
Journal of Information Security, 2016, 7, 215-223
Published Online April 2016 in SciRes. http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2016.73017

How to cite this paper: Alqurashi, S. and Batarfi, O. (2016) A Comparison of Malware Detection Techniques Based on Hid-
den Markov Model. Journal of Information Security, 7, 215-223. http://dx.doi.org/10.4236/jis.2016.73017

A Comparison of Malware Detection
Techniques Based on
Hidden Markov Model
Saja Alqurashi, Omar Batarfi
Information Technology Department, King Abdul Aziz University, Jeddah, Saudi Arabia

Received 25 January 2016; accepted 19 April 2016; published 22 April 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Malware is a software which is designed with an intent to damage a network or computer re-
sources. Today, the emergence of malware is on boom letting the researchers develop novel tech-
niques to protect computers and networks. The three major techniques used for malware detec-
tion are heuristic, signature-based, and behavior based. Among these, the most prevalent is the
heuristic based malware detection. Hidden Markov Model is the most efficient technique for mal-
ware detection. In this paper, we present the Hidden Markov Model as a cutting edge malware de-
tection tool and a comprehensive review of different studies that employ HMM as a detection tool.

Keywords
Malware, HMM, Detection Tool, Obfuscation Techniques, Metamorphic

1. Introduction
Malware is a software which is developed for malicious intent [1]. Malware can steal sensitive data from a
computer or it can infect files one after the other, and spreads the infection throughout the computer. Malware
needs to be caught and removed from the infected computer promptly to avoid the leakage of sensitive data or
any other malicious activity in the computer. Malwares can be classified into viruses, worms, Trojans, spywares,
adwares, Rootkits, etc. [2].

To escape detection tools, malware developers evolve new techniques [3] [4]. They write malware in a fa-
shion that it changes its appearance and alters its code on each infection—thus changes its appearance on each
infection. Therefore, the signature-based detection schemes cannot detect them. The various techniques em-
ployed by malware developers are discussed below.

http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2016.73017
http://dx.doi.org/10.4236/jis.2016.73017
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

S. Alqurashi, O. Batarfi

216

2. Obfuscation Techniques
Obfuscation techniques that change the syntax of program without change the semantic that make the malicious
code more difficult to be analyzed and understand while preserving its semantics and functionality [5]. Obfusca-
tion can be achieved by register exchange where registers and variables within the file are switched but the code
remains the same; instruction swap, which substitutes instructions with equivalent instructions; instruction per-
mutation; transposition that reorders the independent instructions; dead code insertion where “do nothing” in-
structions are inserted in the code [6].

2.1. Code Encryption
Refers to hiding the malicious code. Encrypted malware comprises of decryption/encryption engine, decryption
key and encrypted malicious code [2]. Encrypted malwares can be classified.

2.2. Oligomorphic
The malware developers encrypt the code in a manner that it can change its decryptors lightly [2]. However, this
malware has some limitations and can be detected by signature-based detection tools [7].

2.3. Polymorphic
The polymorphic malware encrypts itself with a different encryption algorithm/key in every infection. It can use
a large number of encryption algorithms/keys and thus makes its detection very difficult and time consuming [3].

2.4. Metamorphic
The metamorphic malware is capable of changing itself to a completely new instance that does not have any-
thing common to its original [2]. This behavior makes it the most complicated malware to detect.

3. Malware Detection Techniques
Malwares are worldwide epidemic and malware detection techniques (MDTs) serve as first line of defense
against them. The effectiveness of a malware detection tool is based on the techniques it uses. Malware detec-
tion techniques can be primarily divided into the following three classes.

3.1. Signature-Based Techniques
Signature-based detection is widely used to detect known malware. Although it is very effective, but becomes
ineffective if there is even a very small change in the code, which in turn changes its signature. Furthermore, this
scheme requires the signature database to be updated on regular basis to detect new malware [6].

3.2. Behavior-Based Techniques
These techniques constantly observe program behavior to determine whether it is harmful or not. Thus, these
techniques can also detect unknown malware. However, the effectiveness of these techniques is not yet proven.
The experiments show that these techniques have high false positive ratio [3]. Moreover, these techniques take
more time in detection process.

