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ABSTRACT 

The fundamental aim of protein classification is to recognize the family of a given protein and determine its biological 
function. In the literature, the most common approaches are based on sequence or structure similarity comparisons. 
Other methods use evolutionary distances between proteins. In order to increase classification performance, this work 
proposes a novel method, namely Consensus, which combines the decisions of several sequence and structure com- 
parison tools to classify a given structure. Additionally, Consensus uses the evolutionary information of the compared 
structures. Our method is tested on three databases and evaluated based on different criteria. Performance evaluation of 
our method shows that it outperforms the different classifiers used separately and gives higher classification perform-
ance than a free-alignment method, namely ProtClass. 
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1. Introduction 

Protein classification is one of the fundamental problems 
in bioinformatics. As outlined by Busa-Fekete et al. [1], 
three main categories of classification methods can be 
identified. Sequence comparison is the most commonly 
used approach for protein classification. In this frame-
work, a query protein is compared against other proteins 
in a database. Then, a sequence with statistically signifi-
cant similarity is detected and the class of the unknown 
protein is inferred based on the known class of this simi-
lar sequence. When distant sequence similarities are ob-
served in a protein database, methods based on consensus 
descriptions are the most efficient. For all classes of a 
protein sequence database, a consensus description is 
prepared. As with the previous method, the query protein 
is compared to each of the consensus descriptions and is 
assigned the class label with the highest similarity. 

A more recent type of protein classification is called 
phylogenomics and is originally introduced by Eisen [2]. 
Phylogenomics does not just rely on the similarities in 
sequences, but it also considers the phylogenetic infor-
mation stored in a tree. This external source of knowl-
edge is accumulated in the fields of taxonomy and mo-
lecular phylogeny and used as a basis of protein classifi-
cation. The phylogenomics approach attempts to over-
come systematic errors associated with sequence com-
parison tools and increases the classification perform-
ance. 

Using only the sequence information, particularly for 
very divergent homologs is insufficient for ensuring ac-

curate classification of proteins. The knowledge of the 
3D structure of a given protein is useful to improve its 
function prediction [3-5]. Actually, biologists have shown 
that structure similarities among a group of related pro-
teins are more conserved during evolution than sequence 
similarities. These structural similarities play a biological 
function in given proteins. Thus, combing sequence and 
structure information can give better performance than 
using sequence or structure alone. A similar idea is ap-
plied to fold recognition problem by Lundstrom et al. 
[6]. They use a neural-network for consensus prediction 
and they were able to improve the prediction accuracy. 
However, their aim in fold recognition is to predict the 
structure of a protein sequence rather than its classifica-
tion. 

Cheek et al. [7] propose SCOPmap based on an auto- 
matic approach to determine SCOP’s [8] superfamily and 
fold classification of a given structure. The idea is to com- 
bine the use of numerous sequence and structure com- 
parison programs on a query protein of known structure. 
Each program identifies homologous domains using dif-
ferent approaches. Finally, a list of existing homologs is 
given from the SCOP database and the class label of the 
query protein is inferred based on labels of those ho-
mologs. 

Another work proposed by Çamoğlu et al. [9] show 
that an “ensemble classifier”, namely DTree, combining 
different component classifiers to infer the SCOP family, 
superfamily and fold level classification of a given 
structure can outperform individual components. This 
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consensus decision framework uses component classifi-
ers addressing both sequence and structure information 
for predicting the classifications of proteins with known 
structures. A decision tree approach is used to combine 
classification decisions made by these different classifi-
ers. 

Recently, Melvin et al. [10] proposed Sabretooth, a 
hybrid approach to generate the SCOP superfamily clas-
sification of a given query from its associated sequence 
or structure. The method starts by making a prediction 
from the amino acid chain using a sequence classification 
method. When the score of prediction exceeds a certain 
threshold, the query is classified. Otherwise, a second 
classifier is used to predict the corresponding class from 
its 3D structure. 

This work proposes a k Nearest Neighbor (kNN)-based 
method, namely Consensus, which uses the decisions of 
different sequence and structure comparison tools to de-
termine the classification of a given structure. Unlike 
previously described methods, Consensus is able to de-
termine the full hierarchy of CATH [11] and SCOP da-
tabases and includes most recent and efficient alignment 
tools. Moreover, the decision of a phylogeneomic me- 
thod, namely Tree-kNNseq, described in our previous 
work [12] is also considered. Thus, in addition to se-
quence and structure similarities, Consensus presents the 
novelty of using the evolutionary information stored in a 
tree to infer the class label of a query structure. 

