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ABSTRACT 

Secure Hashing Algorithms (SHA) showed a significant importance in today’s information security applications. The 
National Institute of Standards and Technology (NIST), held a competition of three rounds to replace SHA1 and SHA2 
with the new SHA-3, to ensure long term robustness of hash functions. In this paper, we present a comprehensive 
hardware evaluation for the final round SHA-3 candidates. The main goal of providing the hardware evaluation is to: 
find the best algorithm among them that will satisfy the new hashing algorithm standards defined by the NIST. This is 
based on a comparison made between each of the finalists in terms of security level, throughput, clock frequancey, area, 
power consumption, and the cost. We expect that the achived results of the comparisons will contribute in choosing the 
next hashing algorithm (SHA-3) that will support the security requirements of applications in todays ubiquitous and 
pervasive information infrastructure. 
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1. Introduction 

Cryptographic hash functions are very important for 
many security applications, especially for the authentica- 
tion related applications, such as message authentication 
codes, password protection and digital signature. Data 
integrity verification is another field in which cryptogra- 
phic hashing takes place. It is used to make sure that the 
data transmitted within a message is not being accessed 
or modified. 

Secure hashing algorithms take a block of data (mes-
sage), and return a fixed size bit string (hash value), such 
that any change on data leads to a change on the hash 
value (digest). This can be considered as a scenario that 
describes briefly the mechanism of the secure hashing 
algorithm. Figure 1 shows this scenario. First, conver- 
sion of data and associated password into a digests, then 
it will be compared in order to make sure that the mes- 
sage is safe and well protected. 

SHA robustness depends mainly on many factors. 
Among them is the ease of computing the hash value, the 
infeasibility of generating a message that has given a 
hash, the infeasibility of modifying a message without 
altering its hash. Adding to that, is the infeasibility of 
finding two different messages with the same hash value. 
Secure hashing algorithms not only protect data from 
theft or alteration, but also it can be used to ensure user 

authentication. SHA are used to provide digital finger- 
print of file contents, and can be employed by many op- 
erating systems to encrypt and decrypt passwords. Cur- 
rent secure hashing algorithms e.g. SHA1 and SHA2 are 
very essential, and widely used for secure communica- 
tions, even in wireless communications [1]. However, it 
shows many weakness and limitations that trigger the 
need to find an applicable replacement. 

NIST held a competition of three rounds in order to 
find a new secure hash algorithm. The new algorithm 
must overcome the limitations of the previous secure 
hash algorithms. Now, we are in the final round with five 
candidates. The main goal of this paper is to find the best 
algorithm among the five candidates (Blake, Grostl, JH, 
Keccak and Skein) that reach the final round of the com-
petition. The final selected algorithm will provide a 
higher level of security considering the cost and the com- 
plexity aspects. The selection of the best algorithm will 
be based on a hardware evaluation of the five candi- 
dates. The aspects of comparisons are: throughput in 
Mbps, frequency in MHz, and used area measured in 
Configurable Logic Blocks (CLBs). 

2. Related Work 

In recent years, many attacks have been reported against 
different cryptographic hash functions. In 2005, Xiaoyun 
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Figure 1. Digest authentication mechanism in hashing algo-
rithms [2]. 
 
Wang announced a practical attack for SHA-1 [3]. As a 
quick response, NIST held a workshop for the purpose of 
studying the general status of cryptographic hash algo- 
rithms. Wang’s attack affects some digital signature app- 
lications, time stamping and certificate signing opera- 
tions [4]. A rapid transition to a new family of hash func- 
tions became very essential. SHA-2 was the new hash 
algorithm with a stronger family of hash functions that 
were suitable for many commercial applications. 

At the same time, SHA-2 had a constraint that is the 
interoperability with many other systems [5]. In order to 
find a new cryptographic hash algorithm with a higher 
level of security and compatibility, NIST decided to hold 
a public competition to select a replacement algorithm. 
The main goal of finding new algorithm, is to stop using 
SHA-1 in digital signature, digital time stamping, and 
many other applications. 

For SHA-2 many work in literature focused on how to 
optimize speed and throughput [6,7]. Many other works 
focused on finding a new implantations for SHA-2, or 
proposing techniques that improves SHA-2 implementa-
tions by many techniques, such as: operation reschedul-
ing and area decreasing [7,8]. 

