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Abstract 
 
Exchanges often impose daily limits for asset price changes. These restrictions have a direct impact on the 
prices of options traded on these assets. In this paper, we derive closed-form solution of option pricing for-
mula when there are restrictions on changes in underlying asset prices. Using numerical examples, we illus-
trate that very often the impact of such restrictions on option prices is substantial. 
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1. Introduction 
 
Conventional option pricing models assume that there 
are no restrictions on changes of underlying asset prices. 
For example, [1,2] specify that stock prices follow a 
geometric Brownian motion and stock returns follow a 
normal distribution. Based on a portfolio replication 
strategy or equivalently the risk-neutral method, option 
prices are derived as expected payoff of the contract un-
der the risk-neutral distribution, discounted by the risk- 
free rate. 

In practice, however, asset price changes may subject 
to restrictions imposed by exchanges. For example, 
CBOT (Chicago Board of Trade) and CME (Chicago 
Mercantile Exchange) both have daily price limits for 
futures contracts except currency futures. Daily price 
limit serves as a precautionary measure to prevent ab-
normal market movement. The price limits, quoted in 
terms of the previous or prior settlement price plus or 
minus the specific trading limit, are set based on particu-
lar product specifications. For example, the current limit 
of daily price changes on short term corn futures is 4.5%. 
In 1996, Chinese stock market also introduces restric-
tions on daily stock price changes. Specifically, except 
the first trading day of newly issued stocks, the limit of 
stock price change in a trading day relative to previous 
day’s close price is 10%, and for stocks that begin with S, 
ST, S*ST letters, the limit is 5%. It is clear that such re-
strictions reduce the value of options since extreme re-
turns on a daily level are ruled out. Nevertheless, how to 

evaluate the prices of option contracts when changes on 
underlying asset prices are restricted? How much is the 
exact impact of such daily price limits on option prices? 
These questions are yet to be examined in the extant lit-
erature. 

In this paper, we first derive the option pricing for-
mula when there are restrictions on daily changes of un-
derlying asset prices. We perform the analysis under the 
Black-Scholes-Merton model framework. Then, we pro-
vide numerical comparisons between option prices with 
and without restrictions on underlying asset price changes. 
 
2. Option Pricing with Restrictions on  

Underlying Asset Price Changes 
 
2.1. Risk-Neutral Valuation under the Black and 

Scholes [1] and Merton [2] Framework 
 
In this section, we first review the risk-neutral approach 
of option pricing under Black-Scholes-Merton frame-
work. The same approach will be used in the next sub-
section to derive option pricing formula when there are 
restrictions on underlying asset price changes. Black and 
Scholes [1] and Merton [2] assume that stock price  
follows a geometric Brownian motion: 

tS

d dt t tS S t S d tW             (1) 

where   and   are expected return and volatility, 

t  is a standard Brownian motion. It is also assumed 
that the continuously compounded risk-free interest rate, 
W
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denoted by , is constant. The key feature in Black- 
Scholes-Merton framework is that asset return volatility 
is constant and market is complete. As such, in a risk- 
neutral world, expected return of the underlying stock is 
equal to risk-free interest rate. That is,  

r

d d d Q
t t t tS rS t S W  .          (2) 

where  is a standard Brownian motion under the 
risk-neutral probability measure . 

Q
tW

Q
Consider a European call option with strike price K  

and maturity  measured in the number of trading days. 
The price of such option can be computed as 

T

e [max( ,0rT
Q TC E S K   )] , 

where  QE
Q
  indicates expectation under risk-neutral 

measure , and  is the time interval of a trading day. 
As shown in many derivatives textbooks, for example [3], 
the option pricing formula is given as:  



0 1 2( ) e ( )rTC S d K d     ,        (3) 

where 

2

2
1

( ) e d
2π

u
x

x u



    is the cumulative distri-

bution function (cdf) of standard normal distribution, and  

2
0

1d

1
ln( / ) ( )

2
S K r T

T





  



 , 

2 1 d d T   . 

