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Abstract 
ARM® is the prevalent processor architecture for embedded and mobile ap-
plications. For the smartphones, it is the processor for which software applica-
tions are running, whether the platform is with Apple’s iOS or Google’s An-
droid. Software operations under these platforms are prone to semantic gap, 
which refers to potential difference between intended operations described in 
software and actual operations done by processor. Attacks that compromise 
program control flows, which result in these mantic gaps, are a major attack 
type in modern software attacks. Many recent software protection schemes for 
servers and desktops focus on protecting program control flows, but there are 
little protection tools available for protecting program control flows of mobile 
applications for ARM processor architecture. This paper uses a program 
counter (PC) encoding technique (PC-Encoding) to harden program control 
flows under ARM processor architecture. The PC-Encoding directly encodes 
control flow target addresses that will load into the PC. It is simple and intui-
tive to implement and incur little overhead. Encoding the control flow target 
addresses can minimize the semantic gap by preventing potential compro-
mises of the control flows. This paper describes our efforts of implementing 
PC-Encoding to harden portable binaries in ELF (Executable and Linkable 
Format). 
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1. Introduction 

Software security has become an increasingly important concern with the preva-
lent use of the Internet. With the looming popularity of the Internet of Things 
(IoT), this concern is becoming even more prevalent with respect to every aspect 
of modern life. A variety of security techniques have been researched and devel-
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oped at the software level, and some of these have been adopted in practice. 
There are many researches focusing on control flow hardening for server and 
desktop environments, but there are relatively fewer studies about hardening the 
program control flow for embedded and mobile devices, i.e., tend to concen-
trates on Intel’s x86 architecture. Attackers, however, are continually capable of 
finding vulnerabilities, and while the success of the attacks is, more or less, de-
pendent on the same techniques of the past, the incidence rates that are being 
documented make a cause for a greater alarm; furthermore, the number of vul-
nerabilities that are utilized for the attacks is increasing, and the risks inherent in 
the security vulnerabilities have become even more serious. 

A major portion of the vulnerabilities allows a memory overwrite, which in 
turn causes a program control transfer that is contrary to the intentions of the 
original programmer. The existence of this semantic gap, i.e., the potential dif-
ference between the intended operations described in software and the actual 
operations performed by a processor, is from the existence of a memory over-
write vulnerability. 

There have been a variety of techniques for the prevention of arbitrary mem-
ory overwrites, along with schemes for the prevention of the activation of in-
jected attack codes, e.g., the numerous variations of DEP (data-execution pre-
vention) [1] [2] [3] [4]; however, the incidence of software attacks that utilize the 
memory overwrite is ongoing. ROP (return-oriented programming) [5] is a re-
cent attack method that allows a code-reuse attack without an injection of attack 
code; the code reuse attack utilizes a memory overwrite to activate the preexis-
tent code in memory to start an attack [6] [7] [8] [9] [10]. Note that a memory 
overwrite is essential for not only traditional code-injection attacks [11], but also 
for recent code-reuse attacks that seek to divert program control flows from the 
intended operations that are described in software [12]. 

To protect the control flow from the software attacks, we need to enforce the 
integrity of the control flows through an examination of the destinations of all 
the control flow transfer instructions to confirm their legitimacy. Conceptually, 
one can generate a control-flow graph (CFG) for a program under protection 
and check at runtime to see whether the program execution actually follows the 
CFG. Even without a contemplation of the accuracy of the CFG, a couple of is-
sues arise from this conceptual control flow validation scenario such as CFG 
granularity and the representation and storage of the CFG. System-call-level 
CFG was utilized during the early days of the technology to reduce the overhead 
of the CFG representation and storage, and also to enable access to the CFG at 
runtime [13]; however, such a coarse-grain CFG often fails to catch a compro-
mised control flow because many hundreds or thousands of instructions can ex-
ist between the system calls. 

