
Journal of Information Security, 2012, 3, 69-76
http://dx.doi.org/10.4236/jis.2012.32008 Published Online April 2012 (http://www.SciRP.org/journal/jis)

Hardware Performance Evaluation of SHA-3 Candidate
Algorithms

Yaser Jararweh1, Lo’ai Tawalbeh2, Hala Tawalbeh1, Abidalrahman Moh’d3
1Computer Science Department, Jordan University of Science and Technology (CHiS), Irbid, Jordan
2Cryptographic Hardware and Information Security Lab (CHiS), Computer Engineering Department,

Jordan University of Science and Technology, Irbid, Jordan
3Engineering Mathematics & Internetworking, Dalhousie University, Halifax, Canada

Email: {yijararweh, tawalbeh}@just.edu.jo, hala.t.88@hotmail.com, Abidalrahman.Mohd@dal.ca

Received October 25, 2011; revised December 5, 2011; accepted January 9, 2012

ABSTRACT

Secure Hashing Algorithms (SHA) showed a significant importance in today’s information security applications. The
National Institute of Standards and Technology (NIST), held a competition of three rounds to replace SHA1 and SHA2
with the new SHA-3, to ensure long term robustness of hash functions. In this paper, we present a comprehensive
hardware evaluation for the final round SHA-3 candidates. The main goal of providing the hardware evaluation is to:
find the best algorithm among them that will satisfy the new hashing algorithm standards defined by the NIST. This is
based on a comparison made between each of the finalists in terms of security level, throughput, clock frequancey, area,
power consumption, and the cost. We expect that the achived results of the comparisons will contribute in choosing the
next hashing algorithm (SHA-3) that will support the security requirements of applications in todays ubiquitous and
pervasive information infrastructure.

Keywords: Information Security; Secure Hash Algorithm (SHA); Hardware Performance; FPGA

1. Introduction

Cryptographic hash functions are very important for
many security applications, especially for the authentica-
tion related applications, such as message authentication
codes, password protection and digital signature. Data
integrity verification is another field in which cryptogra-
phic hashing takes place. It is used to make sure that the
data transmitted within a message is not being accessed
or modified.

Secure hashing algorithms take a block of data (mes-
sage), and return a fixed size bit string (hash value), such
that any change on data leads to a change on the hash
value (digest). This can be considered as a scenario that
describes briefly the mechanism of the secure hashing
algorithm. Figure 1 shows this scenario. First, conver-
sion of data and associated password into a digests, then
it will be compared in order to make sure that the mes-
sage is safe and well protected.

SHA robustness depends mainly on many factors.
Among them is the ease of computing the hash value, the
infeasibility of generating a message that has given a
hash, the infeasibility of modifying a message without
altering its hash. Adding to that, is the infeasibility of
finding two different messages with the same hash value.
Secure hashing algorithms not only protect data from
theft or alteration, but also it can be used to ensure user

authentication. SHA are used to provide digital finger-
print of file contents, and can be employed by many op-
erating systems to encrypt and decrypt passwords. Cur-
rent secure hashing algorithms e.g. SHA1 and SHA2 are
very essential, and widely used for secure communica-
tions, even in wireless communications [1]. However, it
shows many weakness and limitations that trigger the
need to find an applicable replacement.

NIST held a competition of three rounds in order to
find a new secure hash algorithm. The new algorithm
must overcome the limitations of the previous secure
hash algorithms. Now, we are in the final round with five
candidates. The main goal of this paper is to find the best
algorithm among the five candidates (Blake, Grostl, JH,
Keccak and Skein) that reach the final round of the com-
petition. The final selected algorithm will provide a
higher level of security considering the cost and the com-
plexity aspects. The selection of the best algorithm will
be based on a hardware evaluation of the five candi-
dates. The aspects of comparisons are: throughput in
Mbps, frequency in MHz, and used area measured in
Configurable Logic Blocks (CLBs).

2. Related Work

In recent years, many attacks have been reported against
different cryptographic hash functions. In 2005, Xiaoyun

Copyright © 2012 SciRes. JIS

Y. JARARWEH ET AL. 70

Figure 1. Digest authentication mechanism in hashing algo-
rithms [2].

