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Abstract 

MicroRNAs (miRNAs) are short (~21 nt) nucleotide sequences that are either co-transcribed dur-
ing the production of mRNA or are organized in intergenic regions transcribed by RNA polymerase 
II. In animals, Drosha, and in plants DCL1 recognize pre-miRNAs which set themselves apart by 
their characteristic stem loop (hairpin) structure. This structure appears important for their rec-
ognition during the process of maturation leading to functioning mature miRNAs. A large body of 
research is available for computational pre-miRNA detection in animals, but less within the plant 
kingdom. For the prediction of pre-miRNAs, usually machine learning approaches are employed. 
Therefore, it is necessary to convert the pre-miRNAs into a set of features that can be calculated 
and many such features have been described. We here select a subset of the previously described 
features and add sequence motifs as new features. The resulting model which we called Motif-
miRNAPred was tested on known pre-miRNAs listed in miRBase and its accuracy was compared to 
existing approaches in the field. With an accuracy of 99.95% for the generalized plant model, it 
distinguishes itself from previously published results which reach an average accuracy between 
74% and 98%. We believe that our approach is useful for prediction of pre-miRNAs in plants with-
out per species adjustment. 
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1. Introduction 
MicroRNAs (miRNAs) are short RNA sequences that form a hairpin structure which harbors one or more ma-
ture miRNAs of about 21 nucleotides in length [1]. Mature miRNAs, when incorporated into RISC, provide a 
template sequence for the recognition of their target mRNAs which are then either degraded or whose transla-
tion is reduced [2]. Since their discovery by Lee and colleagues [3], they have received increasing attention and 
it is now clear that in case of animals they are also involved in many diseases [4] and in case of plants play es-
sential roles in regulation, development, response to cold stress and nutrient deprivation [5]. MicroRNAs are 
found in multicellular organisms ranging from sponges [6] to human, but the plant miRNA pathway may have 
evolved distinctly from the animal one [7].  

The experimental study of miRNAs is quite involved and complicated by the fact that the miRNA and their 
targets have to be expressed at the same time in the same cell to lead to a measurable effect. For this reason, 
computational detection of miRNAs and their targets is important [8] [9]. Different approaches to computational 
miRNA detection have been applied, but most approaches are based on feature extraction followed by machine 
learning [10] [11]. The so called ab initio miRNA detection methodology is well established in animal models 
for which abundant learning data are available for example in miRBase [12].  

Most studies which report new ab initio approaches to pre-miRNA prediction have used different data sets 
which make it difficult to compare the results. Additionally, various computational approaches (apart from ma-
chine learning) have been employed for example based on sequence conservation and/or structural similarity 
[13]-[17]. However, most detrimental for a true comparison of methodologies is that there is no fully annotated 
genome available, which would allow a proper accuracy assessment on real data. For these reasons, accuracies 
and other measures reported in the studies below cannot be compared directly, but can provide a general idea. 

NOVOMIR [18] uses a series of filter steps and a statistical model to discriminate a pre-miRNA from other 
RNAs and reports a sensitivity of 80% at a specificity of 99%. MiRenSVM an algorithm combining three SVM 
achieved a sensitivity of 93% at a specificity of 97% [19]. Xue and colleagues trained a support vector machine 
on human data (93% sensitivity at 88% specificity) but interestingly also achieved high accuracies of up to 90% 
in other species [20]. Jiang and colleagues [21] added a P-value and minimum free energy to the classification 
parameters of Xue and colleagues and using Random Forrest, a different classification algorithm, achieved a 
sensitivity of 95% at a specificity of 98%. A recent study by Zeller and coworkers employed structure/sequence 
conservation, homology to known microRNAs, and phylgenetic footprinting [22]. Others have used homology 
searches for revealing paralog and ortholog miRNAs [14] [23]-[26]. Additionally, Wang and others [27] devel-
oped a method based on sequence and structure alignment for miRNA identification. Finally, Hertel and Stadler 
included multiple sequence alignment for microRNA detection [28]. 

