
Journal of Information Security, 2016, 7, 206-214 
Published Online April 2016 in SciRes. http://www.scirp.org/journal/jis 
http://dx.doi.org/10.4236/jis.2016.73016   

How to cite this paper: Giuliani, K., Murty, V.K. and Xu, G.W. (2016) Passwords Management via Split-Key. Journal of In-
formation Security, 7, 206-214. http://dx.doi.org/10.4236/jis.2016.73016  

 
 

Passwords Management via Split-Key 
Kenneth Giuliani1, V. Kumar Murty1, Guangwu Xu2 
1Department of Mathematics, University of Toronto, Toronto, Canada 
2Department of EE & CS, University of Wisconsin-Milwaukee, Milwaukee, WI, USA 

 
 
Received 2 March 2016; accepted 19 April 2016; published 22 April 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper proposes a scheme for password management by storing password encryptions on a 
server. The method involves having the encryption key split into a share for the user and one for 
the server. The user’s share shall be based solely on a selected passphrase. The server’s share 
shall be generated from the user’s share and the encryption key. The security and trust are 
achieved by performing both encryption and decryption on the client side. We also address the 
issue of countering dictionary attack by providing a further enhancement of the scheme. 

 
Keywords 
Password Encryption, Password Storage, Identity Management, Secret Sharing 

 
 

1. Introduction 
Being the first effective form of computer-based authentication, passwords are increasingly becoming a security 
problem in the modern age. There are an increasing number of websites emerging on the Internet, each de-
manding its own userid and password. A recent study reveals that Internet users, on average, have about 25 ac-
counts that require password protection [1]. Users are suffering from “password fatigue” and this has led to 
some internet behavior on the part of users that makes them susceptible to attack. As indicated in [2], users write 
down passwords (making them vulnerable to onlookers) or select common or easily-guessed passwords. Users 
need a more effective method for managing the passwords which they require. Optimally, it may be beneficial to 
have a proper password management system. A straightforward solution would be to simply store the passwords 
in a certain location. Client password managers such as Roboform [3] keep the passwords on the client meaning 
that they can only be accessed when using the client machine. Browser-based password managers have been one 
of the most popular choices for user authentication and password management. Most popular browsers have 
provided a built-in feature for storing users’ password (in encrypted form) and other login information into a 
database. However, as reported in [4], these password managers have vulnerabilities which can be exploited by 

http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2016.73016
http://dx.doi.org/10.4236/jis.2016.73016
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


K. Giuliani et al. 
 

 
207 

attackers to decrypt passwords easily. It is also noted that recently, security analysis of some popular web-based 
password managers have been reported in [5] [6], and security issues in auto fill polices, as well as vulnerabili-
ties in one-time passwords, bookmarklets, and shared passwords have been identified. 

It would be more optimal to store the passwords in a more accessible place, such as a web server. The prob-
lem with this approach is security and trust, as a user may not wish the server to have access to their plain pass-
words. This paper proposes a new scheme to assist with storing encrypted passwords on a server. The encryption 
key is split into a share derived from a user-selected passphrase and a share residing on a server. Only when both 
shares are combined can passwords be decrypted. Even though the data resides on the server, the processing is 
performed by the user which means that the server does not have access to the plaintext passwords, nor does it 
have the capability of deriving them. Hence, even if the user passphrase is compromised to an attacker, the at-
tacker will still need to bypass authentication to the server to decrypt passwords.  

The basic model in which this scheme will reside involves three parties: a user, a server, and a web service. 
The user will wish to store passwords and other login information on the server to be retrieved when it is needed. 
The user will then forward this data to the web service for processing. In practice, the web service will usually 
be a website which the user accesses, or some enterprise server. This will be of particular use as industry moves 
toward cloud computing. The basic data flow in this model is as follows (Figure 1): 
1) User and server authenticate themselves to each other. 
2) Server sends data needed to compute the password to the user. 
3) User processes server data and sends to web service. 

