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ABSTRACT 

Computational intelligence is a powerful tool for game development. In this paper, an algorithm of playing the game 
Tic-Tac-Toe with computational intelligence is developed. This algorithm is learned by a Neural Network with 
Double Transfer functions (NNDTF), which is trained by genetic algorithm (GA). In the NNDTF, the neuron has two 
transfer functions and exhibits a node-to-node relationship in the hidden layer that enhances the learning ability of 
the network. A Tic-Tac-Toe game is used to show that the NNDTF provide a better performance than the traditional 
neural network does. 
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1. Introduction 

Games such as Backgammon, Chess, Checkers, Go, 
Othello and Tic-Tac-Toe are widely used platforms for 
studying the learning ability of and developing learning 
algorithms for machines. By playing games, the machine 
intelligence can be revealed. Some techniques of artifi-
cial intelligence, such as the brute-force methods and 
knowledge-based methods [1], were reported. Brute- 
force methods, e.g. retrograde analysis [2] and enhanced 
transposition-table methods, solve the game problems by 
constructing databases for the games. For instance, the 
database is formed by a terminal position [2]. The best 
move is then determined by working backward on the 
constructed database. For knowledge-based methods, the 
best move is determined by searching a game tree. For 
games such as Checkers, the tree spanning is very large. 
Tree searching will be time consuming even for a few 
plies. Hence, an efficient searching algorithm is an im-
portant issue. Some searching algorithms, which are 
classified as knowledge-based methods, are threat-space 
search and -search, proof-number search [3], depth-first 
proof-number search and pattern search. 

It can be seen that the above game-solving methods 
depend mainly on the database construction and search-
ing. The problems are solved by forming a possible set of 
solutions based on the endgame condition, or searching 
for the set of solutions based on the current game condi-

tion. The machine cannot learn to play the games by it-
self. Unlike an evolutionary approach in [1], neural net-
work (NN) was employed to evolve and to learn for 
playing Tic-Tac-Toe without the need of a database. 
Evolutionary programming was used to design the NN 
and link weights. A similar idea has been applied in a 
Checkers game [4-7]. Other games such as Backgammon 
[8], Othello [9] and Checkers [10] applying NNs or 
computational intelligence techniques can also be found. 

In this paper, a neural network with double transfer 
functions (NNDTF) is proposed to learn the rules of 
Tic-tac-toe. Each possible move is evaluated by a pro-
posed algorithm with a score. By maximizing the total 
scores (evaluated values), the rules of Tic-Tac-Toe can 
be extracted by the NNDTF. Different from the tradi-
tional feed-forward multiple-perception NN, some mod-
ified transfer functions with a node-to-node relationship 
are introduced to the proposed NN. The modified transfer 
functions are allowed to change the shapes during opera-
tion. Hence, the working domain is larger than that of the 
traditional one. By introducing the node-to-node rela-
tionship between hidden nodes, information can be ex-
changed between hidden layers. As a result, the learning 
ability is enhanced. A genetic algorithm (GA) [11] is 
investigated to train the NNDTF. The trained NNDTF 
will then be employed to play Tic-Tac-Toe with a human 
player as an example. 
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This paper is organized as follows. An algorithm to 
evaluate each move on playing the Tic-Tac-Toe will be 
proposed in section 2. NNDTF will be presented in sec-
tion 3. Genetic Algorithm will be presented in section 4. 
Training of the NNDTF using GA to learn the rules of 
Tic-Tac-Toe will be presented in section 5. An example 
on playing Tic-Tac-Toe will be given in section 6. A 
conclusion will be drawn in section 7. 

2. Algorithm for Playing Tic-Tac-Toe 

The game Tic-tac-toe, also known as naughts and crosses, 
is a two-player game. Each player will place a marker, 
“X” for the first player and “O” for the second player, in 
turn in a three-by-three grid area. The first player takes 
the first move. The goal is to place three markers in a line 
of any direction on the grid area.  

An algorithm is proposed in this section to evaluate the 
move on each grid. An “X” and an “O” on a grid are de-
noted by 1 and –1 respectively. An empty grid is denoted 
by 0.5. The following procedure is used to evaluate each 
possible move. 