Another implementation in [9] which consumed 1373 
slices for SHA-256 core, and 2726 slices for SHA-512 
core with no power results provided. The implementation 
of [10] used ASIC core for 8-bit SHA-256 core. This is 
not practical because of the large number of clock cycles 
which led to a bad performance and more complex con-
trol logic. For the under development SHA-3 and its final 
round candidates (Blake, Grostl, JH, Keccak and Skein), 
there are many works that studied each one of them.  

The work in [11] focused on the implementation of 
Skein as one of the finalists in order to investigate the 
performance characteristics resulted of using a different 
modern of FPGAs architectures. 

A major criteria to compare the candidates is the chip 
area. The research in [12] shows that Skein consumed 
much less area than other candidates. Another important 
comparison criteria is the hardware overall performance 

in modern FPGAs families (Virtex5 and Virtex6 from 
Xilinx) [13,14]. Other researches evaluate the finalists 
according to their hardware implementation quality such 
as in [15]. 

In [16], candidate’s hardware implementations, evalua-
tions, definitions, and properties were discussed. In gen-
eral, we can say that the research in [16] is a demonstra-
tion for the hardware evaluation process of SHA-3 final 
round candidates. Other works focused on comparing the 
algorithms that passed to second round of the competi-
tion (CubeHash, ECHO, Fugue, Hamsi, Luffa, Shabal, 
SHAvite-3, SIMD, Blake, Grostl, JH, Keccak and Skein). 
In [17], the authors describe, analyze, and rank a SHA3 
hardware benchmark process for both FPGAs and ASICs. 
They come up with some insights about how designer 
can have different conclusions when working on the 
same most efficient SHA-3 candidates. Also, they inves-
tigated theSHA-3 hardware benchmarking results in dif-
ferent platforms. 

Some other researches selected different algorithms of 
round two candidates, just like [18] that worked on Kec-
cak, Luffa and BMW. They provided an efficient, fast, 
and high throuput hardware implementations for them. 
[19] shows the hardware implementations for another set 
of round two candidates reporting both ASIC and FPGA 
implantations. This paper provided a ranking for the 5 
candidates based on their performance. ASIC evaluations 
presented in [20,21]. 

3. SHA 3 Candidate Algorithms 

SHA is a group of hash functions approved and pub-
lished by NIST. All of the current secure hash algorithms 
are published by the National Security Agency (NSA) 
[22]. SHA-0 is a 160 bit secure hash function published 
in 1993. Due to an undisclosed significant flaw, SHA-0 
was withdrawn shortly after its publication and replaced 
directly by SHA-1. SHA-1 is also a 160-bit secure hash 
function. It is designed, developed, and published by 
NSA as a part of the digital signature algorithm. SHA1 is 
the most used algorithm among the hashing algorithms. 

SHA2 is a family of two similar hash functions with 
different 4 block-sizes for the output, 224, 256, 384, and 
512-bit. The SHA-224 and the SHA-256 are truncated 
versions of the SHA-384 and SHA-512. The same as 
SHA-1, all SHA-2 families were designed, developed, 
and published by NSA. 

On the other hand, SHA-3 is the upcoming hash function 
which is still under development. It will be published in a 
public competition held by NIST to choose the best algo-
rithm among all the candidates in March 2012. 

3.1. The Need for New SHA 

Due to many attacks reported on SHA1. One of these 
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attacks is the deferential attack applied to find a hash 
collision. It was 130,000 times faster than what was ac- 
ceptable [23]. NIST decided to develop a new hashing 
stander that act as a new transition to more reliable and 
trustworthy hashing algorithm. To achieve this transition, 
NIST held a public competition started at the first quarter 
of 2007 [21]. 

Two years after the announcement, 64 competitors or 
candidates submitted their hashing algorithms to NIST 
for Evaluation (51) of them were qualified to compete 
within the first round. The NIST criteria’s used to evalu-
ate the first round candidates were: security, cost, per-
formance, and algorithms software implementations. The 
performance of hardware implementations was not con-
sidered at this stage. 

