11.88 15.87 19.88 

6 2.89 5.80 8.71 11.62 14.55 

7 2.27 4.54 6.82 9.10 11.39 

8 1.86 3.72 5.58 7.45 9.32 

9 1.57 3.14 4.71 6.29 7.87 

10 1.36 2.71 4.07 5.43 6.80 

Jan 82- 7 Feb 9

aTh able he c  equiva sts (CE gnorin mic 
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and Figure 3. For highly levered portfolios, the CEQ 
goes from $48.40 for a 1-year horizon to $266.50 for the 
longest horizon per $1000 of investment. It should not be 
surprising that the higher the leverage position of an in- 
vestment is, the higher the impact of jumps on portfolio 
strategies. It should be recognized however, that the dol- 
lar effects diminish very rapidly as the investor becomes 
more risk averse. For 

  2 to 1

4  ,
e CEQ is $3

 even for the longest hori- 
zon of 5 years, th 0.42 per $1000 which does 
not seem to be substantial. 
 

 

 

Figure 3. Certainty equivalent cost of ignoring systemic 
jumps. This figure shows the certainty equivalent costs 
(CEQ) of ignoring systemic jumps calculated as the addi- 
tional wealth per $1,000 of investment needed to raise the 
expected utility of terminal wealth under the suboptimal 
portfolio strategy to that under the optimal investment 
strategy. The figure contains the CEQ for investment hori- 
zons of 1 to 5 years, and for levels of relative risk aversion 

   from 2 to 10. The first figure corresponds to the last 

sample period from March 
d figure of each panel 

1997 to October 2010, and the 
corresponds to the first sample 

eriod from January 1982 to February 1997. 
secon
p
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4.4. Sample Average Riskless Rate 

In the previous discussion, we impose a 0.5% monthly 
riskless rate for the full sample period and for both sub- 
periods. Although this is a reasonable riskless rate for the 
first sub-period, it may be too high for the second sub- 
period. For this reason, we estimate again the model from 
1997 to 2010 imposing the actual average riskless rate of 
0.5% per month or 3% per year. It must be noted that the 
interest rate affects the parameter estimates and, there- 
fore, it may have consequences for the general conclu- 
sions about the optimal portfolio allocation during the 
second sub-period. 

Table 6 reports the results affected by the riskless rate. 
The empirical evidence is almost identical to the evi- 
dence contained in Tables 2, 3 and 5. The average size of 
jumps is even slightly lower, and the frequency of the 
jumps is now 1.231 relative to the previous estimate of 
0.938. Thus, the frequency of the simultaneous jumps is 
higher than the one reported in Table 2. Once again, this 
sub-period is characterized by many jumps of small av-
erage amplitude. The effects of jumps on the portfolio 
weights and on the cost of ignoring jumps are very simi-
lar to the previously reported results. As expected, given 
that now the risk-free investment offers a lower rate, the 
optimal amount of the risky portfolios is higher with re- 
spect to the allocation shown in previous tables. However, 
the effects about the distribution of resources among 
book-to-market portfolios with or without jumps are neg-
ligible. All our previous conclusions remain the same 
 
Table 6. Jump diffusion parameter and weight estimates 
March 1997-October 2010 for the sample average annua- 
lized riskless rate of 3%. (a) Parameter estimates for the 
jump processa; (b) Comparison between higher order sam- 
ple moments of returns and the jumps process theoretical 
higher order momentsb; (c) Diffusion weights, jump-diffu- 
sion weights and certainty equivalent costs (CEQ)c. 

(a) 

η1 η2 η3 Avg 

0.707 −1.033 −0.211 −0.179 

1 2 3 Avg 
8.161 4.953 6.618 6.577 

 
λ Year (s) 

1.231 0.07 

(b) 

 Growth BM - ME 5 Value 

Sample Skewness 0.250 −0.438 −0.033 

Model Skewness 0.235 −0.429 −0.082 

Sample Kurtosis 2.478 1.805 2.306 

Model Kurtosis 2.476 1.808 2.301 

(c) 