1) Place an “X” on an empty grid. 
2) Corresponding to step 1, sum up all the grid values 

for each line in any direction, e.g., for a grid in the corner, 
we have three evaluated values because there are three 
lines to win or lose. 

3) Remove the “X” placed in step 1 and place an “X” 
on another empty grid. Evaluate this grid using the algo-
rithm in step 2. Repeat this process till all empty grids 
are evaluated. 

4) After evaluation, each grid will have been assigned 
at least 2 evaluated values for all possible lines, e.g. the 
center grid will have 4 evaluated values, corner grids will 
have 3 evaluated values and other grids will have 2 eva-
luated values. There are totally 6 possible evaluated val-
ues: 3 (1 + 1 + 1), 2.5 (1 + 1 + 0.5), 2 (1 + 0.5 + 0.5), 1 
(–1 + 1 + 1), 0.5 (–1 + 1 + 0.5) and –1 (–1 – 1 + 1). The 
most important evaluated value of a grid is 3, which in-
dicts a winning of the game (3 “X”s in a line) if you put 
an “X” on that grid. The priority of taking that move is 
the highest. The second important evaluated value of a 
grid is –1 (2 “O”s and 1 “X” in a line), which indicts that 
the opponent should be prevented from winning the game. 
The priority of taking that move is the second highest. 
Using this rationale, the list of priority in a descending 
order is: 3, –1, 2.5, 2, 1, 0.5. Based on these assigned eva-
luated values, a score will be assigned to each possible 
move. First, each evaluated value is assigned a score:  

7 6 5 4
6 5 4 33 7 1 6 2 5 5 2 4, , . ,            , 

3
21 3   and 2

10 5 2.   , The chosen scores have 
the following properties, 

6 54                    (1) 

5 44                     (2) 

4 34                     (3) 

3 24                     (4) 

2 14                     (5) 

The sum of the scores of a grid is the final score. The 
final scores will be used to determine the priorities of the 
possible move. A higher final score of a grid indicates a 
higher priority of that move. The reasons for choosing 
the scores in this way with the properties of (1) to (5) are 
as follows. As the evaluated value of 3 indicates a win-
ning of the game (3 “X”s in a line), the score of 6  
must be the highest. There are at most four evaluated 
values for a grid. Hence, 6  must be greater than 4 
times the second largest evaluated values, i.e. 54 . 
Consequently, the priority of a grid having an evaluated 
score with a higher priority will not be affected by other 
lower evaluated scores. For instance, consider a grid 
having evaluated values of 3 and 0.5, and another grid 
having evaluated values of 1, 2.5, 2 and 0.5. The final 
score of the former grid (77 + 22) is bigger than and latter 
grid (77 + 22 and 66 + 55 + 44 + 22). Thus, the “X” should 
be place at the grid having an evaluated value of 3 to win 
the game. 

Take the game as shown in Figure 1 as an example, 
we have 3 “X”s and 3 “O”s. The next move will be to 
place an “X”. After assigning an empty grid to be 0.5, an 
“X” to be 1, an “O” to be –1, Figure 1(b) is obtained. 
Following Step 1 to Step 3, we obtain the evaluated val-
ues as shown in Figure 1(c). Based on Step 4, Figure 
1(d) shows the final scores for the empty grids. As the  
highest score is 873324, the most appropriate move is to 
put an “X” on the bottom right corner. This move not 
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11-1

-1 -1 0.5

-1, 2.5,
 2.5

2.5,152906 3152

873324
3, -1,
2.5

(a) (b)

(d) (c)  

Figure 1. Evaluation process. 
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only lines up 3 “X”s to win a game, but also prevents the 
opponent to line up 3 “O”s. The second appropriate 
move, indicted by the final score of 52906, can gain a 
chance to win by lining up 2 “X”s, and prevent the op-
ponent to win. 

3. Neural Network with Double Transfer 
Functions (NNDTF) 

NN was proved to be a universal approximator [12]. A 
3-layer feed-forward NN can approximate any nonlinear 
continuous function to an arbitrary accuracy. NNs are 
widely applied in areas such as prediction, system mod-
eling and control [12]. Owing to its particular structure, a 
NN is good in learning [2] using some learning algo-
rithms such as GA [1] and back propagation [2]. In gen-
eral, the processing of a traditional feed-forward NN is 
done in a layer-by-layer manner. In this paper, by intro-
ducing a node-to-node relationship in the hidden layer of 
the NN, a better performance can be obtained. 