Many algorithms for miRNA gene prediction are based on machine learning strategies. In general, these algo-
rithms need a sufficient number of positive as well as negative examples. Although many miRNA genes seem to 
be unique in any organism, positive training examples can easily be found whereas negative examples are hard 
to come by [19] [29]-[31]. Some negative examples that were picked in studies, for example mRNA sequences 
[32] are dubious since to our current knowledge miRNAs can originate from any part of a pri-miRNA. Thus, de-
fining the negative class is a major challenge in training machine learning algorithms for miRNA discovery. For 
this reason, one-class machine learning which only needs positive examples has been tried [20] [31]. 

As pointed out above, plant miRNAs may have evolved distinct from animal ones and thus the approaches for 
miRNA detection introduced so far may need to be adapted when applied to plant miRNA detection. It has been 
found that plant miRNAs are more variable in size and very heterogeneous, but usually larger than animal 
miRNAs. Also their base pairing propensity (bonds in the stem) seems to be more extensive and their length is 
close to 21 nucleotides [33]. Billoud and colleagues predicted miRNAs in brown algae, which are different from 
both land plants and animals using a set of normalized features like Shannon entropy that have previously been 
used for detection of miRNAs in plants and animals [34]. Other studies also use tools developed for miRNA de-
tection in animals for studies in plants [18] [35] [36]. PlantMiRNAPred achieved an accuracy of more than 90% 
when used with multiple plant species [36]. One study shows that generalized training using multiple plant data 
as input for training a decision tree leads to sensitivity of 84% at a specificity of 99% [37]. This may be due to 
their concurrent usage of structural features and targeting parameters for miRNA prediction which is beneficial 
for the accuracy of miRNA prediction [38]. In Arabidopsis thaliana, one approach searched for all complemen-
tary pairs of sequences within its transcriptome of the expected size of a miRNA-mRNA duplex and then suc-
cessfully filtered the results according to divergence patterns [39]. 
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We should note in passing that high-throughput methods for sequencing isolated small RNAs provides a new 
tool for discovering novel microRNA species [40] [41] and that such information for plants is available in 
PMRD [5]. Another new method for amplifying low-concentration microRNAs allows easier testing of predic-
tions [42]. These tools are equally important for plant and animal models. However, this study is interested in 
the ab inito detection of miRNAs from genomic rather than from transcriptomic data. 

Compared to animals, less effort for computational detection of miRNAs and their targets has been exerted 
since it was thought to be simple, but it has become clear that miRNA regulation in plants is more complex than 
anticipated [43]. It is difficult to differentiate between miRNAs and short interfering RNAs in plants [44], but 
this is beyond the scope of this study. Here, we aimed to improve upon current methodologies for plant pre- 
miRNA prediction. To achieve this, we pursued two routes for the ab inito prediction of miRNAs. Like many 
other studies, we employed features describing hairpins but included many more than usual (~700) of which we 
selected the 100 most discriminative. This strategy led to a prediction accuracy of 98%, which is comparable to 
previous studies. The second approach describes miRNAs solely based on motifs. This novel approach is also of 
comparable accuracy (90%) to previous studies in itself. Employing a hybrid approach using the best of both 
descriptors led to an accuracy of 99.48% which is the best result reported for plants today. 

2. Materials and Methods 
2.1. Data 
We downloaded microRNAs from different plant species available on miRBase (Release 20 and 21).We consi-
dered Brassicaceae with 699 pre-miRNAs, that consists of Arabidopsis lyrata (205 precursors), Arabidopsis tha-
liana (298 precursors), Brassica napus (90 precursors), Brassica oleracea (10 precursors), and Brassica rapa 
(96 precursors). We also included the data published on the web server PlantMiRNAPred [36] whose training 
dataset consist of 980 real pre-miRNAs and 980 pseudo pre-miRNAs (we refer to this data as PlantMiRNAPred 
data in the following). Our negative data pool of the 980 pseudo pre-miRNAs in the PlantMiRNAPred dataset. 