This paper is organized as follows. In Section 2, we 
describe the Consensus method. In Section 3, we review 
the sequence and structure classifiers used in our pro- 
posed framework. In Section 4, we evaluate the per-
formance of our method with individual classifiers and 
with a free-alignment method, namely ProtClass [13]. 
We show that it is possible to develop a classifier with 
better classification performance by combining the deci-
sions of individual tools. Addionally, we show that align- 
ment-based methods give higher classification perform-
ance than free-alignment methods. Finally, we conclude 
in Section 5. 

2. Consensus: Protein Classification Using 
the Decision of Multiple Methods 

Given a database T’ of n classified protein structures in m 
different classes and a query structure L’q, each compo-
nent classifier is trained to find in the database the NNs 
proteins to the query. The indicator function If: {L’1, ···, 
L’n} → {1, ···, m} assigns class labels to protein struc-
tures. 

In this analysis, we use five classifiers: two sequence 
and three structure classifiers. The two sequence classifi-
ers are CS-BLAST [14] and Tree-kNNseq [12]. The first 
method compares a query protein sequence against a 
database of known proteins and the most similar se-

quences are returned. It constructs a context-specific se-
quence profile for the query sequence using a library of 
context profiles. Then, PSI-BLAST [15] is used to com-
pare this profile to database sequences and the most 
closely found proteins are returned. The second method, 
Tree-kNNseq is a weighted NN method, which uses a phy- 
logenetic tree to find the first NN of a query protein. 

Three structure classifiers are also used. The first one, 
FAST [16] builds alignment between two protein struc- 
tures by a directionality-based scoring scheme to com-
pare intra-molecular residue-residue distances in two 
structures. GANGSTA+ [17] performs sequential and 
nonsequential alignments while assigning the type of 
secondary structure by focusing only on helices and 
strands. 

Finally, ComSubstruct [18] proposes a mathematical 
framework applied to analyze the local structure of pro- 
teins, where local conformations of protein backbones 
are described using differential geometry of folded tetra-
hedron sequences. 

We denote by Lq the associated sequence of a given 
query structure and T the sequence train set of the given 
protein structures. The sequence classifiers are used as 
follows. The training procedure of CS-BLAST compares 
the sequence Lq against the whole database T based on 
the CS-BLAST score. The most similar proteins found in 
the database are ranked according to the CS-BLAST 
score under a certain cutoff. Then, the first NN showing 
the highest score is selected. For Tree-kNNseq, the training 
procedure is described as follows: For each query se-
quence Lq, a tree is built with the training set T. Based on 
the whole tree structure, the set of NNs is determined. 
The NNs are leaves with the minimum number of edges 
from the query Lq. To select the first NN, the method 
finds the protein with the minimum distance from the 
query. 

The structure classifiers are trained as follows: Each 
structure L’q in the query set is compared to all structures 
in the training set T’ based on the similarity criteria de-
fined by each classifier. For FAST and GANGSTA+, the 
protein showing the highest similarity score and the 
minimum root-mean-square-deviation (RMSD) is selected 
as the first NN to the query protein. A set of the most 
similar proteins with identical highest score and lowest 
RMSD distance can be determined. In this case, all of 
them are considered as NNs. The ComSubstruct clas- 
sifier generates several best longest common subse-
quences (LCSs) between a given query and the train set. 
These best LCSs are ranked in a decreasing order with 
respect to the values of Ratios A and B. Only the first 
best LCS result, which shows the maximum values of 
Ratios A and B, is considered. The protein structure 
which gives the first best LCS with the query protein is 
chosen as the first NN. 
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After this training procedure, each of the five compo-
nent classifiers can produce one or more NNs proteins. In 
the final stage, this set of NNs is used to assign to the 
query structure L’q the most common class label. Con-
sensus algorithm is outlined in Algorithm 1. 