The authentication between user and server can be achieved by numerous different means. This may involve 
certificates, userid and password, two-factor authentication, or any other ways of network layer security protec-
tion. This step is out of scope for this paper. In the third step, the password data is forwarded to the web service. In 
practice this could be something such as a website or enterprise server. This step is dependent on mechanisms 
which already exist and thus is also out of scope for this paper. We will note here, though, that the security of this 
model will only be as good as the security of the third step. For example, if passwords are sent in the clear from the 
client to the third party, then they can be easily viewed by attackers regardless of any security mechanisms in place 
in the other two steps. The second step is the one in which the split-key algorithm will be effective. The passwords 
would need to be stored and retrieved from the server by the user after successful authentication. There are many 
different functional and security requirements for this step, including a fundamental security feature of perform-
ing both password encryption and decryption on the client side. From the detailed description of these functional 
and security requirements and their implementation we shall see that several security issues are addressed in this 
model [7]. Some ideas of this paper were patented in 2010 and the patent was approved in 2014. See [8].  

This paper is organized into five sections, Section 2 describes functional and security requirements for our 
model, together with some relevant background of traditional secret sharing. Section 3 describes the scheme com-
ponents in detail along with the security and functionality concerns which exist. Section 4 describes an enhance-
ment of the scheme for countering dictionary attack. Finally we conclude the paper in Section 5. 

 

 
Figure 1. Model of split key. 



K. Giuliani et al. 
 

 
208 

2. Secret Sharing, Functional and Security Requirements 
2.1. Traditional Secret Sharing 
Traditional secret sharing schemes, such as those by Shamir [9] and Brickell [10] provide some motivation of 
our scheme. We demonstrate Shamir’s scheme adapted to our particular case in this subsection. Suppose two 
parties Alice and Bob wish to split their secret K into two shares. We assume that the party Alice acts as the dis-
tributor by creating the two shares and sending one to the party Bob. We will represent K as an element of the 
finite field 𝔽𝔽p where p is a prime sufficiently large. The following algorithm shows 

 

Input 
Output 

Secret pK ∈  

Public values 1x  for Alice and 2x  for Bob, private shares 1y  for Alice and 2y  for Bob 

 • Alice chooses nonzero elements 1 2 p,x x ∈  with 1 2x x≠  

• Alice chooses a nonzero secret element pa∈  
• Alice computes 

1 1y ax K= +  

2 2y ax K= +  

• Alice keeps 1y  and sends 2y  to Bob. The values 1x  and 2x  are made public 

 
In our scenario, 1y  is kept by the user while 2y  is sent to the server. If the server sends 2y  back to the 

user, the user may simply solve for a by calculating 

1 2

1 2

,y ya
x x
−

=
−  

and get the secret key K. 
The problem with this approach as with most traditional secret sharing schemes is that the shares are calcu-

lated instead of chosen. In our case, a different approach for creating shares is needed. More precisely, we re-
quire that the user’s share is essentially chosen by the user in the sense that the user selects his/her own pass-
phrase from which the share is generated. In the second part of this section, we shall list the function a land se-
curity requirements of our scheme which guided us in the design of the split key algorithm. 

2.2. Functional and Security Requirements 
According to our model, a user stores an encrypted password (which is associated with a web service) in the 
server. The encryption key is converted to shares for both user and server. 