2.2. Parameters for Machine Learning 
2.2.1. Motif Parameters 
Here a sequence motif is a short stretch of nucleotides that is widespread among plant hairpins. Motif discovery 
in turn is the process of finding short sequences within a larger sequence; here motifs in plant hairpins. 

The MEME (Multiple EM for Motif Elicitation) [45] suite web server is used in our study to discovery se-
quence motifs from our input data which consist of plant pre-microRNA (positive sequences) and plant pseudo 
hairpins (negative sequences). The MEME algorithm for motif discovery is based on [46] which works by 
searching for repeated, ungapped sequence motifs that occur in the DNA or protein sequences. MEME provides 
the results as regular expressions (Table 1). Nucleotides within brackets represent alternatives for the given po-
sition in the sequence; without brackets only the given nucleotide occurs abundantly within all collected se-
quences representing the motif. More visual representations of such motifs are sequence logos (Figure 1). 
MEME was instructed to generate 20 motifs, each of which must appear in at least 10 sites to be an acceptable 
motif. 

 

 
Figure 1. Motif Construction. The sequence logo corresponding to one of the motifs discovered in this study. Size of letters 
in stacks represents their frequencies while the height of the stack represents the information content. Not all options in the 
profile may be incorporated into the corresponding regular expression:                                              
[GA]A[GAC][AC][GC]A[AG]A[CG][AG][GA][ACG][AC][AGC][AC][CG][GAC][AGC]AAA.                        
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Table 1. Match score calculation. Example of match score between a motif and a part of a sequence. The number of matches 
is 6. For the assessment the score is normalized by the length of the motif. The final match score is 6/19 = 0.31.              

Table Head Motif 

Regular Expression  [GA]A[GAC]A[GC]A[AG]A[CG][AG][GA][ACG][AC][CG][GAC][AGC]AAA  

Sequence Window … A C T G GT C T A T C A T A AC GAC … 

Match  1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 010  

2.2.2. Sequence-Based and Motif Features for Plant Pre-miRNA Detection 
Simple sequence-based features have been described and used for ab initio pre-miRNA detection in numerous 
studies (see Hairpin Feature Calculation). These simple features, also called words, k-mers, or n-grams describe 
a short sequence of nucleotides of length k or n. For example a 1-gram over the alphabet {A,T,C,G} can pro-
duce the words A,T,C,G; while a 2-gram over {A,U,C,G} can generate: AA, AC, AG, AU, CA, CC, CG, CU, 
GA, GC, GG, GU, UA, UC, UG, and UU. Higher n have also been used [38] but selective for interesting 3- 
grams.  

Motif features are different from n-grams in that they are not exact and allow some degree of error tolerance. 
In this study motifs are represented as regular expressions (see above). Regular expressions are widespread in 
approximate pattern matching and many programs allow searching with regular expressions (e.g.: most Linux 
tools such as grep). Here we use PatMatch [47] to analyze whether a pattern is within a hairpin (1) or not (0). 
The hairpin is analyzed using the following algorithm: 

 

 

2.2.3. Traditional Hairpin Feature Calculation 
Apart from the novel motifs discovered in this study, we also calculated conventional features which may be 
statistical in nature, thermodynamic, sequence-based, structural, or any combination of these. The features cal-
culated were taken from 9 studies presenting ab initio detection of hairpins in animals [19]-[21] [32] [48]-[52]. 
We further added their logical extensions and normalizations, for example normalization based on stem or hair-
pin length. While it is outside of the scope of this work, some of the features are further explained in Saçar and 
Allmer [10]. All features were implemented using Java and the calculations were distributed over a 200 core 
HTCondor [53] cluster at the Izmir Institute of Technology, Urla, Turkey. 

2.2.4. Feature Selection 
Features were ranked according to the recursive feature elimination with SVM procedure (SVM-RFE) imple-
mented in WEKA for the motif and the traditional approach individually. SVM-RFE [54] is a SVM based model 
that removes features, recursively based on their contribution to the discrimination, between the two classes. The 
lowest scoring features by coefficient weights are removed and the remaining features are scored again and the 
procedure is repeated until only a few features remain. Supplementary Table S1 contains the 60 top ranked 
features for the three models as presented in Table 5. 