Figure 2 shows the proposed neuron. It has two acti-
vation transfer functions to govern the input-output rela-
tionships of the neuron: static transfer function (STF) and 
dynamic transfer function (DTF). For the STF, the para-
meters are fixed and its output depends on the inputs of 
the neuron. For the DTF, the parameters of the activation 
transfer function depend on the outputs of other neurons 
and its STF. With this proposed neuron, the connection 
of the proposed NN is shown in Figure 3, which is a 
three-layer NN. A node-to-node relationship is intro-
duced in the hidden layer. Comparing with the traditional 
feed-forward NN [12], it was reported in [13] that the 
proposed NN can offer a better performance and need 
fewer hidden nodes. The details of the NNDTF are pre-
sented as follows. 

3.1. The Neuron Models 

We consider the STF first. Let ijv  be the synaptic con-
nection weight from the i-th input component ix to the 
j-th neuron. The output j of the j-th neuron’s STF is 
defined as, 
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Figure 2. Model of the proposed neuron. 
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Figure 3. Connection of the NNDTF. 
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where j
sm and j

s  are the static mean and static stan-
dard deviation for the j-th STF respectively. The para-
meters ( j

sm and j
s ) are fixed after the training 

processing. Thus, the activation transfer function is static. 
The output of the STF depends on the inputs of the neu-
ron only. From (7), the output value is ranged from –1 to 
1. The shape of the proposed activation transfer function 
is shown in Figure 4 and Figure 5. It can be observed 
from these 2 figures that   1net f  as f  and 

  1net f   as f   .  
Considering the DTF, the neuron output jz  of the 

j-th neuron is defined as, 

 j j j
j d j d dz net ,m ,              (8) 

where  j
dnet  is the DTF defined as follows, 
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Figure 4. Sample transfer functions of the proposed neuron 
(  = 0.2). 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f

ne
t









 
Figure 5. Sample transfer functions of the proposed neuron 
(m = 0). 
 
where 

1 1
j

d j , j jm p z               (10) 

1 1
j

d j , j jp z                 (11) 

j
dm and j

d are the dynamic mean and dynamic standard 
deviation for the j-th DTF. 1jz   and 1jz   represent the 
output of the 1j  -th and 1- thj   neurons respectively. 

1j , jp   denotes the weight of the link between the 
1- thj   node and the j-th node and 1j , jp   denotes the 

weight of the link between the 1- thj   node and the 
- thj  node. It should be noted that if 1j  , 1j , jp  is 

equal to 
hn , jp and if hj n , 1j , jp   is equal to 1, jp . In 

this DTF, unlike the STF, the activation transfer function 
is dynamic as the parameters of its activation transfer 
function depend on the outputs of the 1- thj   and 

1- thj   neurons. Referring to (14), the input-output 
relationship of the proposed neuron is as follows, 

1
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         (12) 

3.2. Connection of the NNDTF 

As shown in Figure 3, the NNDTF has three layers with 

inn  nodes in the input layer, hn nodes in the hidden 
layer, and outn  nodes in the output layer. In the hidden 
layer, the neuron model presented in the previous section 
is employed. The output value of the hidden node de-
pends on the neighboring nodes and input nodes. In the 
output layer, a static activation transfer function is em-
ployed. Considering an input-output pair ),( yx , the 
output of the - thj  node of the hidden layer is given by 

1
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j j

j d s i ij
i
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

  
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            (13)
 

The output of the NNDTF is defined as, 
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where jlw  denotes the weight of the link between the 
- thj  hidden and the - thl  output nodes;  l

onet   
denotes the activation transfer function of the output 
neuron. The transfer function of the output node is de-
fined as follows, 
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where l
om and l

o  are the mean and the standard devia-
tion of the output node activation transfer function re-
spectively. The parameters of the NNDTF can be trained 
by GA [11]. 