3.3. Heuristic Techniques
These techniques mainly use machine learning and data mining methods to identify the behavior of the running
program. The major methods that have been used so far include Naive Bayesian, Neural Network and Hidden
Markov Model [1] [3] [4] [8].

In recent work [1] [3] [4] [9], Hidden Markov Model (HMM) has been shown as an efficient machine learn-
ing model to detect malware. HMM is based on statistical analysis of different states of a code, where each state
has an associated probability of transition to other states.

HMM is a process modeling technique where each state of the process is defined in terms of its input data and
its corresponding probability of occurrence. HMM is initially trained for different states of a malicious code

S. Alqurashi, O. Batarfi

217

along with its statistical properties. Based on this learning, HMM can detect, with high probability, the mali-
cious codes of the same family. Thus, the more the training of HMM with different variants, the higher the
chances of detection.

The following section gives us more details how HMM work.

4. Hidden Markov Model
4.1. Hidden Markov Model Overview
Hidden Markov models (HMMs) are generally used for statistical pattern analysis. Also can be used in speech
recognition [10], malicious code detection [11] and biological sequence analysis [12].

Hidden Markov model is a statistical model that has states and known probabilities of the state transitions is
called a Markov model [13]. In such a Markov model, the states are visible to the observer. But a hidden Mar-
kov model (HMM) has states that are not directly observable [10]. HMM is a machine learning technique. HMM
acts as a state machine. Every state is associated with a probability distribution for observing a set of observation
symbols. The transition between the states has fixed probabilities. We train an HMM using the observation se-
quences to represent a set of data [13]. We can match an observation sequence against a trained HMM to deter-
mine the probability of seeing such a sequence. If the probability is high, the observation sequence is similar to
the training sequences. HMMs are used in protein modeling, also can be used for software piracy detection [14].
As mentioned in [13], the notations used in the hidden Markov models as following (Figure 1):

T = length of the observation sequence
N = number of states in the model
M = number of distinct observation symbols
Q = distinct states of the Markov Model
V = set of possible observations
A = state transition probability matrix
B = observation probability matrix
π = initial state distribution
O = observation sequence
A hidden Markov model is defined by the matrices A, B and π. An HMM is denoted as (), ,A Bλ π= .
The following three problems can be solved efficiently using HMM algorithms:
Problem 1: Given a model (), ,A Bλ π= and an observation sequence O, we need to find P(O|λ). That is, an

observation sequence that can be scored to see how well it fits a given model.
Problem 2: Given a model (), ,A Bλ π= and an observation sequence O, we can determine an optimal state

sequence for the Markov model. That is, the most likely hidden state sequence can be uncovered.
Problem 3: Given O, N, M, we can find a model λ that maximizes probability of O. This is the training of a

model in order to best fit an observation sequence.
These three problems can be efficiently solved by the following three algorithms:

• The Forward algorithm
• The Backward algorithm
• The Baum-Welch re-estimation algorithm

The forward-backward algorithm is for calculating the probability of being in a state qi at time t given an
observation sequence O [13]. The forward algorithm, or α pass, determines ()|P O λ . The algorithm can be
stated as follows.

Figure 1. Represents a generic view of a hidden Markov model [13].

S. Alqurashi, O. Batarfi

218

1) For 0,1, , 1t T= − and 0,1, , 1i N= −
2) () ()0 1, , , , |t t t ii P O O O x qα λ= =

The probability of the partial observation sequence up to time t is ()t iα . Using the forward algorithm,
()|P O λ can be computed as follows:

1) Let () ()0 0i ii b Oα α= , for 0,1, , 1i N= −
2) For 1,2, , 1t T= − and 0,1, , 1i N= − compute

() () ()
1

1
1

n

t t ij i t
j

i j a b Oα α
−

−
=

= ∑

3) Then () ()1
10

| n
tj

iP O λ α− −=
= ∑

The backward algorithm helps to find a most likely optimal state sequence. This algorithm can be stated as
follows:
1) For 0,1, , 1t T= − and 0,1, , 1i N= − define
2) () ()1 2 1, , , , ,t t T t ii P O O O x qβ λ+ + −= =

Then ()t iβ can be calculated in following steps:
3) Let ()1 1T iβ − = , for 0,1, , 1i N= −
4) For 2, 3, ,0t T T= − −  and 0,1, , 1i N= − , compute

() () ()
1

1 1
1

n

t ij j t t
j

i a b O jβ β
−

+ +
=

= ∑

For 0,1, , 2t T= − and 0,1, , 1i N= − define

() ()| ,t t ii P x q O Xγ ==
The relevant probability up to time t is given by:

() () ()
()|

t t
t

i i
i

P O X
α β

γ =

The most likely state at any time t is the state for which ()t iγ is maximum. The Baum-Welch algorithm
helps in iteratively re-estimating the parameters A, B, π [13].