2.3. Support Vector Machine Classification 
Support Vector Machines (SVMs) are used in machine learning for classification [55]. In general, during train-
ing of a linear SVM examples from two classes need to be provided (positive and negative). The SVM learns a 
model by finding a hyperplane which best separates the two classes maximizing the margin from hyperplane to 
the support vectors (Figure 2).  

For training a set of labeled examples E need to be provided where ( ){ },i iE x y= , ix  is a l dimensional 
vector, and iy  defines the class of the ix  example (i.e.: l

ix R∈ ; { },iy p n∈  with p representing the posi- 
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Figure 2. A support vector machine separates examples, represented by vectors 
with n-dimensions using a hyperplane. Positive examples (green points) and 
negative examples (grey doughnuts) are separated by maximising the margins 
which intersect with the so called support vectors.                          

 
tive (+1) and n representing the negative class (−1)). The separating hyperplane then takes the following form: 

0 with ,w x b w b R⋅ + = ∈  

where w is the norm of the hyperplane and b defines its position in space. In order to predict a new instance 
given a trained model the formulation ( ) ( )signf x w x b= ⋅ +  can be solved and a positive result indicates 
membership to the positive class and negative otherwise. If the value is zero then the example on the separating 
hyperplane and cannot be classified. 

Here we used the SVM learner which has become the method of choice to solve difficult classification prob-
lems in a wide range of application domains and especially in the field of bioinformatics. In previous studies we 
have examined other classifiers and while there were no great differences in outcome SVM worked well consis-
tently. 

We used the WEKA software [56] for the implementation of our SVM classifier based on LibSVM [57]. The 
radial basis function was set to a gamma value of 0.7 and the cost parameter was chosen to be 4.0 and the nor-
malization option set to true. 

Any machine learning algorithm needs initial training and we performed five-fold cross validation during 
learning employing stratified random sampling (Figure 3). 

Trained Models 
We trained three separate models using the strategy outlined above to investigate whether motifs, or other pre-
viously described features or their combination are most successful for separating true from false plant pre- 
miRNAs. For training the motif-only model, we used the best 60 motifs and n-grams. For training the traditional 
model, we used the best 60 features. For the combined model the top 60 motifs were selected from the mixture 
of n-grams, traditional features, and motifs. The selected features are listed in Supplementary Table S1. 

2.4. Evaluation Methods 
Positive data from miRBase and negative data from PlantMiRNAPred was used to evaluate the models derived 
via SVM training. We calculated the performance of the classifier with the known sensitivity (SE) and specific-
ity (SP) and accuracy (ACC) statistics as follows (TP refers to true positives, FP to false positives, TN to true 
negatives, and FN to false negatives): 

TPSE
TP FN

=
+

, 
TNSP

TN FP
=

+
, 

TP TNACC
TP TN FP FN

+
=

+ + +
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Figure 3. SVM Training. The figure depicts the workflow that was used to train the 
SVM classifier. Positive and negative data were combined and stratified random sam-
pling was applied. The sampled data was split into 90% data for training and 10% for 
testing. This procedure was repeated 5 times.                                      

3. Results 
The PlantMiRNAPred data was divided into two parts, PlantMiRNAPred-p1 data consisting of 450 pre-miRNAs 
(positive data) and 450 pseudo pre-miRNAs (negative data) and PlantMiRNAPred-p2 data composed of 530 
pre-miRNAs and 530 pseudo pre-miRNAs. The Brassicaceae data was also divided into two parts, first part 
consists of one third of the data (233 sequences; named Brassicaceae-p1) the remaining two third (named Bras-
sicaceae-p2) contain 466 sequences. MEME software was used to discover motifs in the dataset as described in 
the Materials and Methods Section, and several motifs were found in all datasets as seen in Table 2. MEME was 
used to discover motifs in one part of the divided dataset (p1) and the same motifs were used for further experi-
ments in the remainder of the data (p2) to ensure that the extracted motifs are meaningful and not dataset de-
pendent. 