In the second quarter of 2009, a conference for an-
nouncing the 14 candidates who passed to the second 
round was hosted by NIST. Then, in the second quarter 
of 2010, the second conference for announcing the win-
ners that passed to the third round was held by NIST. 
The third round is the final round for this competition 
with 5 candidates. The criteria’s used to evaluate the can-
didates in all the rounds were the same. But, for round 3 
it was extended to consider the hardware domain since 
the remaining 5 candidates were implemented in hard-
ware. The winner of this competition will be announced 
in January 2012 and will be titled as SHA3 [21]. 

3.2. Common Hashing Algorithms Components 

Two primitives are needed to build strong encryption 
algorithms: confusion and diffusion. Depending on Claude 
Shannon information theory confusion is the operation 
by which the relationship between the message and its 
digest will be kept obscure. On the other hand, diffusion 
is the operation of spreading the influence of each mes-
sage bit in order to hide it is statistical property [10]. 

As it is so obvious, the confusion operation helps in 
maintain the one way property. While the diffusion helps 
in strengthen the collision resistance. All the candidates 
use almost the same components in order to carry out the 
two primitives of confusion and diffusion. Most of SHAs 
have common components that can be summarized as 
follow: 
1) Permutation 

It is the process of swapping data for the purpose of 
handling the diffusion operation. Depending on the algo-
rithm itself, the size of data to be swapped will be deter-
mined. The data can be swapped in bits within swapping 
at smaller scales, and can swap multiple words at larger 
scales. 
2) Substitution  

It is the process of nonlinear transformation of the in-
put for the purpose of handling the confusion operation, 
>Usually it is implemented using a substitution-boxes 

(S-box), which are carefully chosen to be resistant to 
cryptanalysis. 
3) Logical function 

Logical functions are performed using logical gates 
such as AND, OR and NOT. The most desired and com-
monly used logical function in cryptography is the XOR. 
And since it has the function of balancing it is impossible 
to know the input to an XOR with having a look only to 
its output. 
4) Modular arithmetic function  

Modular arithmetic functions are used for the purpose 
of handling the diffusion operation through generation 
and propagation of the carry. The most desired and com- 
monly used arithmetic operations are the addition and 
multiplication. Performing this operation is slow due to 
the carry dependency. 

3.3. SHA3 Candidate Algorithms Description 

In this subsection, we present the description of each one 
of the five SHA-3 candidates. 
1) Blake 

This algorithm met all NIST criteria for SHA3 such as: 
message digest of 224, 256, 384 and 512 bits, same pa-
rameter size of SHA-2, one pass streaming mode, and 
maximum message length of at least 264-1 bits. Blake 
deserved to be one of the five finalists [24]. Blake’s de-
signers tried to keep it simple and familiar as possible to 
all cryptanalysis, since it is combined of well-known and 
trusted blocks. 

Any superfluous features were avoided, and just pro-
vide what users really need. Blake can be considered as a 
family of 4 hash functions, Blake-224, Blake-256, Blake- 
384 and Blake-512. Also, Blake has a 32-bit version and 
a 64-bit version from which other instances are derived. 
Blake follows the Hash Iterative Framework construction 
for its iteration mode. Blake implementation requires low 
resources and its fast in both software and hardware en-
vironments [3]. Figure 2 shows a detailed block diagram 
for BLAKE algorithm [15]. 

The internal structure of Blake is the local wide-pipe 
that makes the local collisions impossible for its hash 
functions. Regarding Blake’s internal state, it is initial-
ized by a set of initial values, counter values, and some 
constants. The state is updated using G function that 
contains modular addition, XOR, and rotates operation 
state [4]. The Blake’s compression algorithm, it is a 
modified version of stream cipher ChaCha where the 
round function is based on it. 

The message block goes through a permutation proc-
ess and then enters into the round function. The round 
function has one layer of G functions with a stored inter-
nal state [11 silicon imp of sha3 finalists]. Two layers of 
G functions each of 4 functions will be used for one 
round which means that 8 G functions will be implemented. 
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Figure 2. BLAKE algorithm block digram. 
 