The specific requirements for the encryption key and passphrase are 
 

(a-1) 
(a-2) 

(a-2-i) 
(a-2-ii) 
(a-3) 
(a-4) 

Only the user may reconstitute the key 
The encryption key will be split into shares between the user and the server 
The user’s share will be derived solely from a passphrase of the user’s choosing 
The server’s share will be derived from the user’s share and the encryption key 
The encryption key can only be reconstituted from both the user and server shares together 
Compromise of the passphrase will not compromise future encryptions of the passwords 

 
The functional and security requirements for dealing with the passwords are 

 
(b-1) 
(b-2) 
(b-3) 
(b-4) 
(b-5) 
(b-6) 

Passwords will be allowed to have arbitrary length 
Passwords should be bound to the web service with which they will be used 
The passwords will reside encrypted on the server 
Only the user will be able to encrypt/decrypt passwords 
The encryption should allow multiple passwords to be associated to a web service 
Passwords will be encrypted so that compromise of password will not affect future encryptions of new password 



K. Giuliani et al. 
 

 
209 

We will highlight how the split-key algorithm satisfies these requirements as it is described in the later sec-
tions. 

3. The Split Key Algorithm 
There are several different artifacts which are involved in the split-key scheme. These are listed below: 

 
K 
R 
P 
U 
C 

( )1 2,d d  

( )1 2,x x  

the encryption key  
the user’s selected ASCII passphrase of arbitrary length 
the ASCII password to be encrypted 
the URL or other ASCII identifier for the web service 
the encrypted password 
the user’s share of the split encryption key (derived from R) 

the server’s share of the split encryption key (derived from K and ( )1 2,d d ) 

 
The scheme will also have access to standard cryptographic algorithms such as a cryptographic hash function 

and a symmetric encryption algorithm. To simplify the explanation, we shall use SHA-512 and AES-256 in our 
algorithm description. We remark that other suitable functions can be used in their place. 

3.1. System Setup 
This subsection describes the steps required to set up the user and the server with the information needed to de-
rive the requisite data. Prior to setup, the user will have to: 
1) Generate a symmetric encryption key K; 
2) Select a passphrase R. 

For simplicity, we will take the key K to be a 256-bit AES key. In practice, this can be generated by the sys-
tem which the user is using and be completely transparent to the user. The passphrase R should be selected with 
sufficient entropy so as not to be easily guessed. 

3.2. Deriving the User’s Encryption Key Share 
In this subsection, we describe the process of creation of the user’s share of the encryption key. We note that this 
depends only upon the user’s passphrase. 

 
Input 

Output 
The user’s passphrase R which is m bytes 
The user’s encryption key share ( )1 2,d d  where 1d  and 2d  are 256 bits each 

 

• Represent R as 1 2R r r=  where 1r  consists of the first 
2
m 
  

 bytes of R and 2r  consists of the rightmost 
2
m 
  

 

bytes of R 
• Let 1g  = SHA-512(r1) and 2g  = SHA-512(r2) 

• Represent 1g  and 2g  as 1 1 1
g e f=  and 2 2 2

g e f=  where 1e , 2e , 1f , 2f  are each 256 bits 

• Set 1 1 2d e e= ⊕  and 2 1 2d f f= ⊕  

• If either 1d  or 2d  is 00 0  or 11 1 , ask user to input new passphrase and start the process again 

• Output ( )1 2,d d  

 
Given the pseudorandomness properties of cryptographic hash functions, it is highly unlikely that either 1d  

or 2d  will be 00 0  or 11 1 . 
We note that this step enables Requirement (a-2-i) to be satisfied. Since the user’s passphrase is known by the 

user, the user’s share does not need to be stored anywhere. The passphrase itself may be viewed as a long sen-
tence which is easily remembered by the user but difficult for anyone else to guess correctly. For example, con-
sider the sentence  

The quick brown fox jumps over the lazy dog 
SHA-512 is applied to this message so that any change to the message will result in an unpredictable change 



K. Giuliani et al. 
 

 
210 

in the output. Note, however, that the hash is used to generate both user share elements 1d  and 2d . Naively, 
one possibility of deriving this pair would be to split the passphrase into two parts (as is presently done) and use 
the first half to generate 1d  while the second half will generate 2d . The problem with this approach is that if 
the user changes their passphrase to something like  

The quick brown fox jumps over the lazy cat 
In which case, the private key element 2d  would change, but the element 1d  would remain the same. This 

could lead to a potential attack on the encryption key. To protect against this, notice that in our construction, the 
two pairs ( )1 2,e e  and ( )1 2,f f  use outputs from both halves of the hash output. 