The selected motifs and the n-grams (short nucleotide sequences; see Materials and Methods; Supplementary 
Table S1), were used to train a support vector machine (SVM) model for which the accuracy and other perfor-
mance measures were established (Table 3). To see the impact of motifs on the classification accuracy, two 
models were trained for all datasets, one which uses both motifs and n-grams and one which only relies only on 
the latter. 

Table 3 presents the average performance of our SVM classifier MotifmiRNAPred using five-fold cross va-
lidation. For the motifs extracted from PlantMiRNAPred-p1 and applied to PlantMiRNAPred-p2 we see a de-
crease in performance of the model by about 13% which indicates that there is some data dependency of the mo-
tifs in this case. For Brassicaceae there was no significant difference between the datasets p1 and p2 which 
shows that in this case stable motifs were generated that are not affected by differences in the tested datasets. 
When comparing the results on PlantMiRNAPred-p1 with the results achieved by PlantMiRNAPred [36] it can 
be seen that our methodology achieves a similar performance (Table 4). PlantMiRNAPred achieves accuracies 
between 92% and 100% when the data is separated into species with a trend to be more successful for smaller 
datasets. 

In Table 4, we considered the data from PlantMiRNAPred web server [36] to perform a comparison perfor-
mance with the classification results of PlantMiRNAPred, TripletSVM [20], and microPred [58]. The data was 
represented by 174 features consisting of 84 n-grams and 90 motifs. From these, the top 60 selected features by 
SVM-RFE, feature selection method available in WEKA [56], were considered and the performance resulting 
from five-fold cross validation are presented (Table 4). 

The nucleotide T(U) is one of the most informative features (Supplementary Table S1) and it always ap-
peared on the top of the selected features for each data set individually. This observation is also confirmed by 
the study of Zhang, Pan et al. [59]. This seems to confirm that the sequences of pre-miRNAs and mature miR-
NAs are slightly enriched in T(U) and T(U) plus G, respectively. 

The comparison in Table 4 shows that using motifs for miRNA detection is comparably successful to using 
traditional features while at times even slightly more successful. Following this, we set forth and calculated the 
traditional features used to describe hairpins and trained a model (traditional) for pre-miRNA detection. We  
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Table 2. Dataset description. Dataset description and number of generated motifs per dataset.                            

Dataset 
Number of Examples Number of Motifs 

Positive Negative Selected Positive Negative 

PlantMiRNAPred-p1 450 450 30 20 10 

PlantMiRNAPred-p2 530 530 Same motifs as for PlantMiRNAPred data-p1  
were used no additional motifs were generated 

Arabidopsis thaliana 298 298 30 20 10 

Brassicaceae-p1 233 450 15 5 10 

Brassicaceae-p2 466 450 Same motifs as for Brassicaceae-p1 were used  
and not additional motifs were generated 

 
Table 3. Classifier performance. The result of MotifmiRNAPred applied to different plant miRNA data. The first value giv-
en as performance measure refers to the model trained with both n-grams and motifs and the value following is in respect to 
a model trained with only the former. ROC: receiver operator characteristic.                                             

Dataset 
Performance 

Accuracy Sensitivity Specificity ROC 

PlantMiRNAPred-p1 93.6 89.0 92.0 90.4 95.3 87.6 0.936 0.890 

PlantMiRNAPred-p2 81.7 78.5 80.0 78.7 84.2 78.4 0.818 0.786 

Arabidopsis thaliana 90.4 86.1 86.6 83.2 94.3 89.0 0.904 0.813 

Brassicaceae-p1 92.9 90.8 87.0 85.2 96.2 94.0 0.916 0.896 

Brassicaceae-p2 92.2 91.0 91.6 91.7 92.9 90.4 0.922 0.911 

 
Table 4. Performance comparison among tools. Comparison of MotifmiRNAPred with different methods. The first 4 col-
umns taken from the PlantMiRNAPred paper. The columns below MotifmiRNAPred present our results using the same data 
as in the PlantMiRNAPred paper.                                                                            