Algorithm 1 Pseudo code for Consensus algorithm 
Input: A query structure L’q, the associated sequence 

Lq, the train sets T’ and T, T’ = {L’i}, T= {Li} and I ∈ 
[1···n] 

Output: The most common class to the query struc-
ture L’q 

Training: 
1: For each Li ∈ T and Lq do 
Compute CS-BLAST distances diq; 
2: Select the NN sequence of CS-BLAST, Lk1, with the 

minimum distance d; 
3: Find the NN sequence Lk2 with Tree-kNNseq; 
4: For each L’i ∈ T’ and L’q do 
Compute the SNiq score and RMSDiqfast with FAST; 
Compute the GPsiq and RMSDiqGP with GANGSTA+; 
Compute the LCSiq using ComSubstruct; 
5: Select the set NNfast = {L’i} with maximal SNiq and 

minimum RMSDiqfast; 
Select the set NNgplus = {L’i} with maximal GPsiq and 

minimum RMSDiqGP; 
Select the NN L’k3 with the first best LCS with L’q; 
Classification: 
6: Compute the common class label: 
If (L’q) = If (L’k1 ∪ L’k2 ∪ L’k3 ∪ NNfast  ∪ NNgplus); 
End 

3. Classifiers Used in Consensus Method 

3.1. Sequence Classifiers 

CS-BLAST is a context-specific version of BLAST for 
homologous proteins searching in sequence databases, 
able to provide more sensitive and accurate alignment 
than BLAST [19]. Effectively, instead of using substitu-
tion matrices to find the best alignment similarity score 
between aligned residues, CS-BLAST creates context 
specific amino acid similarities from short windows cen-
tered on each query sequence residue. First, CS-BLAST 
constructs a context-specific sequence profile for the 
query sequence using a library of context profiles. Then, 
the context-specific case of PSI-BLAST (CSI-BLAST) is 
used to compare this profile to database sequences. 
CS-BLAST outputs the hit database protein sequences, 
each one with its associated similarity score, the High 
Segment Pair (HSP), sequence alignment and the statis-
tical significance of the similarity (E-values). The latter 
provides an estimate of the probability of having similar-
ity of this quality with a random string. 

This hit database protein sequences are ranked ac-

cording to the highest similarity scores (1) and the mini-
mum E-values (2). We select E-value as the CS-BLAST 
distance diq between the query sequence Lq and the train 
sequence Li. 

,ij gapHSP S S                  (1) 

where Sij is the similarity score between residue i and j in 
a given similarity matrix. The statistical significance of 
the similarity is given by 

1 ,yE value e                    (2) 

where y = kmne–λS, m and n are the lengths of the two 
compared sequences and S is the HSP score cut-off. 

Tree-kNNseq compares the query sequence Lq with a 
database of classified proteins based on BLAST pairwise 
method. Then, a distance matrix is constructed from this 
comparison containing the all versus all dissimilarity 
values (E-value) between proteins. From this distance 
matrix, Tree-kNNseq constructs a common tree that in- 
cludes the member of the database and the query protein. 
Then, all leaves except the unknown query are labeled. 
The set of closest neighborhoods where leaves in the tree 
have the minimum number of edges from the query is 
determined. Finally, Tree-kNNseq returns the neighbor 
protein, which has the lowest dissimilarity measure. 

3.2. Structure Classifiers 

FAST first compares the local geometric properties of 
two protein structures with M and N residues respec-
tively, and selects a small subset of MN pairs as the ver-
tex set to construct a pair graph G (V,E), where V and E 
are vertex and edge sets, respectively. Second, the me- 
thod assigns edges by comparing intra-molecular rela-
tionships using a directionality-based scoring scheme 
that supports sparseness of the graph. Third, it iteratively 
prunes the graph to eliminate bad vertices, which are 
residue pairs that are unlikely to constitute the global 
optimal alignment. With substantially simplified product 
graph, an initial alignment is detected using dynamic 
programming. Finally, for optimization FAST enhances 
the initial alignment by finding additional equivalent 
pairs and eliminating bad pairs. FAST returns a similarity 
score SX and the RMSD distance. The similarity score is 
given by 

       
,

, ; , ; , ,

,ij mn
i j X m n X m n i j

SX e
  

            (3) 

where i and m are atoms in the first protein and j and n 
are atoms in the second protein. eij,mn is the edge weight 
connecting the two vertices (i,j) and (m,n). The RMSD 
distance is given by 
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where δ is the distance between N pairs of equivalent 
atoms, usually Cα. 

GANGSTA+ finds alignment in a three-stage hierar-
chical approach starting with an alignment of secondary 
structure elements (SSEs), where only α-helices and β- 
strands are considered as SSEs. The method uses a con-
nectivity graph to represent this alignment. In the second 
stage, and for the highest ranked SSE assignments 
GANGSTA+ makes preliminary alignment on the resi-
due level using rigid body energy minimization with at-
tractive interactions between Cα atoms belonging to dif-
ferent proteins. 