It provides efficient way to best fit the observations. The number of states N and number of unique observa-
tion symbols M are constant. However, other parameters like A, B and π are changeable with row stochastic
condition. This process of re-estimating the model is explained as follows:
1) Initialize (), ,A Bλ π= with an appropriate guess or random values. For example
π = 1/N, Aij = 1/N, Bij = 1/M.

2) Compute ()t iα , ()t iβ , ()t iγ and (),t i jγ where (),t i jγ is a digamma. The digammas can be de-
fined as:

() ()
()
1 1

|
t t

t t ij j
O j

i a b
P O
β

γ α
λ

+ +=

()t iγ and (),t i jγ are related by:

() () ()
1

0
,

n
n

t t
j

i x a i jγ γ
−

=

= + = ∑

3) Re-estimate model parameters as: For 0,1, , 1i N= − let

()0i iπ γ=
For 0,1, , 1i N= − and 0,1, , 1j N= − , compute:

() ()
2 2

0 0
,

T T

ij t t
t t

a i j iγ γ
− −

= =

= ∑ ∑

S. Alqurashi, O. Batarfi

219

For 0,1, , 1j N= − and 0,1, , 1k M= − , compute:

() (){ } ()2
0,1, , 2 0

t k

T
t Tj t ttO

b k j iγ γ
=

−
∈ − =

= ∑ ∑

4) If ()|P O λ increases go to Step 3.
Considering the potential and effectiveness of HMM-based MDTs, we have studied their strengths and

weaknesses. In this paper, we examined 10 HMM-based MDTs and compared them to facilitate their selection
for designing and developing secure systems. In addition, we also present a comprehensive literature review of
MDT.

4.2. HMM as Malware Detection Tool
4.2.1. Traditional HMM Detector
Wong and Stamp in [3] [4] proposed a detection tool based on HMM to detect metamorphic virus. In their work,
the authors compared their tool with commercial anti-virus tools for the morphed viruses generated by four virus
engines: Next Generation Virus Creation Kit (NGVCK), Second Generation virus generator (G2), Virus Crea-
tion Lab for Win32 (VCL32), and Mass Code Generator (MCGEN). The commercial anti-virus could not detect
morphed virus generated by NGVCK, whereas HMM based detector not only classified each virus to a particu-
lar family but showed a detection rate of 97% with only 3% false positive detections [3] [4]. Figure 2 show the
HMM score used to classify the family virus, non-family virus and normal file.

The authors in [6] developed a code obfuscation engine that creates metamorphic viruses, which cannot be
detected by any signature based technique, and validate detection based on HMM. The authors created 120 dif-
ferent variants of seed viruses. The code morphing engine randomly shuffles the virus assembly code by divid-
ing it into different blocks and also inserts some blocks of dead code in the original code. These metamorphic
viruses were scanned using commercial anti-virus (McAfee), which failed to detect any of these viruses. Then,
these metamorphic viruses were tested using the proposed HMM detector. For all of the viruses, the score sig-
nificantly varied from that for normal files. Thus, the HMM-based detector identified viruses from their similar-
ity score only [6].

Another work in [15] developed metamorphic engine to produce highly diverse morphed copies of base vi-
ruses. The code obfuscation techniques used to develop engine are dead code insertion, equivalent instruction
substitute and transposition. These metamorphic viruses were tested against a commercial anti-virus and HMM de-
tector. The results showed that HMM detector is effective to identify metamorphic viruses with high accuracy [15].