4. Genetic Algorithm 

Genetic algorithms (GAs) are powerful searching algo-
rithms. The traditional GA process [14-16] is shown in 
Figure 6. First, a population of chromosomes is created. 
Second, the chromosomes are evaluated by a defined 
fitness function. Third, some of the chromosomes are 
selected for performing genetic operations. Forth, genetic 
operations of crossover and mutation are performed. The 
produced offspring replace their parents in the initial 
population. This GA process repeats until a user-defined 
criterion is reached. In this paper, the traditional GA is 
modified and new genetic operators [11] are introduced 
to improve its performance. The modified GA process is 
shown in Figure 7. Its details will be given as follows. 

4.1. Initial Population  

The initial population is a potential solution set P. The  
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Figure 6. Procedure of simple GA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Procedure of the modified GA. 
 
first set of population is usually generated randomly. 

 1 2 pop _ sizeP , , ,  p p p            (17) 

1 2 j no _ varsi i i i ip p p p   p   , 1 2i , , , 
 

1 2pop _ size; j , , ,no _ vars          (18) 

j

j j
min i maxpara p para              (19) 

where pop_size denotes the population size; no_vars 
denotes the number of variables to be tuned; 

jip ,  

1 2i , , ,   pop_size; 1 2j , , ,   no_vars, are the 
parameters to be tuned; j

minpara  and j
maxpara  are the 

minimum and maximum values of the parameter 
jip  

for all i . It can be seen from (17) to (19) that the poten-
tial solution set P contains some candidate solutions ip  
(chromosomes). The chromosome ip  contains some 
variables ip  (genes). 

4.2. Evaluation 

Each chromosome in the populati on will be evaluated by 
a defined fitness function. The better chromosomes will 
return higher values in this process. The fitness function 
to evaluate a chromosome in the population can be writ-
ten as, 

 ifitness f p              (20) 

The form of the fitness function depends on the appli-
cation. 

4.3. Selection 

Two chromosomes in the population will be selected to 
undergo genetic operations for reproduction by the me-
thod of spinning the roulette wheel [16]. It is believed 
that high potential parents will produce better offspring 
(survival of the best ones). The chromosome having a 
higher fitness value should therefore have a higher 
chance to be selected. The selection can be done by as-
signing a probability iq  to the chromosome ip : 
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i pop _ size
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The cumulative probability iq̂  for the chromosome 

ip  is defined as, 

1

i

i j
j

q̂ q


                (22) 

The selection process starts by randomly generating a 
nonzero floating-point number,  0 1d  . Then, the 
chromosome ip  is chosen if 1i i

ˆ ˆq d q   , 1 2i , , ,   
pop_size, and 0ˆ0 q . It can be observed from this se-
lection process that a chromosome having a larger 
 if p  will have a higher chance to be selected. Conse-

quently, the best chromosomes will get more offspring, 
the average will stay and the worst will die off. In the 
selection process, only two chromosomes will be se-
lected to undergo the genetic operations. 

4.4. Genetic Operations 

The genetic operations are to generate some new chro-
mosomes (offspring) from their parents after the selec-
tion process. They include the crossover and the mutation 
operations. 

Procedure of the simple GA 
begin 
 0 // : iteration generation 

initialize P() //P(): population for iteration t 
     evaluate f(P())  // f(P()):fitness function 
while (not termination condition) do 
           begin 
                +1 
                select 2 parents p1 and p2 from P(-1) 

perform genetic operations (crossover and 
mutation) 

                reproduce a new P() 
                evaluate f(P())                   
            end 
end 
end 

Procedure of the improved GA 
begin 
     0 // : iteration 
     initialize P() //P(): population for iteration t 
     evaluate f(P())   // f(P()):fitness function 
while (not termination condition) do 
     begin 
          +1 
          select 2 parents p1 and p2 from P(-1) 
          perform crossover operation according (23) to (28) 
          perform mutation operation according to (30) to three 

offspring nos1, nos2 and nos3 
    // reproduce a new P() 

if random number < pa    
The one among nos1, nos2 and nos3 with the largest fitness   
value replaces the chromosome with the smallest fitness 
value in the population 

else if f(nos1) > smallest fitness value in the P(-1) 
nos1 replaces the chromosome with the smallest fitness 
value 
if f(nos2) > smallest fitness value in the updated P(-1) 
nos2 replaces the chromosome with the smallest fitness 
value 
if f(nos3) > smallest fitness value in the updated P(-1) 
nos3 replaces the chromosome with the smallest fitness 
value 
end 

end 
evaluate P() 

     end 
end 
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4.4.1. Crossover 
The crossover operation is mainly for exchanging infor-
mation from the two parents, chromosomes 1p  and 2p , 

obtained in the selection process. The two parents will 
produce one offspring. First, four chromosomes will be 
generated according to the following mechanisms, 