This is the famous Black-Scholes-Merton option pric-
ing formula. By constructing a riskless portfolio with 
option and underlying stock and based on no arbitrage 
argument, [1] and [2] derive the above option pricing 
formula as a solution to a partial differential equation 
(PDE). 
 
2.2. Closed-Form Option Pricing Formula with 

Restrictions on Underlying Asset Price 
Changes 

 
As mentioned in the introduction, many exchanges im-
pose restrictions on daily price changes of traded assets. 
As a result, the range of asset return (in logarithmic form) 
is no longer , but truncated from both below and 
above. The restriction is particularly important in option 
pricing since the tail behavior of asset returns has a sig-
nificant effect on the payoff of options contracts. 

( , )

Let us start with a normal random variable ~X   
2( , )   with probability density function: 

2

2

( )

21
( ) e

2π

x

f x









 . 

In addition,  and  are two positive constants. 
Truncating the left tail of the normal density b  a  be-
low the mean, and the right tail by b  above the mean, 
the truncated normal distribution is illustrated in Figure 1. 
Normalizing the truncated density function to make sure 
the total probability is equal to , we obtain the pdf of a 
truncated normal random variable 

a b
y

1
trc~ ,X  2 , 

trc

1
( ) ( )f x f

c
 x ], [ ,x a b    , 

where ( )f x  is the normal density function and  

1
b a

c
 
         
   

,                (4) 

where     is the cdf of standard normal distribution. 
In practice, price restrictions are often imposed in terms 
of daily simple returns. For example, daily simple returns 
in absolute value are restricted to be less than  , then 
for log returns, these restrictions are ln(1a )    and 

ln(b 1 )  . 
For the purpose of option pricing, it is also convenient 

to obtain the characteristic function (CF) of stock returns. 
As derived in the Appendix, the characteristic function of 
the truncated normal variable X  is given by:  

trc

( )
( ) ( )

c i

c

  


  ,           (5) 

where 
2 21

2( ) e
i   

 


  is the CF of a normal random 

variable and  

( ) 1
b a

c i i i    
 
            
   

. 

Since limits are typically imposed on daily price changes 
and option maturity can be more than one day, we need 
to derive the distribution of returns over multiple days. 
Denote tlntX S  as the log price,  lnt tY S ln tS   
as the daily log return. Suppose we have T  trading 
days, , and the daily log returns are iid truncated 
normal random variables, i.e., 

1, ,T
~Y iid ( ,t trc  2 ) . The 

log price at the end of day  is T

 

Figure 1. Truncating normal density. 
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0
1

T

T t
t

X X Y


  , 2
trc~ iid ( , )tY   . 

Similarly, as derived in the Appendix, the CF of TX  
is given by  

0
( )

( ) e ( )
T

T
i X

X

c i

c
    

  

 .        (6) 

In the following, we follow the same risk-neutral ap-
proach as outlined in the previous subsection to price 
options when there are restrictions on underlying asset 
price changes. As seen in the Black-Scholes-Merton 
framework, when we move from real world into risk- 
neutral world, volatility remains the same, but expected 
return is equal to risk-free interest rate. Option prices are 
then calculated as expected payoff under the risk-neutral 
measure, further discounted by risk-free interest rate. In 
the following, we first derive the risk-neutral distribution 
of asset returns when daily returns follow truncated nor-
mal distributions, and then derive a closed-form formula 
for European call options. 