In stage three, the preliminary structural alignment is 
used to assign the Cα atoms of both proteins to points on 
the same rectangular grid. Cα atom pairs assigned to the 
same grid points are used for a more accurate and com-
plete SSE assignment. Finally, stage two is repeated and 
alignments of residues belonging to loops and coils are 
added. GANGSTA+ returns the RMSD distance (4) and 
an alignment similarity score, which weights the RMSD 
of Cα atoms relative to the number of aligned residues 
Naligned. The alignment similarity score is given by 

  aligned100 .GP RSMD N             (5) 

ComSubstruct method uses an encoding algorithm to first 
encode the two 3D structures into binary sequences. This 
algorithm studies the local structure of a protein, de-
signed as its polygonal chain, by considering all amino 
acid fragments of length five occurred in the protein. In 
the optimization step, ComSubstruct uses a dynamic 
programming algorithm to compute the LCS between the 
two encoded protein structures. The LCS problem is the 
simplest form of similarity analysis, where the operation 
of substitution is eliminated and only insertions and dele-
tions are allowed. A subsequence of a string v is an or-
dered sequence of not necessarily consecutive characters 
from v. A common subsequence of two strings is a sub-
sequence of both of them. For example, TCTA is com-
mon to both v = ATCTGAT and w = TGCATA. 

4. Results 

4.1. Assessment of Classification Performance 

To assess the classification performance, we calculate the 
number of true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN) as follows: 

1) TP: the number of proteins predicted to belong to 
positive class and the actual value is positive; 

2) FP: the number of proteins predicted to belong to 
positive class and the actual value is negative; 

3) FN: the number of proteins predicted to belong to 
negative class and the actual value is positive; 

4) TN: the number of proteins predicted to belong to 
negative class and the actual value is negative. 

The error rate is given by 

Error rate ,
FP FN

TP TN FP FN




  
       (6) 

denoting the percentage of incorrectly predicted protein 
classes (FP and FN) within all predictions. The specific-
ity given by 

Specificity ,
TN

TN FP



           (7) 

estimates the proportion of actual negative (TN and FP) 
which are predicted negative (TN). This specificity tests 
the ability of the classification method to identify ne- 
gative results. The sensitivity given by 

Sensitivity ,
TP

TP FN



           (8) 

relates the ability of the method to identify positive re-
sults. Sensitivity estimates the proportion of actual posi-
tive (TP and FN) which are predicted positive (TP). 

4.2. Data Sets 

To assess the performance of Consensus algorithm, we 
construct two data sets namely, SCOP95 and CATH95, 
from the Protein Classification Benchmark collection 
[20]. This collection contains data sets of sequences and 
structures with different classification tasks. A classi- 
fication task is the subdivision of a data set into positive 
train (+train), positive test (+test), negative train (–train) 
and negative test (–test) groups. 

SCOP95 contains sequences from SCOP database with 
less than 95% of sequence identity and 10 classification 
tasks. Five tasks form the SCOP95_S_level data set are 
protein sequences classified into superfamilies (S) based 
on families. The five remaining tasks are protein se- 
quences classified into folds (F) based on superfamilies 
and labeled as SCOP95_F_level data set. 

CATH95 data set is created from protein sequences of 
CATH database with sequence identity greater than 95% 
and 10 classification tasks. Five tasks form the CATH- 
95_H_level data set and protein sequences are classified 
into homology (H) groups based on similarity groups. 
The five other tasks designate the CATH95_T_level and 
protein sequences are classified into topology groups (T) 
based on homology groups. 

An additional data set is constructed from the Lipase 
Engineering database (LED) [21]. It is a structural data-
base of lipase proteins integrating information on their 
sequences, structures and functions. These proteins are 
groups of enzymes, which catalyze the hydrolysis or 
synthesis of a broad range of water insoluble esters. In 
this database, enzymes are classified into three classes: 
GGGX, GX, and Y class [22] of fully and consistently 
annotated superfamilies. 

Copyright © 2012 SciRes.                                                                                JILSA 



Consensus Decision for Protein Structure Classification 220 

For each class of the LED database, we define classi- 
fication tasks in the following way: The positive set is 
created from a given superfamily. One of the superfami-
lies is the positive group, where members of the +test and 
+train are randomly selected. The remaining superfami-
lies constitute the negative group, where members are 
randomly divided to give the final –train and –test. A 
summary of the used data sets is given in Table 1. 