Another comment we wish to make is about the process of separating the passphrase in halves and hashing 
them independently. This is useful in preventing the user from choosing passphrases with undesirable patterns. 
For example, a passphrase of the form R r r=  will produce 1 2 00 0d d= =  , hence would be rejected. If we 
had simply set 1d  and 2d  to be the first and last 256 bits of SHA-512(R) respectively, then such an issue 
would not have been detected. 

3.3. Deriving the Server’s Key Share 
Since the encryption is independently generated and the user’s share is generated from the user-input passphrase, 
the server’s share would need to be derived from these two pieces. The user performs the following task and 
sends the output to the server. 

 
Input 

Output 

The user’s private key pair ( )1 2,d d , the 256-bit encryption key K, pseudorandom number S of 256-bit 

The server’s key share pair ( )1 2,x x  where both 1x  and 2x  are 512-bit integers 

 

• Calculate 1 1x d K S= +  

• Calculate 2 2x d S K= +  

• Output ( )1 2,x x  

 
This derivation is simply the matrix multiplication 

1 1

2 2

1
1

x d K
x d S

    
=    

      
The pseudorandom number S is no longer needed after calculation of ( )1 2,x x  and can be discarded. 
Lemma 1. Both 1x  and 2x  are 512-bit integers. 

Proof. Since 1,d K , and S are 256-bit integers, each of the 2562 1m ≤ − . Then 

( )( )256 256 256
1

512 256 256

512 256 512

2 1 2 1 2 1

2 2 2 1 2 1

2 2 2

d K S+ ≤ − − + −

= − × + + −

= − <

 

which shows that 1x  is a 512-bit integer. The analogous estimate holds for 2x . ⧠ 
Note that this step enables Requirements (a-2-ii) and (a-3). 
Remarks: 

1) When the user first registers with the server and selects its passphrase, the server key share can be generated 
by the user and sent to the server. This is done before any passwords are entered. If the user wishes to change 
their passphrase, a new encryption key K and the corresponding random number S should be generated. 

2) In this model, the user encrypts and decrypts passwords to itself. Hence, there is only one entity involved 
with the encryption process. Thus, issues such as key management do not occur nor is there a need for pub-
lic-key cryptography. 

3) We should also remark that the pseudorandom number S, generated by the user, cannot be revealed to the 
server. Otherwise the server would be able to get the key K by factorizing the 512-bit integer 1x S− . On 
average, this is a computationally feasible task. 



K. Giuliani et al. 
 

 
211 

3.4. Deriving the Encryption Key 
In order to decrypt a password, the user will need access to the encryption key. The user knows its passphrase 
and hence, can derive its user key share. The server key share would need to be retrieved from the server. 

 

Input 
Output 

The user’s key share ( )1 2,d d , the server’s key share ( )1 2,x x  
The 256-bit encryption key K 

 

• Calculate 2 1 2u d x x= −  

• Calculate 1 2 1v d d= −  

• Output uK
v

=  

 
This operation is simply the matrix multiplication 

2 1

1 21 2

11
11

d xK
d xS d d
−   

=     −−    
 

Note the 2 2×  matrix in this formula is the inverse of the matrix used from deriving the server key share. 
Since the value S is not needed, the second value needs not be calculated. 

Note that this operation occurs on the user side since it is the only entity which knows the user share. This 
enables Requirement (a-1). Requirement (a-3) is also satisfied by this step. 

Remarks: 
1) Over time, a user may wish to change their passphrase. If this were to happen, the encryption key K and salt 

S would need to be changed as well. 
Suppose the same K and S values were to be used for a different user share  ( )1 2,d d . Then, there would be 

new server share values 
 

1 1x d K S= +  
 

2 2x d S K= +  

We see that  ( )1 1 1 1x x d d K− = − . Hence, the secret key K is a factor of the 512-bit number 

1 1x x− . Factoring 

this number and checking the small number of factors would reveal K to the server. 
Thus it is recommended to change K and S along with ( )1 2,d d . 