Wang announced a practical attack for SHA-1 [3]. As a
quick response, NIST held a workshop for the purpose of
studying the general status of cryptographic hash algo-
rithms. Wang’s attack affects some digital signature app-
lications, time stamping and certificate signing opera-
tions [4]. A rapid transition to a new family of hash func-
tions became very essential. SHA-2 was the new hash
algorithm with a stronger family of hash functions that
were suitable for many commercial applications.

At the same time, SHA-2 had a constraint that is the
interoperability with many other systems [5]. In order to
find a new cryptographic hash algorithm with a higher
level of security and compatibility, NIST decided to hold
a public competition to select a replacement algorithm.
The main goal of finding new algorithm, is to stop using
SHA-1 in digital signature, digital time stamping, and
many other applications.

For SHA-2 many work in literature focused on how to
optimize speed and throughput [6,7]. Many other works
focused on finding a new implantations for SHA-2, or
proposing techniques that improves SHA-2 implementa-
tions by many techniques, such as: operation reschedul-
ing and area decreasing [7,8].

Another implementation in [9] which consumed 1373
slices for SHA-256 core, and 2726 slices for SHA-512
core with no power results provided. The implementation
of [10] used ASIC core for 8-bit SHA-256 core. This is
not practical because of the large number of clock cycles
which led to a bad performance and more complex con-
trol logic. For the under development SHA-3 and its final
round candidates (Blake, Grostl, JH, Keccak and Skein),
there are many works that studied each one of them.

The work in [11] focused on the implementation of
Skein as one of the finalists in order to investigate the
performance characteristics resulted of using a different
modern of FPGAs architectures.

A major criteria to compare the candidates is the chip
area. The research in [12] shows that Skein consumed
much less area than other candidates. Another important
comparison criteria is the hardware overall performance

in modern FPGAs families (Virtex5 and Virtex6 from
Xilinx) [13,14]. Other researches evaluate the finalists
according to their hardware implementation quality such
as in [15].

In [16], candidate’s hardware implementations, evalua-
tions, definitions, and properties were discussed. In gen-
eral, we can say that the research in [16] is a demonstra-
tion for the hardware evaluation process of SHA-3 final
round candidates. Other works focused on comparing the
algorithms that passed to second round of the competi-
tion (CubeHash, ECHO, Fugue, Hamsi, Luffa, Shabal,
SHAvite-3, SIMD, Blake, Grostl, JH, Keccak and Skein).
In [17], the authors describe, analyze, and rank a SHA3
hardware benchmark process for both FPGAs and ASICs.
They come up with some insights about how designer
can have different conclusions when working on the
same most efficient SHA-3 candidates. Also, they inves-
tigated theSHA-3 hardware benchmarking results in dif-
ferent platforms.

Some other researches selected different algorithms of
round two candidates, just like [18] that worked on Kec-
cak, Luffa and BMW. They provided an efficient, fast,
and high throuput hardware implementations for them.
[19] shows the hardware implementations for another set
of round two candidates reporting both ASIC and FPGA
implantations. This paper provided a ranking for the 5
candidates based on their performance. ASIC evaluations
presented in [20,21].

3. SHA 3 Candidate Algorithms

SHA is a group of hash functions approved and pub-
lished by NIST. All of the current secure hash algorithms
are published by the National Security Agency (NSA)
[22]. SHA-0 is a 160 bit secure hash function published
in 1993. Due to an undisclosed significant flaw, SHA-0
was withdrawn shortly after its publication and replaced
directly by SHA-1. SHA-1 is also a 160-bit secure hash
function. It is designed, developed, and published by
NSA as a part of the digital signature algorithm. SHA1 is
the most used algorithm among the hashing algorithms.

SHA2 is a family of two similar hash functions with
different 4 block-sizes for the output, 224, 256, 384, and
512-bit. The SHA-224 and the SHA-256 are truncated
versions of the SHA-384 and SHA-512. The same as
SHA-1, all SHA-2 families were designed, developed,
and published by NSA.

On the other hand, SHA-3 is the upcoming hash function
which is still under development. It will be published in a
public competition held by NIST to choose the best algo-
rithm among all the candidates in March 2012.