1 1 1 1 1 2
1 2 2c no _ varsos os os

   
p p
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no _ varspara para para   p      (27) 

1 2
min min min min

no _ varspara para para   p      (28) 

where  0 1w  denotes a weight to be determined by 
users,  1 2max ,p p  denotes a vector with each element 
obtained by taking the maximum among the correspond-
ing element of 1p  and 2p . For instance, 

      max 1 2 3 2 3 1 2 3 3,  . Similarly, 
 1 2min ,p p  gives a vector by taking the minimum val-

ue. For instance,     min 1 2 3 2 3 1,   
 1 2 1  . Among 1

cos  to 4
cos , the one with the 

largest fitness value is used as the offspring of the cros-
sover operation. The offspring is defined as, 

1 2

ios

no _ var s cos os os   os os      (29) 

where osi  denotes the index i which gives a maximum 
value of  i

cf os , 1 2 3 4i , , , . 
If the crossover operation can provide a good offspring, 

a higher fitness value can be reached in less iteration. As 
seen from (23) to (26), the offspring spreads over the 
domain: (23) and (26) will move the offspring near cen-
tre region of the concerned domain (as w in (26) ap- 

proaches 1, 4
cos  approaches 1 2

2

p p
), and (24) and (25) 

will move the offspring near the domain boundary (as w 
in (24) and (25) approaches 1, 2

cos  and 3
cos  approach-

es maxp  and minp  respectively). The chance of getting 

a good offspring is thus enhanced. 

4.4.2. Mutation 
The offspring (30) will then undergo the mutation opera-
tion. The mutation operation is to change the genes of the 

chromosomes. Consequently, the features of the chro-
mosomes inherited from their parents can be changed. 
Three new offspring will be generated by the mutation 
operation: 

1 2

1 1 2 2

j no _ var s

no _ var s no _ var s

os os os

b nos b nos b nos

   

    

nos 


  (30) 

where 1 2ib , i , , , no _ vars  , can only take the value 
of 0 or 1; inos , 1 2i , ,  , no _ vars , are randomly 
generated numbers such that i j

min i ipara os nos   
i
maxpara . The first new offspring (  1j  ) is obtained 

according to (30) with that only one ib  (i being ran-
domly generated within the range) is allowed to be 1 and 
all the others are zeros. The second new offspring is ob-
tained according to (30) with that some randomly chosen 
bi are set to be 1 and others are zero. The third new 
offspring is obtained according to (30) with all 1ib  . 
These three new offspring will then be evaluated using 
the fitness function of (21). A real number will be gener-
ated randomly and compared with a user-defined number 

 0 1ap  . If the real number is smaller than pa, the 
one with the largest fitness value lf  among the three 
new offspring will replace the chromosome with the 
smallest fitness f  in the population (even when 

l s sf f .) If the real number is larger than pa, the first 
offspring will replace the chromosome with the smallest 
fitness value sf  in the population if l sf f ; the 
second and the third offspring will do the same. pa is 
effectively the probability of accepting a bad offspring in 
order to reduce the chance of converging to a local opti-
mum. Hence, the possibility of reaching the global opti-
mum is kept. 

We have three offspring generated in the mutation 
process. From (30), the first mutation (  1j  ) is in fact a 
uniform mutation. The second mutation allows some 
randomly selected genes to change simultaneously. The 
third mutation changes all genes simultaneously. The 
second and the third mutations allow multiple genes to be 
changed. Hence, the domain to be searched is larger as 
compared with a domain characterized by changing a 
single gene. As three offspring are produced in each 
generation, the genes will have a larger space for im-
proving the fitness value when the fitness value is small. 
When the fitness values are large and nearly steady, 
changing the value of a single gene (the first mutation) 
may be enough as some genes may have reached the op-
timal values. 

After the operation of selection, crossover, and muta-
tion, a new population is generated. This new population 
will repeat the same process. Such an iterative process 
can be terminated when the result reaches a defined con-
dition, e.g. a defined number of iterations have been 
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reached. 