2) We also remark that the user should not just update the key K (or the salt S ) alone. Indeed, suppose that S is 
changed to Ŝ  but the other values remain the same. Then we would again get 



1 1
ˆx d K S= +  



2 2
ˆx d S K= +  

Observe that 




2 2
2

1 1

x xd
x x
−

=
−  

This would give away part of the user’s share to the server. Furthermore, since ( )2 2mod ,K x d≡  this would 
narrow down the possibilities for K to a small set. A similar argument will show that a weakness is introduced if 
only K is changed. 

This practice enables Requirement (a-4) to be satisfied. 

3.5. Encrypting Passwords 
When the user registers with a web service, it will obtain a URL, username, and set of passwords for that web 



K. Giuliani et al. 
 

 
212 

service. When the user wishes to store the password for the web service on the server, it must first encrypt them 
with the encryption key before transmitting them. 

 
Input 

 
Output 

The 256-bit encryption key K; the URL U; the password P; a 256-bit nonce 𝐸𝐸; and the 32-bit counter i for indexing the pass-
word 
The password encryption C 

 

• Pad P with zero bits as necessary to make it 16r bytes 
• Represent P as 1 2 rP P P P=   where each kP  has 128 bits 
• For j from 1 to r do 

Concatenate the string jW U E i j=  where j is of 32 bits 

Compute jH  = SHA-512(Wj) 

Write jH  as j j j j jH e f g h=  where each substring is of 128 bits 

Let j j j j jN e f g h= ⊕ ⊕ ⊕  

Let ( )KAESj j jC P N= ⊕  

• Concatenate and output the string 1 2 rC C C C=   

 
In addition to the password and the encryption key, the encryption mechanism makes use of other data such as 

the URL, a nonce, and counters. Let us describe how each of these inputs affects the encryption. 
Binding URL’s to Passwords. The URL U is presented within the hash value in order to bind each password 

to the URL on which it is used. Failure to do so would open up an implementation to a substitution attack. Con-
sider the scenario where the URL is not bound in this way. Suppose a user has two passwords 1P  and 2P  
which are to be used at the URL’s 1U  and 2U  respectively. Suppose further that 1U  has high security asso-
ciated with its passwords whereas 2U  has little or no security for passwords. Suppose a user wishes to decrypt 
both passwords by requesting them at the same time. An attacker may simply switch the URL’s or the encrypted 
passwords in transit. In this case, the high security password would be sent to the low-security site. This is a po-
tential breach of password security. It would certainly result in a breach if the second site has been maliciously 
constructed for this purpose. If the password encryption is bound to the URL, however, switching the sites 
would result in an incorrect decryption. Including the URL in the encryption enables Requirement (b-2) to be 
satisfied. 

Nonces for Passwords. The nonce E used for password encryption is simply a string which is changed every 
time the user changes their password for the associated URL. Consider the following scenario. Suppose a user’s 
password for a particular site is compromised in that the password𝑃𝑃 and ciphertext C are revealed to another 
entity. In the real world, this may happen if the user loans their account to a friend for a short period of time. 
The other entity would then be able to determine ( )KAES jN  for each j as in the last step of the password en-
cryption and decryption algorithms. Suppose now that the user changes their password but does not change E. 
Since the URL U does not change, nor do the counters i and j, the value for jN  would be the same, thus, so 
would ( )KAES jN . If the entity obtains iC  for all i, then they will be able to calculate the password P. This 
will happen regardless of what the user changes their password to. Hence, the value E corresponding to a pass-
word should be changed every time that particular password is changed. This enables Requirement (b-6) to be 
satisfied. Here we shall discuss an issue that is related to the Requirement (b-6). In the case that the client is 
compromised and a web service password is obtained by an attacker, the attacker is not able to get the encrypted 
version of the password and the server’s share from the server side unless the communication credential between 
client and server has been leaked to the attacker. This is because the connection between client and server is 
supposed to be protected by other authentication services such as TLS/SSL. 