3.1. The Need for New SHA

Due to many attacks reported on SHA1. One of these

Copyright © 2012 SciRes. JIS

Y. JARARWEH ET AL. 71

attacks is the deferential attack applied to find a hash
collision. It was 130,000 times faster than what was ac-
ceptable [23]. NIST decided to develop a new hashing
stander that act as a new transition to more reliable and
trustworthy hashing algorithm. To achieve this transition,
NIST held a public competition started at the first quarter
of 2007 [21].

Two years after the announcement, 64 competitors or
candidates submitted their hashing algorithms to NIST
for Evaluation (51) of them were qualified to compete
within the first round. The NIST criteria’s used to evalu-
ate the first round candidates were: security, cost, per-
formance, and algorithms software implementations. The
performance of hardware implementations was not con-
sidered at this stage.

In the second quarter of 2009, a conference for an-
nouncing the 14 candidates who passed to the second
round was hosted by NIST. Then, in the second quarter
of 2010, the second conference for announcing the win-
ners that passed to the third round was held by NIST.
The third round is the final round for this competition
with 5 candidates. The criteria’s used to evaluate the can-
didates in all the rounds were the same. But, for round 3
it was extended to consider the hardware domain since
the remaining 5 candidates were implemented in hard-
ware. The winner of this competition will be announced
in January 2012 and will be titled as SHA3 [21].

3.2. Common Hashing Algorithms Components

Two primitives are needed to build strong encryption
algorithms: confusion and diffusion. Depending on Claude
Shannon information theory confusion is the operation
by which the relationship between the message and its
digest will be kept obscure. On the other hand, diffusion
is the operation of spreading the influence of each mes-
sage bit in order to hide it is statistical property [10].

As it is so obvious, the confusion operation helps in
maintain the one way property. While the diffusion helps
in strengthen the collision resistance. All the candidates
use almost the same components in order to carry out the
two primitives of confusion and diffusion. Most of SHAs
have common components that can be summarized as
follow:
1) Permutation

It is the process of swapping data for the purpose of
handling the diffusion operation. Depending on the algo-
rithm itself, the size of data to be swapped will be deter-
mined. The data can be swapped in bits within swapping
at smaller scales, and can swap multiple words at larger
scales.
2) Substitution

It is the process of nonlinear transformation of the in-
put for the purpose of handling the confusion operation,
>Usually it is implemented using a substitution-boxes

(S-box), which are carefully chosen to be resistant to
cryptanalysis.
3) Logical function

Logical functions are performed using logical gates
such as AND, OR and NOT. The most desired and com-
monly used logical function in cryptography is the XOR.
And since it has the function of balancing it is impossible
to know the input to an XOR with having a look only to
its output.
4) Modular arithmetic function

Modular arithmetic functions are used for the purpose
of handling the diffusion operation through generation
and propagation of the carry. The most desired and com-
monly used arithmetic operations are the addition and
multiplication. Performing this operation is slow due to
the carry dependency.

3.3. SHA3 Candidate Algorithms Description

In this subsection, we present the description of each one
of the five SHA-3 candidates.
1) Blake

This algorithm met all NIST criteria for SHA3 such as:
message digest of 224, 256, 384 and 512 bits, same pa-
rameter size of SHA-2, one pass streaming mode, and
maximum message length of at least 264-1 bits. Blake
deserved to be one of the five finalists [24]. Blake’s de-
signers tried to keep it simple and familiar as possible to
all cryptanalysis, since it is combined of well-known and
trusted blocks.

Any superfluous features were avoided, and just pro-
vide what users really need. Blake can be considered as a
family of 4 hash functions, Blake-224, Blake-256, Blake-
384 and Blake-512. Also, Blake has a 32-bit version and
a 64-bit version from which other instances are derived.
Blake follows the Hash Iterative Framework construction
for its iteration mode. Blake implementation requires low
resources and its fast in both software and hardware en-
vironments [3]. Figure 2 shows a detailed block diagram
for BLAKE algorithm [15].

The internal structure of Blake is the local wide-pipe
that makes the local collisions impossible for its hash
functions. Regarding Blake’s internal state, it is initial-
ized by a set of initial values, counter values, and some
constants. The state is updated using G function that
contains modular addition, XOR, and rotates operation
state [4]. The Blake’s compression algorithm, it is a
modified version of stream cipher ChaCha where the
round function is based on it.