The CFI (control-flow integrity) [14] [15] [16] is one of the early proposals for 
checking and validating each control-flow transfer at the fine-grain machine in-
struction level, whereby the destinations of all the indirect branch instructions 
are forcibly checked. The full CFG, comprising a pair of IDs, the branch-instruction 



S. Park et al. 
 

44 

address ID and its target address ID, for all the indirect branch instructions is 
generated by a binary patch, and each control-flow transfer is checked at run 
time per the CFG. Even if the CFG is limited to statically linked procedures, 
however, it is still very difficult to draw a fully accurate CFG in practice. Also, 
there is a not so trivial overhead for representing and accessing the CFG. CFI 
implementations in general utilize the fact that a code region is safe from a 
memory overwrite, and the instruction addresses and target addresses are also 
coalesced together to make the CFG representation compact and fast to access. 
There have also been some CFI-implementation methods with a looser notion of 
CFG for the ease of the deployment and a lesser performance overhead [17] [18]; 
although, the coalesced address ID and the looser notion of the CFG will result 
in more of the semantic-gap potential, thereby reducing the robustness of the 
protection [19]. 

PC-encoding can protect the general indirect-branch instructions as the CFI 
does, but without the requirement of CFG generation [20] [21] [22]. Instead, PC 
encoding encodes the target address at its definition and requires a proper de-
coding of the target address for a legitimate control-flow transfer. PC encoding 
has little room for the semantic gap because the CFG is not generated as an ap-
proximation of what is described in the program, but the program itself acts as 
the CFG; furthermore, unlike randomizing the instruction set architecture [23] 
or the program code [24], checking the legitimacy of each control-flow transfer 
requires only a couple of machine instructions without a need to access the 
memory for the CFG. PC encoding ensures a minimal performance degradation. 

This paper describes our efforts to implement PC-encoding for hardening the 
portable ELF (executable and linkable format) binary. ARM® processor stores 
the return address at lr (link register) when it uses a bl (branch link) instruction 
to call a function. In the function prologue, PC encoding encrypts the lr and fp 
(frame pointer register) before pushing into the stack. At the function epilogue, 
the fp and pc (program-counter register) are restored after decrypted from the 
stack. Our LLVM (low-level virtual machine)-based PC-encoding compiler pro-
vides control flow protection without significant overhead for programs that run 
under the ARM®-processor architecture [25]. Compared to other software based 
control flow hardening schemes, PC-encoding makes a suitable fit for the rela-
tively simple architectural environment of ARM®. 

The remainder of the paper is organized as follows: Section 2 discusses the ba-
sics of PC encoding. The process of applying PC encoding for the ARM-Linux- 
ELF binary is described in Section 3. Section 4 presents the performance-test re-
sults from the Gem5 simulator. Also discussed is a comparison of PC-encoding 
with a typical CFI implementation. This paper concludes in Section 5 with a 
discussion of the limitations of our current PC-encoding implementation for 
ARM® processors. 

2. Backgrounds 

A program control flow is dictated by program data that is loaded to the program 
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counter at runtime, which we call PC-bound data. The basic idea of PC encoding 
involves the checking of the integrity of the PC-bound data. PC encoding en-
sures the integrity of the program control flow by protecting the PC-bound data; 
it encodes the PC-bound data at their definition and during its use, decoding is 
performed with a secret key. PC encoding provides a sound solution for har-
dening the program control-flow for embedded platforms because it only incurs 
a small performance penalty. Data encoding/decoding computation can also be 
simplified, whereby simple encoding/decoding operations that can be completed 
in one or two cycles may be employed, e.g., exclusive-or. Also, a compatibility 
issue is non-existent because the memory layout does not need to be changed; 
moreover, cooperation with a non-hardened binary is feasible. 

Software operations are prone to the semantic gap, which refers to potential 
difference between intended operations described in software and actual opera-
tions done by the processor. The semantic gap always exists in a sense that ac-
tions done by the processor do not have exactly the same semantics of the pro-
gram code in high level languages. But only the semantic gaps related with pro-
gram control flow may cause a critical vulnerability. As an example, consider 
functions like strcpy() or memcpy() have been used for copying data to a speci-
fied variable. Programmer using these functions may intend to copy some data 
to a specified variable but without a consideration about the actual actions of the 
processor. A compiled instruction sequence using the functions may not include 
a logic for checking the size of data to copy, causing a PC-bound data located 
next to the local variable for the data copy be overwritten. Also, note that the 
processor executes one instruction at a time, independent from other instruc-
tions. As a result, the processor is not aware of the context for each instruction 
and may execute the instructions out of context if the PC-bound data is com-
promised. 