Only 4 G functions will be used during the first half of a 
round. The next 4 G functions along with the output of 
the first half which is stored in the internal state registers 
will be used in the other half processing. After each 
round for a current message block, the finalization proc-
ess starts, and the chaining value for the next message 
block will be stored in the internal state registers. The 
used unrolling of G functions in two layers is important 
for reducing the latency, and raising the performance at 
the expense of maximum frequency and area state [13]. 
2) Groestl 

It is an iterated hash function with a compression 
function. It’s design is based on principles that are very 
different from those of SHA family [5]. Groestl is a 
byte-oriented SP-network that borrows components from 
the AES. The S-box used for Groestl and for AES is 
identical, and the diffusion layers of Groestl and AES are 
constructed in same manner. Since Groestl is based on a 
small number of permutations instead a block cipher with 
many permutations, it has some design specification as a 
result of this reduced number of permutations, such as 
the simplicity of analysis, the secure construction, the 
side channel resistance, allowing implementers to exploit 
parallelism within the compression function, and preven-
tion of length extension attacks [22]. Figure 3 shows a 
detailed block diagram for Groestl [15]. 

Groestl implements wide-pipe Merkel-Damgard con-
struction which is similar to the plain Merkel-Damgard 
construction with the size of the internal state registers 
being different. Groestl has two functions: P and Q 
which are implemented in parallel. This parallelism leads 
to hardware resources sharing which results in low area 
of implementation. Both P and Q include four round 
functions performing XOR, permutation and substitution. 
The output of these functions will be the input for the 
XOR gate and its output will be stored as hash digest 
[21]. 

 

Figure 3. Groestl algorithm block digram. 
 
3) JH 

JH is a family of four hash functions, JH-224, JH-256, 
JH-384 and JH-512. The JH algorithm is efficient for 
hardware implementation since it is built using simple 
components, and in software with SIMD instructions and 
bit slice implementation. The JH compromised function 
is constructed from a large block cipher with constant 
key. The operation used are permutation, substitution, 
and logical XOR. Each input message is XORed twice, 
the first time before each round function with first half of 
chaining values. The second time at the end of each round 
function with second half of the chaining values [24]. 

JH has two similar modules for round operations: R6 
and R8 that are used for the round constant generation 
and compression, respectively. For R6, the round con-
stant generation can be achieved based on one of two 
ways, either the round constant from a previous cycle, or 
the initial constant value. On the other side, in R8, the 
chaining values are generated depending on the input 
message, the previous cycles, and the generated round 
constant. Three different layers are represented in R8, the 
layer of substitution, the layer of permutation, and the 
layer of linear transformation [24]. Figure 4 shows a 
detailed block diagram for JH algorithm [15]. 
4) Keccak 

It is based on the sponge construction [25], so Keccak 
can be considered as a family of sponge functions. The 
aims of using the sponge construction are to have a 
provable security against generic attacks and to make the 
use of compression function more simple, flexible, and 
functional. In sponge construction model, there are two 
portions for the internal stage registers. Also, there are 
two phases, absorbed and squeezed. The input message will 
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Figure 4. JH algorithm block digram. 
 
be XORed with the data stored in the first portion of the 
internal stage registers during the absorption stage. And 
then the resulted value of the XORing process will be 
updated along with the data stored in the second portion 
of the internal stage register. During the squeezing phase, 
the data of the first portion will be used as a part of the 
output. It is worth mentioning that the sponge construc-
tion can accommodate the output of any size by updating 
the internal stage register. Figure 5 shows a detailed 
block diagram for Keccak algorithm [15]. 
5) Skein 

Skeins family has three different internal sizes for its 
functions 256, 512 and 1024 bits. The main idea of skein 
is to build a hash function that is out of tweak able block 
cipher. The skeins design is divided up into three com-
ponents which are: Threefish, Unique Block Iteration 
(UBI), and Optional Argument System [4,26]. The Three- 
fish block cipher is composed of subkey, mixing, and 
permutation, and is used to build the compression func-
tion using a modified Mateas-Meyer-Oseas configuration. 
Figure 6 shows Skein 512-256 [15]. 

4. Results and Evaluation 

The hardware design for SHA-3 candidate algorithms 
were coded in VHDL in [11]. Xilinx ISE 13.1 was used 
to synthesize the hardware designs using Virtex-5, 
Virtex-6 and Virtex-7 FPGA families. Virtex-7 is a new 
FPGA family based on 28 nm architecture designed for 
high performance, high throughput, and low power con-
sumption. Virtex-7 power efficiency helps in mitigating 
the power requirements of the increased design area of 
the new SHA-3 algorithms compared to SHA-2 area. 