The message block goes through a permutation proc-
ess and then enters into the round function. The round
function has one layer of G functions with a stored inter-
nal state [11 silicon imp of sha3 finalists]. Two layers of
G functions each of 4 functions will be used for one
round which means that 8 G functions will be implemented.

Copyright © 2012 SciRes. JIS

Y. JARARWEH ET AL. 72

Figure 2. BLAKE algorithm block digram.

Only 4 G functions will be used during the first half of a
round. The next 4 G functions along with the output of
the first half which is stored in the internal state registers
will be used in the other half processing. After each
round for a current message block, the finalization proc-
ess starts, and the chaining value for the next message
block will be stored in the internal state registers. The
used unrolling of G functions in two layers is important
for reducing the latency, and raising the performance at
the expense of maximum frequency and area state [13].
2) Groestl

It is an iterated hash function with a compression
function. It’s design is based on principles that are very
different from those of SHA family [5]. Groestl is a
byte-oriented SP-network that borrows components from
the AES. The S-box used for Groestl and for AES is
identical, and the diffusion layers of Groestl and AES are
constructed in same manner. Since Groestl is based on a
small number of permutations instead a block cipher with
many permutations, it has some design specification as a
result of this reduced number of permutations, such as
the simplicity of analysis, the secure construction, the
side channel resistance, allowing implementers to exploit
parallelism within the compression function, and preven-
tion of length extension attacks [22]. Figure 3 shows a
detailed block diagram for Groestl [15].

Groestl implements wide-pipe Merkel-Damgard con-
struction which is similar to the plain Merkel-Damgard
construction with the size of the internal state registers
being different. Groestl has two functions: P and Q
which are implemented in parallel. This parallelism leads
to hardware resources sharing which results in low area
of implementation. Both P and Q include four round
functions performing XOR, permutation and substitution.
The output of these functions will be the input for the
XOR gate and its output will be stored as hash digest
[21].

Figure 3. Groestl algorithm block digram.

3) JH

JH is a family of four hash functions, JH-224, JH-256,
JH-384 and JH-512. The JH algorithm is efficient for
hardware implementation since it is built using simple
components, and in software with SIMD instructions and
bit slice implementation. The JH compromised function
is constructed from a large block cipher with constant
key. The operation used are permutation, substitution,
and logical XOR. Each input message is XORed twice,
the first time before each round function with first half of
chaining values. The second time at the end of each round
function with second half of the chaining values [24].

JH has two similar modules for round operations: R6
and R8 that are used for the round constant generation
and compression, respectively. For R6, the round con-
stant generation can be achieved based on one of two
ways, either the round constant from a previous cycle, or
the initial constant value. On the other side, in R8, the
chaining values are generated depending on the input
message, the previous cycles, and the generated round
constant. Three different layers are represented in R8, the
layer of substitution, the layer of permutation, and the
layer of linear transformation [24]. Figure 4 shows a
detailed block diagram for JH algorithm [15].
4) Keccak

It is based on the sponge construction [25], so Keccak
can be considered as a family of sponge functions. The
aims of using the sponge construction are to have a
provable security against generic attacks and to make the
use of compression function more simple, flexible, and
functional. In sponge construction model, there are two
portions for the internal stage registers. Also, there are
two phases, absorbed and squeezed. The input message will

Copyright © 2012 SciRes. JIS

Y. JARARWEH ET AL. 73

Figure 4. JH algorithm block digram.

be XORed with the data stored in the first portion of the
internal stage registers during the absorption stage. And
then the resulted value of the XORing process will be
updated along with the data stored in the second portion
of the internal stage register. During the squeezing phase,
the data of the first portion will be used as a part of the
output. It is worth mentioning that the sponge construc-
tion can accommodate the output of any size by updating
the internal stage register. Figure 5 shows a detailed
block diagram for Keccak algorithm [15].
5) Skein

Skeins family has three different internal sizes for its
functions 256, 512 and 1024 bits. The main idea of skein
is to build a hash function that is out of tweak able block
cipher. The skeins design is divided up into three com-
ponents which are: Threefish, Unique Block Iteration
(UBI), and Optional Argument System [4,26]. The Three-
fish block cipher is composed of subkey, mixing, and
permutation, and is used to build the compression func-
tion using a modified Mateas-Meyer-Oseas configuration.
Figure 6 shows Skein 512-256 [15].