PC encoding encodes the destinations of indirect jump instructions including 
return addresses on stack, function addresses on GOT, function pointers, and 
exception handlers. It is, however, impossible to overwrite the hardcoded desti-
nation of a direct jump, and direct jumps are therefore excluded from the scope 
of PC encoding. Figure 1(a) shows the normal code parts of an object file. A 
memory-overwrite attack can occur during the execution time of {Some code}. If 
an attacker contaminates the PC bound data during the Some-code execution, 
the “movpc, PC-bound data” instruction will take the control flow to an illegal 
location. Figure 1(b), however, shows a hardened case. Due to the key value, the 
PC-bound data is already in an encoded state during the Some-code execution, 
so an attacker cannot overwrite the intended-value to PC-bound data properly; 
the key value must be known by an attacker for a successful attack. 

In general, the key must be stored in a recoverable point at the time of verifi-
cation, and the memory is one of the typical places used for the key storage; 
however, if the key is stored in the memory, the key itself can be vulnerable to a 
memory-overwrite attack. This dilemma can be found in a number of protection 
schemes; for example, StackShield copies the return address of the function to a  
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(a) 

 
(b) 

Figure 1. PC-encoding concepts. 
 
specially reserved and managed area called Global Ret Stackor Shadow RET 
Stack [26]. Stack Shield then performs an integrity check through a comparison 
of the two values at the functions epilogue; however, the Shadow RET Stack is 
also stored in the dynamically-writable memory area, and it can still be a target 
of a memory-overwrite attack. Some schemes are therefore supported by low- 
level software like a kernel to ensure a read-only property of the key storage. 
These solutions maintain the key storage as a read only area during a code ex-
ecution that is under protection, and they temporarily change the storage per-
mission into a writeable form at the time that the PC-bound data is defined, e.g., 
the mprotect() function can change the memory permission dynamically, but 
this function can also be the victim of an RTL attack [27] [28] [29] [30] [31]. As 
a result, the mprotect() function can become a more serious vulnerability. More- 
over, the frequent changes of the memory permission cause a critical perfor-
mance penalty. 

The key value used in this paper is the self-address of the PC-bound data. The 
self-address is the address of the memory location containing the PC-bound da-
ta. The self-address does not require any additional storage, and it is always 
available as a part of the value-address pair. Therefore, it is possible to extract 
the key easily at the moment of the decoding or the encoding of the target ad-
dresses. Also, it is not possible to compromise the self-address with a memory- 
overwrite attack because the address is not in the memory. The memory layout 
for different address spaces can be allocated with some level of randomness in 
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the ASLR environment [31] [32], and the allocation order of the function frames 
on the stack space can vary depending on the dynamic execution flow of the 
process. 

One can apply PC-encoding to all indirect calls including calls and returns; 
however, it is difficult to locate the exact locations of all indirect calls with the 
exception of a few stylized cases such as GOT entries, function returns, and ex-
ception handlers. This paper focuses on a basic implementation under the 
ARM®-processor environment. In consideration of the fact that call/return pairs 
are the most frequent indirect branches, this paper focuses on the encoding and 
decoding of the return addresses for our first realization of the PC-encoding 
compiler for ARM® processors. 

A variety of high-level languages such as C, C++, Fortran, and Ada can benefit 
from PC-encoding. PC-encoding adds an instrumentation of a few instructions 
into a binary executable. There are three ways one can add new instructions for 
the instrumentation into a binary executable. The first is a runtime modification 
(binary editing); however, with the binary editing at run time, it is possible to 
damage the functionality of the binary executable. Nevertheless, the technique 
may have the highest utility in the sense that it is independent of the languages 
that the code is written in. The second way is a binary patch. A binary patch is 
also of a high utility because it requires no source code. With this technique, it is 
possible to insert a protection patch by using only the executable binary without 
a dependence on the type of high-level language; however, a relocation of the 
addresses related to the inserted code patch can be a difficult problem to handle, 
and many clues for an understanding of the programmer’s intent disappear from 
the binary executable. The third way is a compile-time modification. Generating 
additional code regarding a security mechanism at the compile step has a disad-
vantage, though, due to a dependency on the type of underlying high-level lan-
guage. However, it can add the instrumented protection in a relatively reliable 
way due to its use of an internally-validated library. This leads to a guarantee of 
the functionality of the instrumented program. 

In this paper, we have applied our PC-encoding technique at the compile time 
under the LLVM compiler infrastructure. The aim of the LLVM is to facilitate 
developing a compiler in a way that is independent from specific high-level lan-
guages and processor architecture. The LLVM frontend is separate from the 
code generation for an elimination of the dependency upon a specific high-level 
language. This frontend converts a high-level language code into an intermediate 
language code called the LLVM IR, e.g., the Clang is a typical frontend for the C 
language. By utilizing these features, codes that have been written in a variety of 
high-level-language types can be easily hardened with the PC-encoding tech-
nique.  