4.3. Comparison of Consensus versus 
Concurrent Methods 

The performance of our method is compared to five com- 
parison tools namely, CS-BLAST, Tree-kNNseq, FAST, 
GANGSTA+ and ComSubstruct when they are used as 
component classifiers. Also, the performance of Consen-
sus is compared to a free-alignment method, ProtClass. All 
methods are run with default parameters and experiments 
are performed on Intel Core 2 Duo with 2.93 GHz CPU 
and 1.96 Go of RAM. 

Performance results for each method, produced on su- 
pefamily and fold levels of SCOP95 data set, are respec- 
tively shown in Tables 2 and 3. We clearly notice that 
our method improves the classification performance com- 
pared to the six classifiers with respect to all criteria. At 
the superfamily level, sequence comparison tools outper- 
form structure tools except ComSubstruct, which show 
similar performance as CS-BLAST and Tree-kNNseq. 
 

Table 1. Summary of used data sets. 

Data set name Classification level +test +train –test –train

SCOP95_S_level Superfamily 115 255 3002 2922

SCOP95_F_level Fold 73 186 3017 2919

CATH95_H_leve Homology 37 332 2789 2851

CATH95_T_level Topology 228 574 2764 2832

LED_GGGX Superfamily 15 15 74 73 

LED_GX Superfamily 20 20 102 106

LED_Y Superfamily 12 12 23 23 

Values indicate the number of proteins in each data set. 

 
Table 2. Performance of classification methods on SCOP- 
95_S_level data set. 

Methods Error rate Specificity Sensitivity 

CS-BLAST 8.5 93.24 46.09 

Tree-kNNseq 7.5 93.74 60 

FAST 11.35 90.58 38.26 

GANGSTA+ 10.16 91.25 53.04 

ComSubstruct 7.95 93.71 48.7 

ProtClass 10.39 90.98 53.91 

Consensus 5.74 94.71 82.61 

The best values are shown in bold. 

Table 3. Performance of classification methods on SCOP- 
95_F_level data set. 

Methods Error rate Specificity Sensitivity 

CS-BLAST 10.42 90.52 50.68 

Tree-kNNseq 10.16 90.39 67.12 

FAST 9.61 90.59 82.19 

GANGSTA+ 9.48 90.65 84.93 

ComSubstruct 11.20 89.72 50.68 

ProtClass 9.68 90.55 80.82 

Consensus 8.90 91.15 89.04 

The best values are shown in bold. 
 

The best performance among all classifiers is achieved 
by Tree-kNNseq, which is able to assign 92.5% of query 
proteins to correct superfamilies with 93.74% and 60.0% 
of proteins to negative and positive class, respectively. 
With respect to other methods, Consensus is able to reduce 
the error rate by 5.61% and to increase the specificity and 
the sensitivity of classification with 4.13% and 44.35%, 
respectively. 

It is not surprisingly to notice with the exception of 
ComSubstruct that structure tools outperform sequence 
tools at fold level of SCOP95 data set. GANGSTA+ gives 
best performance with respect to all criteria. It is able to 
correctly assign 90.52% of query proteins to their corre-
sponding fold with 90.65% of queries in negative class 
and 84.93% in positive class. Our method still improves 
the performance of individual tools providing 0.58% 
lower error rate and, respectively 0.5% and 4.11% higher 
specificity and sensitivity than GANGSTA+. Moreover, 
Consensus does better than ProtClass. Effectively, it is 
able to correctly classify 4.65% and 0.78% more proteins 
than ProtClass respectively on superfamily and fold lev-
els of SCOP95. 

Performance results on homology and topology levels 
of CATH95 data set are shown respectively in Tables 4 
and 5. Again, our method provides the best performance 
among all classification tools with respect to different 
 
Table 4. Performance of classification methods on CATH95_ 
H_level data set. 

Methods Error rate Specificity Sensitivity 

CS-BLAST 3.75 96.81 54.05 

Tree-kNNseq 3.22 97.17 67.57 

FAST 13.72 87.04 29.73 

GANGSTA+ 10.58 89.89 54.05 

ComSubstruct 1.77 98.64 67.57 

ProtClass 10.83 89.71 48.65 

Consensus 1.45 98.85 75.68 

The best values are shown in bold. 
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Table 5. Performance of classification methods on CATH- 
95_T_level data set. 