4. Results and Evaluation

The hardware design for SHA-3 candidate algorithms
were coded in VHDL in [11]. Xilinx ISE 13.1 was used
to synthesize the hardware designs using Virtex-5,
Virtex-6 and Virtex-7 FPGA families. Virtex-7 is a new
FPGA family based on 28 nm architecture designed for
high performance, high throughput, and low power con-
sumption. Virtex-7 power efficiency helps in mitigating
the power requirements of the increased design area of
the new SHA-3 algorithms compared to SHA-2 area.

Figure 5. Keccak algorithm block digram.

Figure 6. Skein algorithm block digram.

The synthesis results are shown in Tables 1-3. All the
results are based on SHA-3 256-bit variants.

Table 1 shows the algorithms operating frequency re-
sults for different FPGA families. The results show that
using Virtex-7 provides a higher operating frequency
comparing with Virtex-5 and 6. JH and KECCAK algo-
rithms show a higher frequency than other SHA-3 and
SHA-2 algorithms. In contrast, BLAKE and SKEIN re-
sults show lower frequency when compared to SHA-2.

Table 2 shows the algorithms Area results (number of
CLBs) for different FPGA families. The results show the
use of Virtex-7 results in larger area comparing with
Virtex-5 and 6. JH and SKEIN algorithms show a better
area results than other SHA-3 candidates. On the other
hand, BLAKE and GROESTL results show larger area
requirements when compared to other SHA-3 algorithms.

Table 3 shows the algorithms throughput (Mbps) re-
sults for different FPGA families. The results show that the
using of Virtex-7 has a little impact in on the throughput

Copyright © 2012 SciRes. JIS

Y. JARARWEH ET AL. 74

Table 1. Clock frequencies of SHA-3 candidates and SHA 2
algorithm.

Xilinx Families
Algorithm

Virtex-5 Virtex-6 Virtex-7

BLAKE 131.576 146.709 151.253

GROESTL 212.648 242.242 233.111

JH 314.125 426.314 426.13

KECCAK 270.944 333.361 403.388

SKEIN 121.312 153.418 157.222

SHA2 179.509 225.739 232.631

Table 2. Area Results (CLBs) of SHA-3 candidates and
SHA-2 algorithm.

Xilinx Families
Algorithm

Virtex-5 Virtex-5

BLAKE 1795 BLAKE 1795

GROESTL 2151 GROESTL 2151

JH 1272 JH 1272

KECCAK 1414 KECCAK 1414

SKEIN 1462 SKEIN 1462

SHA2 424 SHA2 424

Table 3. Throughput results (Mbps) of SHA-3 candidates
and SHA-2 algorithm.

Xilinx Families
Algorithm

Virtex-5 Virtex-5

BLAKE 3207 BLAKE 3207

GROESTL 5284 GROESTL 5284

JH 4467 JH 4467

KECCAK 12282 KECCAK 12282

SKEIN 3269 SKEIN 3269

SHA2 1414 SHA2 1414

comparing with Virtex-5 and 6 except for KECCAK al-
gorithm. JH and KECCAK algorithms show a higher
throughput than other SHA-3 and SHA-2 algorithms.
KECCAK algorithm shows the best results in term of
throughput.

For the purpose of comparison, Figures 7 and 8 show
normalized SHA-3 algorithms results with respect to
SHA-2 algorithm in terms of throughput and area. Fig-
ure 7 shows that all SHA-3 candidates have better throu-
ghput compared to SHA-2. KECCAK algorithm outper-
forms all other SHA-3 algorithms in terms of throughput.
Figure 8 shows that all SHA-3 candidates’ required lar-
ger area compared to SHA-2. BLAKE and GROESTL
algorithms show the worst area results compared to other
SHA-3 algorithms. Figure 9 shows the “throughput to
area ratio” of SHA-3 candidates normalized to the
“throughput to area ratio” of SHA-2. Again, we can see

Figure 7. Throughput of SHA-3 candidates normalized to
the throughput of SHA 2.

Figure 8. Area of SHA-3 candidates normalized to the area
of SHA 2.