 

Figure 5. Keccak algorithm block digram. 
 

 

Figure 6. Skein algorithm block digram. 
 
The synthesis results are shown in Tables 1-3. All the 
results are based on SHA-3 256-bit variants. 

Table 1 shows the algorithms operating frequency re-
sults for different FPGA families. The results show that 
using Virtex-7 provides a higher operating frequency 
comparing with Virtex-5 and 6. JH and KECCAK algo-
rithms show a higher frequency than other SHA-3 and 
SHA-2 algorithms. In contrast, BLAKE and SKEIN re-
sults show lower frequency when compared to SHA-2.  

Table 2 shows the algorithms Area results (number of 
CLBs) for different FPGA families. The results show the 
use of Virtex-7 results in larger area comparing with 
Virtex-5 and 6. JH and SKEIN algorithms show a better 
area results than other SHA-3 candidates. On the other 
hand, BLAKE and GROESTL results show larger area 
requirements when compared to other SHA-3 algorithms. 

Table 3 shows the algorithms throughput (Mbps) re-
sults for different FPGA families. The results show that the 
using of Virtex-7 has a little impact in on the throughput 
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Table 1. Clock frequencies of SHA-3 candidates and SHA 2 
algorithm. 

Xilinx Families 
Algorithm 

Virtex-5 Virtex-6 Virtex-7 

BLAKE 131.576 146.709 151.253 

GROESTL 212.648 242.242 233.111 

JH 314.125 426.314 426.13 

KECCAK 270.944 333.361 403.388 

SKEIN 121.312 153.418 157.222 

SHA2 179.509 225.739 232.631 

 
Table 2. Area Results (CLBs) of SHA-3 candidates and 
SHA-2 algorithm. 

Xilinx Families 
Algorithm 

Virtex-5  Virtex-5 

BLAKE 1795 BLAKE 1795 

GROESTL 2151 GROESTL 2151 

JH 1272 JH 1272 

KECCAK 1414 KECCAK 1414 

SKEIN 1462 SKEIN 1462 

SHA2 424 SHA2 424 

 
Table 3. Throughput results (Mbps) of SHA-3 candidates 
and SHA-2 algorithm. 

Xilinx Families 
Algorithm 

Virtex-5  Virtex-5 

BLAKE 3207 BLAKE 3207 

GROESTL 5284 GROESTL 5284 

JH 4467 JH 4467 

KECCAK 12282 KECCAK 12282 

SKEIN 3269 SKEIN 3269 

SHA2 1414 SHA2 1414 

 
comparing with Virtex-5 and 6 except for KECCAK al-
gorithm. JH and KECCAK algorithms show a higher 
throughput than other SHA-3 and SHA-2 algorithms. 
KECCAK algorithm shows the best results in term of 
throughput. 

For the purpose of comparison, Figures 7 and 8 show 
normalized SHA-3 algorithms results with respect to 
SHA-2 algorithm in terms of throughput and area. Fig-
ure 7 shows that all SHA-3 candidates have better throu- 
ghput compared to SHA-2. KECCAK algorithm outper-
forms all other SHA-3 algorithms in terms of throughput. 
Figure 8 shows that all SHA-3 candidates’ required lar-
ger area compared to SHA-2. BLAKE and GROESTL 
algorithms show the worst area results compared to other 
SHA-3 algorithms. Figure 9 shows the “throughput to 
area ratio” of SHA-3 candidates normalized to the 
“throughput to area ratio” of SHA-2. Again, we can see 

 

Figure 7. Throughput of SHA-3 candidates normalized to 
the throughput of SHA 2. 
 

 

Figure 8. Area of SHA-3 candidates normalized to the area 
of SHA 2. 
 

 

Figure 9. Throughput to Area ratio of SHA-3 candidates 
normalized to the throughput to area of SHA 2. 
 
that KECCAK algorithm outperform all other SHA-3 
algorithms. Figure 10 shows normalized power con-
sumption estimation for the finalist algorithms with re-
spect to SHA-2 for Virtex-6 and Virtex-7. Virtex-7 shows 
remarkable power efficiency up to 50% of power saving 
compared to Virtex-6. 
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Figure 10. Power consumption of SHA-3 candidates nor-
malized to the power consumption of SHA 2. 
 