Dataset 
Size Accuracy MotifmiRNAPred 

 PlantMiRNAPred Triplet-SVM microPred ACC SE SP 

gma 83 98.59 74.12 86.75 89.80 84.30 95.20 

zma 97 98.31 66.97 93.81 94.80 94.80 94.80 

mtr 106 100.00 80.18 95.28 93.40 89.60 97.20 

sbi 131 98.47 69.51 94.66 93.50 89.30 97.70 

ath 180 92.22 76.06 89.44 93.30 88.90 97.80 

ppt 211 92.42 71.49 89.57 90.20 87.20 93.40 

ptc 233 91.85 75.21 84.98 92.20 90.60 94.00 

osa 397 94.21 75.54 90.43 90.30 88.20 93.70 

average 180 95.76 73.64 90.62 92.19 89.11 95.48 

 
calculated about 700 features, but ranked them as above and selected only the top 60 features for machine 
learning. Additionally, we combined the traditional features with the motifs and ranked the mixture and again 
selected the 60 best ranked features to train a model (combined). These two models were compared to the in-
itially learned model (motifs-only) which is only based on motifs and n-grams. The combined model performs 
better than the underlying models individually with an increase by about 11% and 1%, respectively (Table 5). 

The best accuracy was achieved by the combined feature set. It is striking that the accuracy is even better than  
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Table 5. Performance comparison among feature sets. Comparison of two synergistic feature sets and their synthesis pro-
posed in this study. The models were trained on the combined dataset including all plant miRNAs.                          

Table Head 
Performance 

Accuracy Sensitivity Specificity ROC 

Motifs-only 90.00 87.00 91 0.892 

Traditional 98.00 96.00 100 0.982 

Combined 99.48 98.80 100 0.994 

 
the best accuracy for any of the models trained on the individual plant data sets (Table 4). Since our motif-only 
approach is comparable in accuracy with previously published studies (Table 4), and due to the fact that the 
combined feature set is significantly better than the motifs-only one, we propose, that it suffices to use our fea-
ture set and create one model for miRNA detection to be applicable in even different plant species. 

4. Conclusion 
An abundance of features describing miRNA hairpins have been proposed which are mostly based on structural, 
statistical and thermodynamic features [60]. Here we showed that for plant miRNA detection, motif based fea-
tures are useful and they by themselves lead to a good recognition of pre-miRNAs at an accuracy of 90% - 95%, 
depending on the plant species (Table 4). When using a mixture of plant pre-miRNAs to train models based on 
motifs and n-grams, traditional features, and their combination, it can be seen that the combination of features is 
most successful (Table 5). We found no great difference when comparing the performance of selected features 
from the domain of animal pre-miRNA detection to using sequence motifs and n-grams as features (Table 4). 
However, the combination of these features (Table 5) performed about 4% better, even when compared to the 
average performance of classifiers specifically trained for plant species (Table 4). We conclude that using mo-
tifs for the prediction of pre-miRNAs is useful and in combination with traditional features is most successful. 
Furthermore, we propose that it may be sufficient to use a classifier trained in this manner to detect plant pre- 
miRNAs at an accuracy level high enough to warrant experimental confirmation of predicted pre-miRNAs. 
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Supplementary 
Table S1. The 60 best features were selected from the set of traditional features and motifs, individually (first two columns). 
The combination of traditional and motif features was again ranked and the 60 best features were selected (column 3). More 
information about the traditional features can be found in references [10] and [60].                                      

60 Best Ranked Features 

Traditional Motifs Combined 

efe T efe 

#A++#A 

A[AG]A[GCA][AC][AG][ACG][GAC]A[ACG]A[AG] 
[AG][GCA][CGA][GAC][AG][AC][AG]A[CA]G[AC][CGA] 
[AG][AC][CGA][AG][GC]A[CG][AC][AG][GA][CGA][AC] 