Figure 9. Throughput to Area ratio of SHA-3 candidates
normalized to the throughput to area of SHA 2.

that KECCAK algorithm outperform all other SHA-3
algorithms. Figure 10 shows normalized power con-
sumption estimation for the finalist algorithms with re-
spect to SHA-2 for Virtex-6 and Virtex-7. Virtex-7 shows
remarkable power efficiency up to 50% of power saving
compared to Virtex-6.

Copyright © 2012 SciRes. JIS

Y. JARARWEH ET AL. 75

Figure 10. Power consumption of SHA-3 candidates nor-
malized to the power consumption of SHA 2.

Based on the hardware synthesis results, the KECCAK
algorithm outperforms all other SHA-3 algorithms. On
the other hand, Virtex-7 shows promising results com-
pared with older FPGA families from Xilinx like Virtex-5
and Virtex-6 especially in the power consumption side.

5. Conclusions

The demand on securing information and communication
is increasing continuously. Secure Hashing Algorithms
(SHA) are considered among the common and powerful
cryptographic functions used today.

In this paper, we perform a detailed hardware per-
formance evaluation of the final round SHA-3 candidates
(JH, BLAKE, GROESTL, KECCAK and SKEIN). The
hardware designs of the 5 algorithms were synthesized
using Virtex-5, 6 an 7 FPGA chips to get area, frequency
and Throughput results. The KECCAK algorithm out-
performs all other SHA-3 algorithms in terms of clock
frequency, area, and throughput. On the other side, BLA-
KE and GROESTL algorithms show the worst perform-
ance in terms in throughput, power and area. From ob-
tained results, we conclude that KECCAK algorithm
represent the best SHA-3 candidate from the hardware
evaluation perspective.

6. Acknowledgements

The authors would like to thank their universities, and
the Scientific Research Support Fund at the Ministry of
High Education in Jordan for supporting this research.
Also, we would to thank CERG team at George Mason
University for their valuable supports and HDL re-
sources.

REFERENCES
[1] A. Moh’d, N. Aslam, H. Marzi and L. A. Tawalbeh, “Hard-

ware Implementations of Secure Hashing Functions on
FPGAs for WSNs,” Proceedings of the 3rd International
Conference on the Applications of Digital Information
and Web Technologies (ICADIWT 2010), Istanbul, 12-14

July 2010.

[2] “A Guide to Building Secure Web Applications,” 2002.
http://www.cgisecurity.com/owasp/html/guide.html

[3] J.-P. Aumasson, L. Henzen, W. Meier and R. C.-W. Phan,
“SHA-3 Proposal BLAKE,” NIST (Round 3), University
of California Santa Barbara, Santa Barbara, 2010.

[4] X. Guo, M. Srivistav, S. Huang, D. Ganta, M. Henry, L.
Nazhandali and P. Schaumont, “Silicon Implementation
of SHA-3 Finalists: BLAKE, Grøstl, JH, Keccak and
Skein,” ECRYPT II Hash Workshop 2011, Tallinn, May
2011.

[5] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Men-
del, C. Rechberger, M. Schläffer and S. S. Thomsen, “Grø-
stl—A SHA-3 Candidate,” NIST, University of Califor-
nia Santa Barbara, Santa Barbara, 2011.

[6] R. Lien, T. Grembowski and K. Gaj, “A 1 Gbit/s Partially
Unrolled Architecture of Hash Functions SHA-1 and
SHA-512,” CT-RSA 2004, Vol. 2964, 2004, pp. 324-338.

[7] R. Chaves, G. Kuzmanov, L. A. Sousa and S. Vassiliadis,
“Improving SHA-2 Hardware Implementations,” Crypto-
graphic Hardware and Embedded Systems—Ches, Vol.
4249, 2006, pp. 298-310. doi:10.1007/11894063_24

[8] NIST and FIBS-PUB 180-2, “Secure Hash Standard,” 2002.
http://csrc.nist.gov/publications/fips/fips180-2

[9] R. P. McEvoy, F. M. Crowe, C. C. Murphy and W. P.
Marnane, “Optimisation of the SHA-2 Family of Hash
Functions on FPGAs,” IEEE Computer Society Annual
Symposium on VLSI: Emerging VLSI Technologies and
Architectures (ISVLSI 06), IEEE Computer Society, Wash-
ington DC, 2006, pp. 317-322.