3. Implementation 

In the call/return convention under ARM®-processor architecture, ARM® pro-
cessor stores the return address at lr (link register) when it uses a bl (branch 
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link) instruction to call a function. In the functions prologue, the lr and fp 
(frame pointer register) are pushed into the stack. At the functions epilogue, the 
fp and pc (program-counter register) are restored. Figure 2 shows an imple-
mentation overview of generating the hardened ARM-Linux-ELF binary via 
PC-encoding. This walk through is consisted of three steps. In step 1, the written 
code is converted from a high-level language to the LLVMIR code. In step 2, the 
hardened- assembly file is created with an LLVM IR file. The LLC is a tool that 
can convert LLVM IR files into a specified architecture-assembly file. It is possi-
ble to adjust options to make the assembly files of other architectures; for this 
paper, an assembly file for ARM® processors was constructed. In step 3, it is 
possible to determine the appropriateness of the patches or to collect the number 
of added instructions by analyzing the assembly file; then, step 3 converts the 
assembly file into a binary object file using the ARM®-processor assembler. 

In step 2, a modified LLC named LLC.PCE is used for the implementation. 
The LLC.PCE applies PC-encoding to the LLVM IR file regardless of the high 
level language used. In the LLVM, the ARM Frame Lowering class is responsible 
for the code generation of the function frame in the ARM environment. The 
emit Prologue and the emit Epilogue functions of the ARM Frame Lowering 
Class were edited for the PC-encoding. 

The general prologue and epilogue that the gcc compiler generates for the 
ARM environment are below: 

Prologue: 
pushfp,lr  //Save frame pointer and return 
add sp,sp,$n //Allocate space for local variables 
Epilogue: 
movsp,fp  //Move stack pointer to stack base 
popfp,pc  //Restore frame pointer and return 

 

 
Figure 2. Implementation overview. 
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In the above code, the lr register is stored on the stack in the prologue, sug-
gesting that the lr register can be overwritten by a memory-overwrite attack. 
PC-encoding inserts encoding and decoding instructions for the protection of 
the lr, as follows: 

Prologue: 
eorlr,lr,sp  //Encode return address 
pushfp,lr  //Save frame pointer and return 
add sp,sp,$n //Allocate space for local variables 
Epilogue: 
movsp,fp  //Move stack pointer to stack base 
ldrlr,[sp,#4]  //Load return address at lr 
eorlr,lr,sp  //Decode return address 
strlr,sp   //Save decoded return address 
popfp,pc //Restore frame pointer and return 
In the above code, four instructions are added for PC-encoding. In this case, it 

is inevitable to have a memory access at the decode because of “pop fp, pc”. The 
return address moves directly to the PC register p c, but the PC-encoding must 
decode the return address before this action. The decode process must therefore 
be accompanied by a memory access. At the function exit, the main intention of 
a programmer is just “return to the caller”: The specific status of the registers 
and the memory are not always a part of the programmer’s consideration. How-
ever, it is possible to manipulate the return address by using a frame-pointer 
overflow. If we follow gcc style of prologue and epilogue, compiler and its library 
do not correct this potential semantic-gap source. Furthermore, since the fp reg-
ister is pushed to the stack, this can also be compromised by a memory overwrite 
attack. Both the lr and fp registers must therefore be encoded for the full protec-
tion of the return process in the gcc version. 

To avoid the problem of additional memory access and the issues with the 
frame pointer, we have used the features in LLVM. Compilers do not always 
need to make the prologue-epilogue in gcc style as previously shown. LLVM can 
create a different prologue-epilogue form as follows: 

Prologue: 
pushlr   //save return address 
add sp,sp,$n //Allocate space for local variables 
Epilogue: 
addsp, sp, $n //Mov stack pointer to base 
poplr   //Restore return address 
movpc,lr  //Return to caller 
In the above code, an fp register is not utilized. The offsets are calculated 

based on the sp instead of the fp when the local variables or function parameters 
are accessed; furthermore, the return address is restored at lr before it moves in-
to pc. As a result, it is possible to remove a memory access during the decode 
process. PC-encoding implemented without the additional memory access is as 
follows: 
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Prologue: 
eorlr,lr,sp //Encode return address 
pushlr   //Save encoded return address 
sub sp,sp,$n  //Allocate space 
Epilogue: 
add sp,sp,$n  //Move stack pointer to base 
poplr   //Restore return encoded address 
eorlr,lr,sp //Decode return address 
movpc,lr //Return to caller 
The two added eor instructions have no memory reference; as a result, we can 

protect the return with just two register-to-register instructions. Encoding the 
target addresses can avoid the unintended control transfer because it allows the 
control transfer to only a target address that is legitimately decoded, avoiding the 
potential semantic gap. 