Lemma Let 2~ iid ( , )t trcY   ,  and the 
time interval between observations is , we have  

1, ,t  


T

i) Under the risk-neutral measure  where the ex-
pected return of the asset is given by the risk-free rate , 
we have 

Q
r

2~ iid ( , )t trcY   , , with 1,t  ,T

21
ln

2

c
r

c
 

(1)       
.             (7) 

ii) The price of a European call option with strike 
price K  and maturity T  is given by 

trc 0 1 2( ln ) e ( lnrT
T TC S P X K KP X K     ) , (8) 

The probabilities  and  can be computed nu-
merically as  

1P 2P

0

1 1 exp( ) ( )
( ) Re d

2 π

i x
P X x

i

   


        ,  (9) 

where ( )   is the CF corresponding to . P
Proof: i) Let  be the time interval of each trading 

day, and the fact that expected return is equal to risk free 
rate leads to: 



0[ ] erT
Q TE S S  

From the moment generating function of a truncated 
normal distribution as derived in the Appendix, we have 

21

2
0

(1)
[ ] e eT

T

X
Q T Q

c
E S E S

c

  
     

 
, 

From the above two equations, we have the expression 
for  . 

ii) According to risk-neutral pricing method, the price 
of a European call option with strike price K  and ma-
turity  is  T

ln

ln ln

e [max( ,0)]

  e [max(e ,0)]

  e (e ) ( )d

 e e ( )d e ( )

T

T

T T

rT
Q T

XrT
Q

rT x
XK

rT x rT
X XK K

C E S K

E K

K f x x

d .f x x K f x x

 

 

 

    

 

 

 

 



 

 

where 
TX ( )f x  is the pdf of log price TX  at time . 

In addition, under the risk-neutral measure,  
T

0 e [ ] e e

   e e ( )d

T

T

XrT rT
Q T Q

rT y
X

S E S E

f y y

   

 



    

 
 

So we have 

0e
e ( )d

T

rT

y
X

S

f y y

 







. 

Substituting this into option price , we get C

0 ln ln

e ( )
d e ( )d

e ( )d

T

T

T

x
X rT

XK Ky
X

f x
C S x K f x x

f y y

  




  


, 

Denote 

e ( )
( )

e ( )d

T

T

x
X

y
X

f x
g x

f y y







. 

Since ( ) 1g x
  , ( )g x  is a pdf. Therefore, we can 

write the European call option price as 

0 1 2( ln ) e ( lnrT
T TC S P X K KP X K     ) . 

à  End of proof.  
As shown in [4] that the probabilities in (8) can be 

computed numerically by their corresponding CFs as 
follows. From the Fourier inversion, we have 

0

1 1 exp( ) ( )
( ) Re d

2 π

i x
P X x

i

   


        . 

To compute the CF corresponding to ( )g x , denoted 
as 1( )  , by definition, we have  

1

e ( )
( ) e ( )d e d

e ( )d

T

T

x
Xi x i x

y
X

f x
g x x x

f y y

  
 

 



  


 

( 1)e (

e ( )d

T

T

i x
X

y
X

)df x x

f y y

 






 


 

where the numerator is given by 

0

( 1)

( 1)

e ( )d ( 1)

( 1)
e (( 1) ,

T T

i x
X X

T
i X

f x x M i

c i
M i

c







   

 





 

 
; ) .

    


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and the denominator is given by  

0
(1)

e ( )d (1) e (1; , )
T T

T
Xy

X X

c
f y y M M

c
 





    



Hence, 

0

0

( 1)

1

( 1)
e (( 1

( )
(1)

e (1; , )

T
i X

T
X

c i
M i

c

c
M

c

    
 

 

   
 

  
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0
( 1) (( 1); , )

e .
(1) (1; , )

T

i X c i M i

c M
    

 
  

   
 

 
2.3. Numerical Illustrations 
 
In this section, we illustrate numerically the d
of option prices with and without restrictions on under- 

Table 1 reports the differences in European call option 
pr

mit as 

ices under different scenarios. The Black-Scholes- 
Merton price, denoted by CallBSM, is the call option 
price without price restriction and is computed from 
formula (3), the call option price with price restriction, 
denoted by CallTrc, is computed from formula (8) de-
rived in the previous subsection. 