Diffusion weights 

 G 5 V Riskless Risky 

1 −4.45 3.22 4.45 −2.22 3.22 

2 −2.23 1.61 2.23 −0.61 1.61 

3 −1.48 1.07 1.48 −0.07 1.07 

4 −1.11 0.80 1.11 0.20 0.80 

5 −0.89 0.64 0.89 0.36 0.64 

6 −0.74 0.54 0.74 0.46 0.54 

7 −0.64 0.46 0.64 0.54 0.46 

8 −0.56 0.40 0.56 0.60 0.40 

9 −0.49 0.36 0.49 0.64 0.36 

10 −0.45 0.32 0.45 0.68 0.32 

 
Jump Diffusion Weights 

 G 5 V Riskless Risky 

1 −4.42 2.95 4.42 −1.95 2.95 

2 −2.22 1.51 2.21 −0.51 1.51 

3 −1.48 1.01 1.48 −0.01 1.01 

4 −1.11 0.76 1.11 0.24 0.76 

5 −0.89 0.61 0.89 0.39 0.61 

6 −0.74 0.51 0.74 0.49 0.51 

7 −0.63 0.44 0.63 0.56 0.44 

8 −0.55 0  .38 0.55 0.62 0.38 

9 −0.49 0.34 0.49 0.66 0.34 

10 −0.44 0.31 0.44 0.69 0.31 

 
Certainty Equivalent Cost 

 G 5 V Riskless Risky 

2 0.04 0.08 0.12 0.17 0.21 

3 0.02 0.04 0.06 0.09 0.11 

4 0. 1 0 0.03 0.04 0.06 0.07 

5 0.01 0.02 0.03 0.04 0.05 

6 0.01 0.02 0.02 0.03 0.04 

7 0.01 0.01 0.02 0.03 0.03 

8 0.01 0.01 0.02 0.02 0.03 

9 0.00 0.01 0.01 0.02 0.02 

10 0.00 0.01 0.01 0.02 0.02 
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1 11 2 1 2 1 2

1 2 1 2 1 2

T T K T T T T T

T T T T

A S W I W D D W D

D W W S

   
  

, 

in which 1 2X  means the upper-triangular matrix from 
the Choleski decomposition of X, and KI  is a K-di- 

 and  are mensional identity matrix. Moreover, TS TD
given by, 
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rdeTherefore, in o  test the different models we es- 
ate, we procee he following way. First, we esti- 

mate the matrix 

r to
tim d in t

A  and compute its nonzero K–P–1 
eigenvalues. Second, we generate  hi ,  

1,2, ,100h
 

  , 1, 2, , 1i K P   , independent ran- 
dom draws from a    dist2 1 ribution. For each h,  

1K P
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1h i i hi 
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ˆ
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4.6. Conclusions 

he ncy of globalization a

cteristics and also in- 
ternational equities are characterized by simultaneous 
jumps. We investigate the effects of these jumps on op- 
timal portfolio allocation using value and growth cks 
and two different sub-periods. It seems that the effects of 

mp

m
markets experience very frequent jumps if they 

are not large enough to impact the most levered portfo- 
lios. All potentially relevant effects are concentrated in 
portfolios financed with a considerable mount of lever- 
age. In fact, for conservative investors with low leverage 
positions the potential effects of systemic jumps on the 
optimal allocation of resources are no substantial even 
under large average size jumps. Final , the value pre- 
m

ms th ore plausible 
to conclude that the magnitude of th

e cha ri- 
enced by value an

Ministry of Economía and Competitividad grant MEC 

cedur e p-value for the speci- 
fication test of the model is the average of the p values 
for the 1000 replications.  

It turns out that we ble to reject the jump- 
diffusion model in any of the alternative sample periods 
employed in the estimation. The p-values for the full 
sample period, the first sub-period, and the second sub- 
period are 0.257, 0.103, and 0.676 respectively. These 
results suggest that the jump-diffusion model fits the 
actual data better from 1997 t from 1982 to 
1997. This is the case despite the poor reconstruction of 
the actual skewness for the value portfolio from 1997 to 
2010. 

Given t  tende nd increasing inte- 
gration of financial markets, it is generally accepted that 
equity portfolios of different chara

 sto

systemic ju s may be potentially substantial as long as 
market equity returns experiment very large average 
(negative) sizes. However, it does not see  to be relevant 
that stock 

 a

t 
ly

ium is particularly high when the average size of the 
jumps of value stocks is positive, large and relatively 
infrequent, while the average size of growth stocks is 
also very large but negative. It see eref

e value premium is 
closely related to th racteristics of the jumps expe

d growth stocks. 
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