5. Training of the NNDTF 

In this section, the GA will be employed to train the pa-
rameters of the NNDTF to play Tic-Tac-Toe based on 
the gaming algorithm in Section 2. The NNDTF with 9 
inputs and 1 output is employed. The grids are numbered 
from 1 to 9 from right to left and from top to bottom.  
An “X” on the grid is denoted by 1, an “O” is denoted by 
–1, and an empty grid is denoted by 0.5. The grid pattern 
represented by numerical values will be used as the input 
of the NNDTF. The output of the NNDTF (  y t  which 
a floating point number ranged from 1 to 9) represents 
the position of the marker that should be placed on. In 
order to have a legal move (place a marker on an empty 
grid), the marker is placed on an empty grid that has its 
grid number closest to the output of the network. 

To perform the training, we have to determine the pa-
rameters to be trained and the fitness function describing 
the problem’s objective. The parameters of the modified 
network to be turned is  

1 1
j j l l

ij s s j , j j , j jl o ov m p p w m      

for all i, j,l ,  which will be chosen as the chromosome 
for the GA. 100 different training patterns (obtained 
based on the proposed gaming algorithm stated in Sec-
tion 2) are used to feed into the NNDTF for training. The 
fitness functions is designed as follows, 

    

  

100

1
100

1

m
i

max
i

S y t , t
fitness

S t










x

x
         (31) 

where  y t  denotes the output of the NNDTF with the 
t-th training pattern  tx as the input,     mS y t , tx  
denotes the final score for grid  y t  and the t-th train-
ing pattern  tx  based on the gaming algorithm. 

  maxS tx  denotes the maximum final score value 
among all the empty grids for the t-th training pattern 
 tx . The GA is to maximize the fitness value (ranged 

from 0 to 1) so as to force the output of the NNDTF to 
the grid number having the largest final score to ensure 
the best move. 

6. Example 

In this session, a 9-input-1-output NNDTF is used for 
training. The number of hidden nodes is chosen to be 8. 
100 training patterns are used for training with 50000 
iterations. The population size, probability of acceptance, 
and w  are chosen to be 10, 0.5 and 0.1, respectively. 
After training, the fitness value obtained is 0.9605. The 
upper and lower bounds of each parameter are 1 and –1,  

Table 1. Results of the proposed NN playing Tic-Tac-Toe 
against with the traditional NN for 50 games. 

 
Proposed NN 

Wins: Draws: Loses 
Proposed approach moves 

first 
18: 3: 4 

Traditional approach 
moves first 

13: 4: 8 

 
respectively. The initial values of the parameters are gen-
erated randomly. 

For comparison purposes, a traditional 3-layer feed- 
forward NN [17] trained by GA with arithmetic crossov-
er and non-uniform mutation [17] is also applied under 
the same conditions to learn the gaming strategy in Sec-
tion 2. The probabilities of crossover and mutation are 
selected to be 0.8 and 0.1, respectively. The shape para-
meter of the traditional GA for non-uniform mutation [17] 
is selected to be 5. These parameters are selected by trial 
and error for the best performance. After training for 
50000 iterations, the fitness value obtained is 0.9456. 

To test the performance of our proposed method, our 
trained NN plays Tic-Tac-Toe with the trained traditional 
NN for 50 games is carried out. The first 25 grid patterns, 
which are generated randomly with 2 “O”s and 2 “X”s, 
are the same as the next 25 grid patterns. For the first 25 
games, the proposed approach moves first. For the 
second 25 games, the traditional approach moves first. 
The results are tabulated in Table 1. It can be seen that 
the proposed approach performs better. The number of 
wins is 18 by using NNDTF while only 13 by using the 
tradition NN. 

7. Conclusions 

A neural network with double transfer functions and 
trained with genetic algorithm has been proposed. An 
algorithm of playing Tic-Tac-Toe has been presented. A 
new transfer function of the neuron with a node-to-node 
relationship has been proposed. The proposed neural 
network is trained by genetic algorithm to learn the algo-
rithm of playing Tic-tac-toe. As a comparison, the trained 
NN has played against the traditional NN trained by the 
traditional GA. The result has shown that the proposed 
approach performs better. 
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