In Panel A, we set the price li 4.5%  ,
ice chang

 con-
sistent with the current limit of daily pr es on 
short term corn futures at CBOT, initial stock price 

0 $100S  , strike price $100K  , maturity 10T   
lized risk-free in e 5%r  . T

nualized volatility ranges from 15% to 5  expected,
option prices with restricted changes in underlying asset 
prices are lower than the Black-Scholes-Merton price. 
The relative difference is higher as volatility increases. 
For the at-the-money option considered, the relative dif-
ference is 19.45% when volatility is 40% which is typi-
cal for individual stock returns. 

 

days, annua terest rat he an-

ifferences 

lying asset price changes. 
 

0%. As  

Table1. European Call Option Prices with and without Restrictions on Asset Pri e Changes. 

on in Volatility 

c

  Panel A: Variati

4.5%  , Parameters 0 100S  , 100K  , 5%r  , 10T   

252s  0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

CallTrc 1.2926 1.68 2 2.7417 2.8663 2.9598 

1.2926 1.6888 2.0853 2.4818 2.8784 3.6715 4.0679 

Difference )  0  1  1  2  3  

52 2.0481 2.3465 .5735 

CallBSM 3.2750 

(% 0.00% .22% 1.82% 5.77% 1.85% 9.45% 8.09% 7.44%

Panel B n in ice: Variatio Strike Pr  K   

Parameters , 100 , r , 1T0S ,  4.5% 5% 0 0.4  252    

85 90 95 100 105 110 115 K  

CallTrc 20.1586 0.9532 0.2412 0.0431 

20.1586 10.489 3565 3.275 0. 0.1453 

Difference (%) 0.  1.  6.  1  4  10  23  

10.3141 5.9576 2.7417 

CallBSM 6. 1.4036 4964 

27% 70% 70% 9.45% 7.25% 5.85% 6.97%

Panel C: Variation in Maturit

Para

y T   

meters 0 10 0S , 100K,  , 5%4.5%  r  , 0.4 252   

T  1 5 63 126 252 10 22 

CallTrc 0.8749 1. 7.211 10.5097 15.4364 

1.0151 2.2963 3.2750 4.9230 8. 26 12.3850 18.0230 

Difference (%) 16. % 19.  19  19  18.  1  1  

9249 2.7417 4.1272 

CallBSM 55

03 30% .45% .28% 60% 7.84% 6.76%

Panel D: Varia rice Lition in P mit    

Parameters 0 100S  , 105K  , 5%r  , 10T  , 0.4 252   

d  1%  5% 7% 10% 2% 3% 4%

CallTrc 0.002 0.148 0.4736 0.8099 1.0737 1.3371 1.4015 

1.4036 1.4036 1.4036 1.4036 4036 1. 1.4036 

Difference (%) 68  849% 196% 7  3  4.  

CallBSM 1. 4036 

510% 3.31% 0.73% 97% 0.15% 
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As expected he option s rice is r, the
relative difference also increases. The results are illus-
trated in Panel B volatility is set as 40% 
um and th  ranges 85 t . We
o

-money tions

y increases to 6-month ( ) and 1- 
ye

, when t trike p  highe  

where per an-
n
n

e strike price  from $ o $115  
te that when the strike price $110K  , $115 , the 

relative differences are more than 100% and 200%, re-
spectively.  

Panel C illustrates the differences in option prices with 
different maturities. For the at-the op  con-
sidered, the relative differences are rather consistent even 
when maturit 126T 

ar ( 252T  ). 
Panel D illustrates the effect of daily price limits on 

option prices, where   is set to values in a range of 1% 
to 10%. As expected, the relative differe reases as 
the ab pric

nce inc
solute e t is lower. For the out-of-the- 

m
 o

changes often set daily limits for the price 
hanges of traded assets. These restrictions have a dir

 options traded on these assets 

ey r t dra hang asset . In this 
aper, rive orm n of  pricing 
rmula with restrictions on in price 

hang ng n al ex s, we ate that 

i is supported by NSFC 
61053). 
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ppendix 

 the appendix, we first derive the moment generating 
nction (mgf), and characteristic function (CF) of a 

al random variable. Recall that the pdf of 
 truncated normal random variable )
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