The PC-encoding implementation depends on a trust worthy low-layer soft-
ware like the OS kernel. If the code is contaminated by an arbitrary memory- 
overwrite attack, it is not possible to protect the PC-bound data with PC-en- 
coding; however, this does not mean that PC-encoding needs special functions 
like mprotect(). 

4. Performance 

By comparing the efficiency of the PC-encoding technique with a typical imple-
mentation of the well-known CFI [14], it is possible to illustrate the perfor-
mance-overhead potential. One can patch the code with the ARM®-processor 
assembly to enforce the CFI as shown in Figure 3. 

When the CFI is implemented on the ARM® processor, the caller needs one 
instruction and the recipient of the call needs three additional instructions;  
 

 
Figure 3. Example instrumentation for CFI. 
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regarding the latter, one of the instructions is a memory reference instruction, 
while another is a conditional branch instruction. A memory reference instruc-
tion will take longer than the others, and a conditional branch instruction also 
may cause more cycles due to branch misprediction than those required by a 
normal command; consequently, a relatively large performance degradation may 
incur. Table 1 shows the number of instructions between the CFI and the PC- 
encoding. 

ROP [28] is one of the latest powerful code-reuse attacks that can bypass the 
existing defenses such as DEP, ASLR, and ASCII-Armor [30]. Attackers can 
gather fixed-position code parts that are called gadgets, and these fixed-position 
addresses can be selected without a containing NULL byte. By using these gad-
gets, the attacker can perform a desired operation without executing any code in 
the NX (non-executable) area. The overwrite attack and the advanced RTL at-
tack that jumps to fixed PLT entries use some of these ROP gadgets, whereby an 
attacker can seize the control of a system more easily. 

These advanced memory-overwrite attacks typically start from the contami-
nation of one PC-bound data. Canary and ASCII-Armor can be effective against 
a linear memory-overwrite attack (smashing attack), but there are many ways to 
overwrite the PC-bound data without smashing. An arbitrary overwrite attack 
can bypass defenses such as Stack Guard [33] because the guard is separate from 
the return address. PC-encoding, however, protects the target directly; the target 
address and its protection are integrated together as a single data. This inte-
grated way provides a useful form of protection regardless of whether the at-
tacker uses a pointer for an indirect overwrite or just performs straight smash-
ing. PC-encoding technique can therefore prevent the first intended jump using 
the target PC-bound data; meanwhile, the ROP-attack sequence that occurs after 
the overwriting of the first PC-bound data is blocked by the PC-encoding envi-
ronment. 

PC encoding also provides additional benefits against ROP. PC encoding can 
eliminate the ROP gadgets by inserting a decode instruction in front of the re-
turn instructions. Typical gadgets in a pattern of pop-pop-ret will be trans-
formed into a pop-pop-eor-ret pattern, and an attacker should therefore be able 
to guess the key for the use of the gadgets. In the Intel x86 architecture, the in-
sertion of instructions into the gadgets may cause a side effect of unexpected in-
structions that can be exploited for an ROP attack, because the unaligned instruc-
tions that are different from the programmer’s intention can be fetched and ex-
ecuted with the Intel x86 architecture. But only the 4 byte aligned instructions 
are executable with the ARM® processor, meaning that the insertion of instructions 
 
Table 1. The number of instructions in the CFI and PC encoding. 

 added instruction of memory access conditional branch 

CFI 4 1 1 

PC-Encoding 2 0 0 
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for the elimination of a gadget can be a more reliable and clear solution under 
the ARM® architecture. 