Authors in [8] proposed a code emulator designed to detect dead code in metamorphic virus. This emulator
enhanced the effectiveness of HMM detector. The following graph shows us the architecture of the Code Emulator
Process Flow. This emulator has capability to emulate all important CPU registers and can filter out changes in the
instructions/subroutines caused by code obfuscation. The proposed emulator effectively identified 15%, 25%
and 35% morphed viruses [8].

Shabana et al. [14] used HMM to detect software piracy (Figure 3). In their work, the authors [14] used a
metamorphic generator to create morphed copies of a basic code. The authors extracted opcode sequences from
these copies and trained HMM on these sequences. Based on this learning, HMM computed similarity score of

Figure 2. HMM score (LLPO).

S. Alqurashi, O. Batarfi

220

Figure 3. Code emulator process flow [8].

the suspicious program to the basiccode. The higher the similarity score, the more likely it is that the suspicious
program is an altered version of the basiccode, and vice versa. This approach proved to be highly effective for
detecting morphed viruses.

4.2.2. Dueling HMM Detector
As mentioned in [3] [4], HMM detector is effective for detecting metamorphic viruses. The work in [16] ex-
plored HMM in more depth. The authors built models for different compilers, extracted salient features of those
models and used them in their proposed model to detect metamorphic viruses. In its classical implementation,
HMM has been used to mark a file as infected if its virus code similarity exceeds a given threshold [4] [5].
However, authors’ proposed approach marks the suspect file as a virus only if the HMM estimates a high proba-
bility by comparing the suspect file with several developed HMMs. This approach proved to be highly effective
in detecting the malware that even used advanced metamorphic techniques. On the other hand, this approach is

S. Alqurashi, O. Batarfi

221

deficient in balancing false negative and false positive results. In addition, this approach suffers from high per-
formance overheads as compared with the work in [4] and [5]. To overcome this problem of high overheads, the
work in [13] brings forth a hybrid approach of dueling HMM and traditional HMM.

Thunga and Neelisetti [17] proposed an intelligent classification approach based on HMM to identify viruses
of metamorphic family. In the proposed approach, the authors train multiple HMMs, one for each virus family.
They represent “n” opcodes sequences in an executable file as “n-gram”. The selection of n-gram affects the
overall accuracy of the proposed approach. The n-gram sequence in the metamorphic virus is analyzed by com-
paring with the trained HMMs one by one using a “log-likelihood similarity measure”. A virus is considered to
be a part of the family for which the “log-likelihood similarity measure” is the highest. The authors observed 90%
accuracy for each family of viruses. The proposed method is easily scalable for a higher number of virus families.
In addition, parallel implementation of the comparison phase makes the method very efficient [17] (Figure 4).

4.2.3. Hyper HMM Detector
Researchers are still working to enhance the HMM detector. The authors in [18] proposed to use genetic algo-
rithm with HMM. In HMM based techniques Baum-Welch method is used for solving one of the three problems
[15], i.e. estimating the parameters of the corresponding HMM given an output sequence. In this work the au-
thors used genetic algorithm to solve the problem. The Baum-Welch algorithm is linear in nature and suffers
from the local optima problem. The selection of genetic algorithm over traditional Baum-Welch method lies in
the non-linearity of genetic algorithm.

There are two reasons to choose genetic algorithm over Baum-Welch algorithm [18]:
• Genetic algorithm is a part of random and evolutionary algorithms and does not suffer from the local optima

problem but Baum-Welch algorithm suffers from this problem.

Figure 4. Work flow of the proposed HMM based classifier [17].

S. Alqurashi, O. Batarfi

222

• Genetic algorithm works on set of populations (comprising of numbers of chromosomes at time, while the
Baum-Welch algorithm works on individuals, so the time required to train the model increases and set of
opcodes remains shallow.

This proposed work [18] enhances HMM and results in higher accuracy in detecting metamorphic viruses.
Annachatre et al. [1] proposed new approach using HMM to detect metamorphic viruses based on classifier

algorithm. In previous works like [3] [4] and [16], the authors used HMM alone to detect metamorphic viruses.
In contrast to these studies, Annachatre et al. used a classifier algorithm to enhance the effectiveness of HMM
detector. The authors trained HMMs on a collection of malware. Then these models were evaluated and based
on the resulting score the malware samples were separated into clusters using k-means clustering algorithm as a
classifier. This work showed the highest accuracy as compared to previous works such as [3] [4] and [16].