AACAA[AC][GCA][GAC][CA][GCA][AGC][CA]AA 

#A++#A 

efe/hpl TGG efe/hpl 

orf/hpl AAA[CA][CA][AC]AAA[AC]A orf/hpl 

hpmfe_rf 
[CA]AA[GCA][GA][CA]CA[GCA][CA]A[CA]G[CG][ACG] 

[GA][CA][CA][GC]A[CG][GAC][GA]AC[AG] 
A[GCA][AC]AAAGC[AC]G[CG][CA]AC 

bpp 

#G++#G/hpl GAA #G/hpl 

#A 

[CA]AA[CA][CGA][AC]A[AG][CG][GA]G[AG][ACG] 
[GA][ACG][CGA][CA][AG][CG]A[GC][AG]AG[ACG] 

[GA][AC]C[AC]G[GC][GA][GC][GC][AG]A[CG] 
A[CA][CG][CA][GC][GA]A[CGA]ACA 

#A 

hpmfe_rf/hpl TTT hpmfe_rf/hpl 

%GG/sl CAT hpmfe_rf 

#U++#A TA G 

#A++#U TC %G++%G 

lscm 
[AG][AG]A[GC]GAA[CG][AC][AG][CA]A[GA] 
[GC]GAG[AC]GCA[GAC]C[GA][AGC][GAC] 

[GC][AC][GA][GA][AC][AC]A 
lscm 

#AU AG orf/sl 

assl/hpl A[AG]AG[AC]A[AG]A[AC][AG][GC] 
[AC][ACG]A[GA][CGA]AGA[AG]A T 

orf/sl GT 
[AG][AG]A[GC]GAA[CG][AC][AG][CA] 
A[GA][GC]GAG[AC]GCA[GAC]C[GA] 

[AGC][GAC][GC][AC][GA][GA][AC][AC]A 

bpp TT #C++#A 

#G/hpl AAG *C.../sl 

#C++#A 
GAAA[GAC]AA[GC][ACG]A[GA][GA][AG][GC][GC][CA] 
[CG][ACG][AG]AG[GC]AAG[AG]A[AC][GC]A[GA]A[AG] 

[CG][CG][AC][GA][GA]AC[AG]A[ACG][AG]C[AC][ACG][CG]A 
%G 

c#N CCG #A++#C 

#A(((/sl GGA hpmfe_rf_I1 

c#U 
A[CA][GA]AA[CA][CG][GAC][CA][CAG]A[AG]C[GA][CGA] 

G[GA][GC][AC][GA]A[GCA]CA[AG][GC]A[GA][CG][GAC][GC] 
[GCA]AG[CGA][GC]A[AC]G[AC][ACG][AC]AC[AC][CG][AC]AA 

AT 

c#Us/hpl CTG #CG 

#gih/hpl CGA 

[CA][CGA][GC][GA]CAA[GC][AC][ACG] 
[GA]ACC[CAG][ACGT]GGC[AC][CA][AG] 
[GC][AGC][GC][ACG]C[CA][AC][GAC]C 
[CA][CA][CA][CAG]C[AC][CGA]A[CA] 
C[AG]A[GCA][GA][ACG]CA[AG][AG] 
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Continued 

#A((( ATT c#N 

mwm ATC c#G/sl 

#A(((/hpl A assl/hpl 

#CG/sl TGA lsr(%bp)/hpl 

#CA 

[AC][CGA][AC][GA]AG[GA][GC][AC][CA]G[CGA] 
A[GAC][CA][AC][ACG][CA][CGA][GC][CGA][CA] 

A[CAG][GCA][GCA]C[CA]A[AG]A[GC][GA] 
AGA[GA][GA][AG][GCA]C[CGA][CA][CA][GA][AC][AC]A 

#G++#G/hpl 

dscs/sl GCG 

AA[AG][AG][AGC][AG]A[AGC][GCA] 
[ACG][AGC]A[AC]A[GC]A[AG][GA] 

A[GAC]A[AG][GAC][GCA]A[AG][ACG] 
A[ACG][AG][CA][AC]A[AG][AG][AG] 