Methods Error rate Specificity Sensitivity 

CS-BLAST 10.59 90.34 78.07 

Tree-kNNseq 9.32 91.61 79.39 

FAST 7.59 93.42 80.26 

GANGSTA+ 6.65 93.67 89.47 

ComSubstruct 9.53 90.99 84.21 

ProtClass 8.12 92.91 78.95 

Consensus 6.12 94.14 90.79 

The best values are shown in bold. 
 
criteria. At homology level, error rate, specificity and 
sensitivity are improved respectively by 12.27%, 2.04% 
and 45.95% using decisions of the five component classi- 
fiers. Among all individual classifiers, ComSubstruct per- 
forms best. 

At topology level, Consensus shows highest perform-
ance. It gives respectively, 4.47%, 3.8% and 12.72% bet-
ter error rate, specificity and sensitivity than other classi-
fiers. Also, it is easy to notice that structure tools do bet-
ter than sequence tools. Moreover, on the two levels of 
CATH95 data set, Consensus performs better than Prot-
Class. 

The performance results on LED database for GGGX, 
GX and Y classes are given respectively in Tables 6-8. 
Consensus performs better than component classifiers 
with respect to all criteria. On LED_GGGX, LED_GX 
and LED_Y data sets, our method is able to improve 
error rate with 12.36%, 9.02% and 14.29%, respec-
tively. 

On GGGX, GX and Y classes, Consensus also im- 
proves the specificity with 5.41%, 8.82% and 8.69% and 
the sensitivity with 46.66%, 10% and 25%, respectively. 
On overall classes, we notice that structure tools give 
better performance than sequence tools. On all LED data 
sets and with respect to all criteria, we notice that Con-
sensus is more accurate than ProtClass. 
 
Table 6. Performance of classification methods on LED_ 
GGGX data set. 

Methods Error rate  Specificity  Sensitivity  

CS-BLAST 14.61 93.24 46.67 

Tree-kNNseq 11.24 95.95 53.33 

FAST 4.49 97.30 86.67 

GANGSTA+ 5.62 95.95 86.67 

ComSubstruct  6.74 93.24 93.33 

ProtClass 7.87 94.59 80.0 

Consensus 2.25 98.65 93.33 

The best values are shown in bold. 

Table 7. Performance of classification methods on LED_GX 
data set. 

Methods Error rate Specificity Sensitivity 

CS-BLAST 12.30 88.24 85.0 

Tree-kNNseq 9.84 90.20 90.0 

FAST 4.92 96.08 90.0 

GANGSTA+ 4.10 97.06 90.0 

ComSubstruct 10.66 90.20 85.0 

ProtClass 6.56 95.10 85.0 

Consensus 3.28 97.06 95.0 

The best values are shown in bold. 
 
Table 8. Performance of classification methods on LED_Y 
data set. 

Methods Error rate Specificity Sensitivity 

CS-BLAST 20 86.96 66.67 

Tree-kNNseq 17.14 91.3 66.67 

FAST 8.57 91.3 91.67 

GANGSTA+ 8.57 95.65 83.33 

ComSubstruct 14.29 95.45 69.23 

ProtClass 11.43 91.3 83.33 

Consensus 5.71 95.65 91.67 

The best values are shown in bold. 
 

It is interesting to notice that Tree-kNNseq [9] out- 
performs CS-BLAST on overall levels of SCOP95, 
CATH-95 and LED data sets. This shows that evolu-
tionary information of a given protein improve classifi-
cation results. Additionally, the best performance of Tree- 
kNNseq among other tools in superfamily level of SCOP95 
data set enhances classification performance of Consen-
sus. 

We conclude from all these experiments that combin- 
ing sequence and structure tools as a single classifier a- 
chieves better classification performance than used se- 
parately. 

Additionally, Consensus is more performing than Prot- 
Class on all data sets used in this analysis and with re-
spect to all criteria. This is attributed to its sequential and 
structural alignment mechanisms. But, this alignment- 
based classification approach requires high computa-
tional cost and makes Consensus extremely slow. De-
spite the no gain in computational time, Consensus out-
performs alignment-independent methods, such as Prot-
Class. 

5. Conclusion 

We proposed a new method, namely Consensus for the 
classification of protein structures, which combines deci-
sions of two sequence and three structure comparison 
methods to infer the class of a given protein structure. 
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We have shown that our method outperforms the five 
component classifiers namely CS-BLAST, Tree-kNNseq, 
FAST, GANGSTA+ and ComSubstruct used separately. 
In addition, Consensus is more performing than a free- 
alignment method namely ProtClass. 
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