Counters in Password Encryption and Decryption. A web service may have several different passwords 
associated to it. This is particularly the case during multi-stage login. In addition, some passwords may be long-
er than 16 characters, and hence, consist of multiple blocks. In practice, passwords are usually ASCII characters 
which have a specific encoding as bytes. If the counters were not used, the same value ( )KAES jN  would be 
xor-ed to each separate block for a web service. This could lead to potential correlation attacks to deduce the 
password. In general, the encryption is designed so that each x or value ( )KAES jN  is different for each block. 
Note that these counters enable Requirements (b-1) and (b-5) to be satisfied. 



K. Giuliani et al. 
 

 
213 

3.6. Decrypting Passwords 
When the user wishes to access a web service, it will need the appropriate username and password. To get these 
values, it would first need to derive the encryption key from the passphrase and the server share. Once the en-
cryption key is ready, the encrypted passwords can be sent from server to user for decryption and forwarding. 

 

Input 
 

Output 

The 256-bit encryption key K; the URL U; the encrypted password C; a 256-bit nonce E; and the 32-bit counter i for indexing 
the password 
The plaintext password P 

 

• C has input size 16r bytes 
• Represent C as 1 2 rC C C C=   where each kC  has 128 bits 
• For j from 1 to r do 

Concatenate the string jR U E i j=  where j is of 32 bits 

Compute jH  = SHA-512(Rj) 

Write jH  as j j j jj
H e f g h=  where each substring is of 128 bits 

Let j j j j jN e f g h= ⊕ ⊕ ⊕  

Let ( )KAESj j jP C N= ⊕  

• Remove any padding bytes from rP  

• Concatenate and output the string 1 2 r
P P P P=   

 
Decryption is very similar to encryption. The same x or value is generated. The only difference is that the en-

crypted value is xor-ed to obtain the clear text value. The way that decryption is structured, only the possessor of 
the encryption key, the user, can decrypt. This enables Requirements (b-3) and (b-4) to be satisfied. Removing 
any padding bytes from the last block rP  is easy since they are bytes consisting of a string of 0 and are not 
ASCII characters. 

4. Further Enhancement 
In this section, we shall present an enhancement of the split-key scheme for implementing a broader range of 
security features. More specifically the issue of dictionary attacks is considered in our modification. 

An Extension to Counter Dictionary Attack 
Using passphrases may appear to be stronger than using passwords. However, dictionary attacks can be applied 
to passphrases as well, as shown in [11]. In this subsection, we indicate an enhanced version of the split-key 
scheme by introducing an iterated hash operation to protect the scheme against a dictionary attack. 

In order to prevent a dictionary attack to discover 1d  and 2d , we introduce the following variation on this 
scheme. As before, we generate 1r  and 2r  from R. We introduce a salt B which we write as 1 2B B . The salt 
should be stored on the server side. This will reduce the chance for an attacker to obtain both the user’s share 
(only used on the client side) and the salt. 

Next we compute two sequences { }ie  and { }if  as follows. Set 

( )0 1 1SHA-512e r B=  and ( )0 2 2SHA-512f r B=  

Then for 1i ≥ , recursively define 

( )1 11SHA-512i ie r B e −=  and ( )2 2 1SHA-512i if r B f −=  

For a sufficiently large value of N, set 

NE e=  and NF f= . 

In practice, we choose N of the order 1000 but it can be chosen much higher. 
Now splitting each of E and F into equal segments 1 2E E E=  and 1 2F F F= , we set 



K. Giuliani et al. 
 

 
214 

i i id E F= ⊕  
for 1, 2i = . We then generate 1x  and 2x  as before. The addition of the iterated hash step serves the purpose 
of introducing sufficient entropy into d1 and d2, thus making a dictionary attack less feasible. 