Payandeh et al. proposed a HMM based detection circle in [18], where he characterized a virus family using
three parameters: 1) the amount of virus similarities; 2) specifically-located character occurrence probability; 3)
string occurrence probability. The proposed virus detection circle is developed on x, y coordinate axis, where x
and y represent probabilities of the factors considered in the study. To evaluate the proposed approach, the au-
thors used NGVCK kit to create morphed malware. Next, they calculated similarity scores of these viruses using
Mishra’s algorithm after making using Mishra method samples in each family are compared two by tow. The
least, the most and the average quantity of samples comparison in each virus creation kit can be seen in the fol-
lowing Table 1. The proposed approach detected these malware with 91% accuracy. This work shows good re-
sult in malware detection but need to improve the detection speed.

Table 1. Min, Max and average kits similarities percentage.

 NGVCK G2 VCL PSMPC
Min 0.00000 0.12858 0.19909 0.00000

MAX 0.23099 1.00000 0.97642 0.96875
Average 0.04835 0.470112 0.650315 0.32857

5. Comparison
Article Pros strengths Cons/limitations

Analysis and Detection of Metamorphic
Computer Viruses [3] [4]

Used HMM as detection and has ability to identify all
malware.

Cannot classify malware to their family
(HMM binary classification).

Code Obfuscation and Virus Detection
[6]

HMM has ability to identify metamorphic viruses
better than commercial AV.

-

Metamorphic Detection via Emulation
[8]

Improved HMM detection using emulator to detect
dead code in metamorphic malware.

-

Towards an Undetectable Computer
Virus [15]

Proves how HMM detector is effective to identify
metamorphic viruses with high accuracy.

Still HMM binary classification (classify
malware to family and non-family).

Hidden Markov Models for Software
Piracy Detection [14]

HMM detected piracy software with high accuracy. Still HMM binary classification (classify
malware to family and non-family).

Dueling Hidden Markov Models for
Virus Analysis [16]

Achieved good result in detecting malware developed
using advanced metamorphic techniques.

No balance between false positive and
false negative. High performance
overheads.

Identifying Metamorphic Virus Using
n-grams and HMM [17]

Scalable for a number of HMMs (directly proportional
to number of virus families).

-

Detecting Metamorphic Virus Using
Hidden Markov Model and Genetic
Algorithm [7]

Enhanced HMM using genetic algorithm to detect
metamorphic viruses.

Still HMM binary classification (classify
malware to family and nonfamily).

Hidden Markov Models for Malware
Classification [1]

Improved malware detection by HMM using k-means
clustering algorithm as a classifier.

Need to enhance the classifier.

Detecting Encrypted Metamorphic
Viruses by Hidden Markov Models [18]

Characterized each family of malware in terms of three
parameters: 1) string occurrence probability; 2)
specifically-located character occurrence probability;
3) the amount of virus similarities. These parameters
improved accuracy of malware detection using HMM.

The detection speed of was slower than
traditional HMM. Also sample data is
small to test the proposed solution.

S. Alqurashi, O. Batarfi

223

6. Research Directions
• To detect malware based on clustering algorithms such as K-means, decision Tree etc. based on learning

models such as HMM and Neural Network.
• To study how different detection approaches performs against each obfuscation techniques like dead code

technique.

7. Conclusion
Malware is any code that is developed for malicious intent. The malware has rapidly become a major security
threat for computing community and is the basic reason for the most of the security problems on internet. Recent
malware can easily deceive the signature-based detection approaches by altering their code while keeping its
function intact. To solve this problem, some machine learning techniques such as, HMM and Neural Network
are used. In current study, we have compared several HMM based malware detection approaches. From this
survey, we conclude that HMM is an efficient model to detect malware and further studies may focus on how to
improve the classification of malware based on HMM as malware detection tool.