Based on the hardware synthesis results, the KECCAK 
algorithm outperforms all other SHA-3 algorithms. On 
the other hand, Virtex-7 shows promising results com-
pared with older FPGA families from Xilinx like Virtex-5 
and Virtex-6 especially in the power consumption side. 

5. Conclusions 

The demand on securing information and communication 
is increasing continuously. Secure Hashing Algorithms 
(SHA) are considered among the common and powerful 
cryptographic functions used today.  

In this paper, we perform a detailed hardware per-
formance evaluation of the final round SHA-3 candidates 
(JH, BLAKE, GROESTL, KECCAK and SKEIN). The 
hardware designs of the 5 algorithms were synthesized 
using Virtex-5, 6 an 7 FPGA chips to get area, frequency 
and Throughput results. The KECCAK algorithm out-
performs all other SHA-3 algorithms in terms of clock 
frequency, area, and throughput. On the other side, BLA- 
KE and GROESTL algorithms show the worst perform-
ance in terms in throughput, power and area. From ob-
tained results, we conclude that KECCAK algorithm 
represent the best SHA-3 candidate from the hardware 
evaluation perspective. 

6. Acknowledgements 

The authors would like to thank their universities, and 
the Scientific Research Support Fund at the Ministry of 
High Education in Jordan for supporting this research. 
Also, we would to thank CERG team at George Mason 
University for their valuable supports and HDL re-
sources. 

REFERENCES 
[1] A. Moh’d, N. Aslam, H. Marzi and L. A. Tawalbeh, “Hard-

ware Implementations of Secure Hashing Functions on 
FPGAs for WSNs,” Proceedings of the 3rd International 
Conference on the Applications of Digital Information 
and Web Technologies (ICADIWT 2010), Istanbul, 12-14 

July 2010. 

[2] “A Guide to Building Secure Web Applications,” 2002. 
http://www.cgisecurity.com/owasp/html/guide.html 

[3] J.-P. Aumasson, L. Henzen, W. Meier and R. C.-W. Phan, 
“SHA-3 Proposal BLAKE,” NIST (Round 3), University 
of California Santa Barbara, Santa Barbara, 2010. 

[4] X. Guo, M. Srivistav, S. Huang, D. Ganta, M. Henry, L. 
Nazhandali and P. Schaumont, “Silicon Implementation 
of SHA-3 Finalists: BLAKE, Grøstl, JH, Keccak and 
Skein,” ECRYPT II Hash Workshop 2011, Tallinn, May 
2011. 

[5] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Men-
del, C. Rechberger, M. Schläffer and S. S. Thomsen, “Grø- 
stl—A SHA-3 Candidate,” NIST, University of Califor-
nia Santa Barbara, Santa Barbara, 2011. 

[6] R. Lien, T. Grembowski and K. Gaj, “A 1 Gbit/s Partially 
Unrolled Architecture of Hash Functions SHA-1 and 
SHA-512,” CT-RSA 2004, Vol. 2964, 2004, pp. 324-338. 

[7] R. Chaves, G. Kuzmanov, L. A. Sousa and S. Vassiliadis, 
“Improving SHA-2 Hardware Implementations,” Crypto-
graphic Hardware and Embedded Systems—Ches, Vol. 
4249, 2006, pp. 298-310. doi:10.1007/11894063_24 

[8] NIST and FIBS-PUB 180-2, “Secure Hash Standard,” 2002. 
http://csrc.nist.gov/publications/fips/fips180-2 

[9] R. P. McEvoy, F. M. Crowe, C. C. Murphy and W. P. 
Marnane, “Optimisation of the SHA-2 Family of Hash 
Functions on FPGAs,” IEEE Computer Society Annual 
Symposium on VLSI: Emerging VLSI Technologies and 
Architectures (ISVLSI 06), IEEE Computer Society, Wash-
ington DC, 2006, pp. 317-322. 