[AC][GA][AC]A[AG]A[CAG][AGC] 
AA[AG][AC]AA 

%CA/hpl G *G((./hpl 

#U(../hpl TAA #U(../hpl 

#C.(./hpl [GA][CAG]A[GA]CA[CG]CA[AC][CA]AAGA 
[ACG][GA][CA]A[GC]AA[AG][GA][CG]A TGG 

st(G-U)/hpl TGT c#G/hpl 

%GG TG #CA 

*G.../hpl [AG][AC]A[AC][AG]AA[AG][CAG]AA GC 

c#Gs AA GAA 

hpmfe_rf_I1 ACA CAT 

c#G/hpl [AG]A[GAC][AC][AC][AGC]A[AC][GCA]AG[ACG]A[GA] 
[GA][AC][GA][CG][AC][GCA][AC]A[GC][CG][ACG]A[GA] 

[AG]A[GAC][AC][AC][AGC]A[AC][GCA] 
AG[ACG]A[GA][GA][AC][GA][CG][AC] 

[GCA][AC]A[GC][CG][ACG]A[GA] 

%CA/sl AAA[GA]A[AC]A[CA][AG]A[AC]AAA[AG] TT 

%A++%A/hpl AGT st(G-U)/hpl 

%U++%A AAGAAA #A(((/hpl 

#C++#A/sl CTC lsr(%G-C) 

c#U/sl 
[GA][AC][AG][AG][CG][AC]A[AC][CGA][CAG]A[CG] 

[GCA][GC][CAG][AC]A[AG][AC]G[CGA][CG][CG][CAG] 
[CA][AGC][AG][AG][CGA]C[AG]A[CG][GAC]A[CGA]AA[AC] 

c#Us/hpl 

c#Us/sl GGC CTC 

#GG/hpl 

[CA][CGA][GC][GA]CAA[GC][AC][ACG][GA] 
ACC[CAG][ACGT]GGC[AC][CA][AG][GC][AGC] 

[GC][ACG]C[CA][AC][GAC]C[CA][CA][CA][CAG] 
C[AC][CGA]A[CA]C[AG]A[GCA][GA][ACG]CA[AG][AG] 

[AC]AA[AG]AA 

#gih/sl GA *U(.(/sl 

%GU/sl CAG AA 

ir/hpl CGG GCC 

*C(../sl 

AA[AG][AG][AGC][AG]A[AGC][GCA][ACG][AGC] 
A[AC]A[GC]A[AG][GA]A[GAC]A[AG][GAC][GCA] 
A[AG][ACG]A[ACG][AG][CA][AC]A[AG][AG][AG] 
[AC][GA][AC]A[AG]A[CAG][AGC]AA[AG][AC]AA 

c#N/hpl 
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Continued 

#G.(./sl TAT *U(((/sl 

st(G-U)/sl GTG #gih/hpl 

*G((./hpl CGC #nisl_h/sl 

c#U/hpl TAG mwm 

saln/sl A[AG][GCA][GC]A[AG]AA[GC]GA[GCA][CG][AC] 
A[AC][CG]GG[AG]AA[CG][ACG][GA][AC][AG]A 

A[AG]A[GCA][AC][AG][ACG][GAC]A 
[ACG]A[AG][AG][GCA][CGA][GAC][AG] 

[AC][AG]A[CA]G[AC][CGA][AG][AC] 
[CGA][AG][GC]A[CG][AC][AG][GA] 
[CGA][AC]AACAA[AC][GCA][GAC] 

[CA][GCA][AGC][CA]AA 

c#N/sl AT *C(../sl 

%A/sl TCA *G((./sl 

mwm/sl TCT #GG/sl 

%U++%A/sl ACT #C.(./sl 

%A++%U AGA bpp/hpl 

*A((( 
[GC]A[GA][GA][GA][GA]A[AG][AG][GC]A[GCA]G[AGC] 

[CG][AG][GAC]G[AC][AC][CA][GA]A[GA][GA]C[CG] 
A[AGC][CG]AA[AGC][CAG]A[AG][CAG][AC]A[CG]A 

ATA 
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