Among the potential gadgets-instruction sequences ending with the following 
indirect branch instructions: b; bl; bx; blx; bxj and pop {pc, …} or mov pc, 
{reg/mem}, PC encoding removes the gadgets that use the “pop {pc, …}” or 
“mov pc, {reg/mem}” instruction. However, binaries that are compiled by the 
LLVM rarely have the “pop {pc,…}” instruction because the LLVM compiler 
does not use the “pop {pc,…}” instruction as a return instruction. The “b, bl, bx, 
blx, bxj” gadgets are not removed by the current PC-encoding implementation 
reported in this paper, as the implementation in this paper covers only the re-
turn-address cases; therefore, attacks that use other PC-bound data can still suc-
ceed. Our future implementation will be able to handle all of the indirect 
branches in accordance with the use of our PC-encoding compiler under the In-
tel x86 architecture [21] [22]. 

The CFI is also capable of protecting the control flow from advanced attacks 
and can remove ROP gadgets; however, the CFI has a compatibility problem re-
garding the binary objects that are created separately due to a global ID-match- 
ing problem. For example, the CFI can cause a problem when a program tries to 
jump to the non-hardened block from a hardened block; in this case, the ID of 
the CFI verification codes regarding a proper jump are mismatched because the 
non-hardened block has no ID for the block entry. But there are no such issues 
with the PC-encoding environment because the definitions and verifications of 
the PC-bound data are usually in the same block; also, there is no need for the 
PC-encoding technique to maintain global IDs during the process. 

Table 2 shows the performance results for SPEC2006 benchmark binaries that 
have been hardened by PC encoding. The simulations were performed with the 
default SE mode of the Gem5 simulator [34]. The SE mode of the Gem5 can si-
mulate most Linux system calls, and it shows that the performance overhead is 
under 2%; also, the numbers of encode/decode instructions that were added by 
our PC-encoding compiler are shown in Table 2. The numbers of encoding and 
decoding instructions are not the same because a must-terminate epilogue ter-
minates the process directly without the execution of a return instruction, and  
 
Table 2. Performance results. 

Name 
Simulated instructions (million) Overhead 

(instruction) 
Overhead 

(tick) Normal PC-encoding 

mcf 8953 9128 1.95% 1.93% 

sjeng 33,823 34,170 1.02% 1.00% 

Name Input 
Added instructions 

Encode Decode 

bzip2 dryer.jpg 110 120 

mcf test/input.in 24 24 

sjeng test/test.txt 141 144 
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a function may have multiple epilogues upon the receipt of branch instructions. 
Unfortunately, the SE mode of Gem5 does not simulate all of the Linux system 
calls, and only a few of the binaries can be simulated properly on the Gem5. For 
example, the bzip2software that is used for compression needs to call a utime(), 
which is a system call that is not included in theGem5; therefore, the bzip2 ex-
ecution cannot be finished properly on the Gem5. 

5. Conclusions 

This paper presents a practical guide for the implementation of a PC-encoding 
compiler under the ARM®-processor architecture. The ARM®-processor archi-
tecture has become the most popular one for embedded and application proces-
sors, and it is widely adopted in embedded devices including smartphones. We 
used our experience of building the PC-encoding compiler for the Intel x86 ar-
chitecture [21] [22] as the basis for our implementation of the PC-encoding 
compiler for the ARM® processor. Our implementation protects the return ad-
dresses without inserting a protection code for accessing the memory; therefore, 
the protection incurs a minimal performance overhead. 

Regarding the implementation presented in this paper, the key utilized for the 
encoding process is the self-address, i.e., the location of the instruction defining 
PC-bound data. This key value of the self-address allows a low overhead imple-
mentation; however, if the degree of ASLR randomization is weak or no re- 
randomization occurs after a crash, it is possible for attackers to determine the 
key value using replay attacks and a source-code analysis. For more-secure pro-
tection, it may be necessary to utilize cryptographic keys that are more difficult 
to guess [22]. 

The PC-encoding implementation presented in this paper does not provide 
protection for every type of attacks because it has focused only on the return ad-
dresses among the many types of PC-bound data. While compromising the re-
turn address is the most prevailing software attacks for compromising the con-
trol flow integrity, many software attacks that do not rely on the return address 
exist. To protect other PC-bound data, a few techniques have been proposed. For 
example, it is possible to insert decoding instructions into the PLT region to 
prevent GOT-overwrite attacks, whereby an encode instruction can be added to 
the dl_resolve() function [21]. Also, one may utilize the relocation table to find 
every indirect jump [18]. We are currently in the process of incorporating these 
techniques into our ARM®-processor PC encoding compiler. 
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