[10] M. Feldhofer and C. Rechberger, “A Case against Cur-
rently Used Hash Functions in RFID Protocols,” Work-
shop on RFID Security (IS’06), Graz, 13-14 July 2006, pp. 
372-381. 

[11] S. Tillich. “Hardware Implementation of the SHA-3 Can-
didate Skein,” 2009. http://eprint.iacr.org  

[12] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck, 
M. Mühlberghuber, G. Neubauer, A. Reiter, A. Köfler 
and M. Mayrhofer, “Compact Hardware Implementations 
of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl, 
and Skein,” 2009. http://eprint.iacr.org/2009/349.pdf  

[13] E. Homsirikamol, M. Rogawski and K. Gaj, “Comparing 
Hardware Performance of Round 3 SHA-3 Candidates 
Using Multiple Hardware Architectures in Xilinx and Al-
tera FPGAs,” Encrypt II Hash Workshop—Tallinn, Esto-
nia, 19-20 May 2011.  

[14] E. Homsirikamol, M. Rogawski and K. Gaj, “Comparing 
Hardware Performance of Round 3 SHA-3 Candidates 
Using Multiple Hardware Architecture in Xilinx and Al-
tera FPGAs,” CRYPT II Hash Workshop 2011, Tallinn, 
May 2011. 

[15] X. Guo, M. Srivastav, S. Huang, D. Ganta, M. B. Henry, 
L. Nazhandali and P. Schaumont, “Silicon Implementa-
tion of SHA-3 Finalists: BLAKE, Grøstl, JH, Keccak and 
Skein,” Center for Embedded Systems for Critical Appli-
cations (CESCA) Bradley Department of Electrical and 
Computer Engineering Virginia Tech, Blacksburg, 2010. 

[16] S. Huang, “Hardware Evaluation of SHA-3 Candidates,” 

Copyright © 2012 SciRes.                                                                                  JIS 

http://dx.doi.org/10.1007/11894063_24


Y. JARARWEH  ET  AL. 

Copyright © 2012 SciRes.                                                                                  JIS 

76 

Master’s Thesis, Virginia Polytechnic Institute and State 
University, Blacksburg, 2011. 

[17] X. Guo, S. Huang, L. Nazhandali and P. Schaumont, “On 
the Impact of Target Technology in SHA-3 Hardware 
Ben- chmark Rankings,” Report 2010/536, IACR Cryp-
tology ePrint Archive, 2010. 

[18] B. Akin, A. Aysu, O. C. Ulusel and E. Savas, “Efficient 
Hardware Implementation of High Throughput SHA-3 
Candidates Keccak, Luffa and Blue Midnight Wish for 
Single- and Multi-Message Hashing,” Proceedings of the 
Second SHA-3 Candidate Conference, Santa Barbara, 23- 
24 August 2010. 

[19] A. H. Namin and M. A. Hasan, “Implementation of the 
Compression Function for Selected SHA-3 Candidates on 
FPGA,” University of Waterloo, Waterloo, 2010. 

[20] X. Guo, S. Huang, L. Nazhandali and P. Schaumont, 
“Fair and Comprehensive Performance Evaluation of 14 
Second Round SHA-3 ASIC Implementations,” Proceed-
ings of the 2nd SHA-3 Candidate Conference, Santa Bar-

bara, 23-24 August 2010. 

[21] NIST, “Cryptographic Hash Algorithm Competition,” 2010. 
http://csrc.nist.gov 

[22] NIST, “Secure Hashing,” 2011. http://csrc.nist.gov 

[23] X. Y. Wang, et al., “Finding Collisions in the Full SHA- 
1,” Proceedings of Crypto, Santa Barbara, 14-18 August 
2005, pp. 17-36. 

[24] H. J. Wu, “The Hash Function JH,” NIST (Round 3), 2011. 

[25] G. Bertoni, J. Daemen, M. el Peeters and G. Van Assche, 
“Keccak Sponge Function Family Main Document,” NIST, 
University of California Santa Barbara, Santa Barbara, 
2009.  

[26] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bel-
lare, T. Kohno, J. Callas and J. Walker, “The Skein Hash 
Function Family,” NIST Cryptographic Hash Algorithm 
Competition, University of California Santa Barbara, San- 
ta Barbara, 2008.     

 
 