[10] M. Feldhofer and C. Rechberger, “A Case against Cur-
rently Used Hash Functions in RFID Protocols,” Work-
shop on RFID Security (IS’06), Graz, 13-14 July 2006, pp.
372-381.

[11] S. Tillich. “Hardware Implementation of the SHA-3 Can-
didate Skein,” 2009. http://eprint.iacr.org

[12] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck,
M. Mühlberghuber, G. Neubauer, A. Reiter, A. Köfler
and M. Mayrhofer, “Compact Hardware Implementations
of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl,
and Skein,” 2009. http://eprint.iacr.org/2009/349.pdf

[13] E. Homsirikamol, M. Rogawski and K. Gaj, “Comparing
Hardware Performance of Round 3 SHA-3 Candidates
Using Multiple Hardware Architectures in Xilinx and Al-
tera FPGAs,” Encrypt II Hash Workshop—Tallinn, Esto-
nia, 19-20 May 2011.

[14] E. Homsirikamol, M. Rogawski and K. Gaj, “Comparing
Hardware Performance of Round 3 SHA-3 Candidates
Using Multiple Hardware Architecture in Xilinx and Al-
tera FPGAs,” CRYPT II Hash Workshop 2011, Tallinn,
May 2011.

[15] X. Guo, M. Srivastav, S. Huang, D. Ganta, M. B. Henry,
L. Nazhandali and P. Schaumont, “Silicon Implementa-
tion of SHA-3 Finalists: BLAKE, Grøstl, JH, Keccak and
Skein,” Center for Embedded Systems for Critical Appli-
cations (CESCA) Bradley Department of Electrical and
Computer Engineering Virginia Tech, Blacksburg, 2010.

[16] S. Huang, “Hardware Evaluation of SHA-3 Candidates,”

Copyright © 2012 SciRes. JIS

http://dx.doi.org/10.1007/11894063_24

Y. JARARWEH ET AL.

Copyright © 2012 SciRes. JIS

76

Master’s Thesis, Virginia Polytechnic Institute and State
University, Blacksburg, 2011.

[17] X. Guo, S. Huang, L. Nazhandali and P. Schaumont, “On
the Impact of Target Technology in SHA-3 Hardware
Ben- chmark Rankings,” Report 2010/536, IACR Cryp-
tology ePrint Archive, 2010.

[18] B. Akin, A. Aysu, O. C. Ulusel and E. Savas, “Efficient
Hardware Implementation of High Throughput SHA-3
Candidates Keccak, Luffa and Blue Midnight Wish for
Single- and Multi-Message Hashing,” Proceedings of the
Second SHA-3 Candidate Conference, Santa Barbara, 23-
24 August 2010.

[19] A. H. Namin and M. A. Hasan, “Implementation of the
Compression Function for Selected SHA-3 Candidates on
FPGA,” University of Waterloo, Waterloo, 2010.

[20] X. Guo, S. Huang, L. Nazhandali and P. Schaumont,
“Fair and Comprehensive Performance Evaluation of 14
Second Round SHA-3 ASIC Implementations,” Proceed-
ings of the 2nd SHA-3 Candidate Conference, Santa Bar-

bara, 23-24 August 2010.

[21] NIST, “Cryptographic Hash Algorithm Competition,” 2010.
http://csrc.nist.gov

[22] NIST, “Secure Hashing,” 2011. http://csrc.nist.gov

[23] X. Y. Wang, et al., “Finding Collisions in the Full SHA-
1,” Proceedings of Crypto, Santa Barbara, 14-18 August
2005, pp. 17-36.

[24] H. J. Wu, “The Hash Function JH,” NIST (Round 3), 2011.

[25] G. Bertoni, J. Daemen, M. el Peeters and G. Van Assche,
“Keccak Sponge Function Family Main Document,” NIST,
University of California Santa Barbara, Santa Barbara,
2009.

[26] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bel-
lare, T. Kohno, J. Callas and J. Walker, “The Skein Hash
Function Family,” NIST Cryptographic Hash Algorithm
Competition, University of California Santa Barbara, San-
ta Barbara, 2008.