5. Conclusion 
We have described a scheme for password management by storing password encryptions on a server. The me-
thod involves having the encryption key split into a share for the user and one for the server. The user’s share 
depends solely on a selected passphrase. The server’s share is generated from the user’s share and the encryption 
key. Only the user is able to recover the encryption key and to encrypt/decrypt the cipher text of a password. A 
further enhancement of the scheme is also proposed by providing a feature for countering dictionary attacks. 

References 
[1] Florêncio, D. and Herley, C. (2007) A Large-Scale Study of Web Password Habits. Proceedings of the 16th Interna-

tional Conference on World Wide Web, Banff, May 2007, 657-666. http://dx.doi.org/10.1145/1242572.1242661 
[2] Hayday, G. (2002) Security Nightmare: How Do You Maintain 21 Different Passwords? Silicon.com. 
[3] (2016) Roboform Reference Manual. Siber Systems Inc. 
[4] Zhao, R. and Yue, C. (2013) All Your Browser-Saved Passwords Could Belong to Us: A Security Analysis and Ac-

loud-Based New Design. Proceedings of the 3rd ACM Conference on Data and Application Security and Privacy, San 
Antonio, February, 2013, 333-340. http://dx.doi.org/10.1145/2435349.2435397 

[5] Silver, D., Jana, S., Boneh, D., Chen, E. and Jackson, C. (2014) Password Managers: Attacks and Defenses. 23rd 
USENIX Security Symposium (USENIX Security 14), San Diago, August 2014, 449-464. 

[6] Li, Z., He, W., Akhawe, D. and Song, D. (2014) The Emperor’s New Password Manager: Security Analysis Ofweb- 
Based Password Managers. 23rd USENIX Security Symposium (USENIX Security 14), San Diago, August 2014, 465- 
480. 

[7] Haque, T., Wright, M. and Scielzo, S. (2013) A Study of User Password Strategy for Multiple Accounts. Proceedings 
of the 3rd ACM Conference on Data and Application Security and Privacy, 173-176.  
http://dx.doi.org/10.1145/2435349.2435373 

[8] Giuliani, K. and Murty, V.K. (2014) Split key Secure Access System. U.S. Patent No. 8,892,881. 
[9] Shamir, A. (1979) How to Share a Secret. Communications of the ACM, 22, 612-613.  

http://dx.doi.org/10.1145/359168.359176 
[10] Brickell, E.F. (1989) Some Ideal Secret Sharing Schemes. Journal of Combinatorial Mathematics and Combinatorial 

Computing, 9, 105-113. 
[11] Bonneau, J. and Shutova, E. (2012) Linguistic Properties of Multi-Word Passphrases. Proceedings of the 16th Interna-

tional Conference on Financial Cryptography and Data Security, Kralendijk, March, 2012, 1-12.  
http://dx.doi.org/10.1007/978-3-642-34638-5_1 

http://dx.doi.org/10.1145/1242572.1242661
http://dx.doi.org/10.1145/2435349.2435397
http://dx.doi.org/10.1145/2435349.2435373
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-642-34638-5_1

	Passwords Management via Split-Key
	Abstract
	Keywords
	1. Introduction
	2. Secret Sharing, Functional and Security Requirements
	2.1. Traditional Secret Sharing
	2.2. Functional and Security Requirements

	3. The Split Key Algorithm
	3.1. System Setup
	3.2. Deriving the User’s Encryption Key Share
	3.3. Deriving the Server’s Key Share
	3.4. Deriving the Encryption Key
	3.5. Encrypting Passwords
	3.6. Decrypting Passwords

	4. Further Enhancement
	An Extension to Counter Dictionary Attack

	5. Conclusion
	References