References
[1] Annachhatre, C., Austin, T.H. and Stamp, M. (2015) Hidden Markov Models for Malware Classification. Journal in

Computer Virology and Hacking Techniques, 11, 59-73. http://dx.doi.org/10.1007/s11416-014-0215-x
[2] Bazrafshan, Z., Hashemi, H., Fard, S.M.H. and Hamzeh, A. (2013) A Survey on Heuristic Malware Detection Tech-

niques. The 5th Conference on Information and Knowledge Technology (IKT 2013), Shiraz, 28-30 May 2013, 113-120.
http://dx.doi.org/10.1109/ikt.2013.6620049

[3] Wong, W. (2006) Analysis and Detection of Metamorphic Computer Viruses. MSc, San Jose State University.
[4] Wong, W. and Stamp, M. (2006) Hunting for Metamorphic Engines. Journal in Computer Virology, 2, 211-229.

http://dx.doi.org/10.1007/s11416-006-0028-7
[5] Bayer, U., Moser, A., Kruegel, C. and Kirda, E. (2006) Dynamic Analysis of Malicious Code. Journal in Computer

Virology, 2, 67-77. http://dx.doi.org/10.1007/s11416-006-0012-2
[6] Venkatesan, A. (2008) Code Obfuscation and Virus Detection. MSc, San Jose State University.
[7] Dastidar, S.G., Mandal, S. and Barbhuiya, F.A. (2012) Detecting Metamorphic Virus Using Hidden Markov Model and

Genetic Algorithm. Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS
2011). India, 20-22 December 2011.

[8] Priyadarshi, S. (2011) Metamorphic Detection via Emulation Metamorphic Detection via Emulation. San Jose State
University.

[9] Austin, T.H., Filiol, E., Josse, S. and Stamp, M. (2013) Exploring Hidden Markov Models for Virus Analysis: A Se-
mantic Approach. 46th Hawaii International Conference on System Sciences, Wailea, 7-10 January 2013, 5039-5048.
http://dx.doi.org/10.1109/hicss.2013.217

[10] Rabiner, L.R. (1989) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc.
IEEE, 77, 257-286. http://dx.doi.org/10.1109/5.18626

[11] Annachhatre, C. (2013) Hidden Markov Models for Malware Classification. San Jose State University.
[12] Krogh, A. (1998) An Introduction to Hidden Markov Models for Biological Sequences. Computational Methods in

Molecular Biology, 32, 45-63. http://dx.doi.org/10.1016/s0167-7306(08)60461-5
[13] Stamp, M. (2004) A Revealing Introduction to Hidden Markov Models. Dep. Comput. Sci. San Jose State, 1-20.
[14] Kazi, S. (2012) Hidden Markov Models for Software Piracy Detection. San Jose State University,
[15] Desai, P. (2008) Towards an Undetectable Computer Virus. Intelligence, 1, 402-427.
[16] Kalbhor, A., Austin, T.H., Filiol, E., Josse, S. and Stamp, M. (2014) Dueling Hidden Markov Models for Virus Analy-

sis. Journal in Computer Virology and Hacking Techniques, 11, 103-118.
[17] Thunga, S.P. and Neelisetti, R.K. (2016) Identifying Metamorphic Virus Using N-Grams and Hidden Markov Model.

2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, 2015,
2016-2022.

[18] Payandeh, A. (2014) Detecting Encrypted Metamorphic Viruses by Hidden Markov Models. 2014 11th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, 2014, 973-977.

http://dx.doi.org/10.1007/s11416-014-0215-x
http://dx.doi.org/10.1109/ikt.2013.6620049
http://dx.doi.org/10.1007/s11416-006-0028-7
http://dx.doi.org/10.1007/s11416-006-0012-2
http://dx.doi.org/10.1109/hicss.2013.217
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1016/s0167-7306(08)60461-5

	A Comparison of Malware Detection Techniques Based on Hidden Markov Model
	Abstract
	Keywords
	1. Introduction
	2. Obfuscation Techniques
	2.1. Code Encryption
	2.2. Oligomorphic
	2.3. Polymorphic
	2.4. Metamorphic

	3. Malware Detection Techniques
	3.1. Signature-Based Techniques
	3.2. Behavior-Based Techniques
	3.3. Heuristic Techniques

	4. Hidden Markov Model
	4.1. Hidden Markov Model Overview
	4.2. HMM as Malware Detection Tool
	4.2.1. Traditional HMM Detector
	4.2.2. Dueling HMM Detector
	4.2.3. Hyper HMM Detector

	5. Comparison
	6. Research Directions
	7. Conclusion
	References

