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Abstract 
This paper is to address using what a fluctuation of a metric tensor leads 

to, in Pre Planckian physics, namely 
2tt

t E
g

δ
δ

∆ ≥ ≠
  . If so then, we pick 

the conditions for an equality, with a small ttgδ , to come up with initial 
temperature, particle count and entropy affected by initial degrees of 
freedom in early Universe cosmology. This leads to an initial graviton 
production due to a minimum magnetic field, as established in our analy-
sis. Which we relate to the inflaton as it initially would be configured and 
evaluated. 
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1. Introduction 

This article starts with updating what was done in [1], which is symbolized by, if 
the scale factor is very small, metric variance [2] [3] 
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In [4] this lead to 
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We assume ttgδ  is a small perturbation and look at 
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This would put a requirement upon a very large initial temperature initialT  
and so then, if  
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And if we can write as given in [2] [3] 

( )
( ) ( )4

surface-area Planckvolume initial ~V V t A r lδ= ⋅∆ ⋅ ≤            (5) 

The volume in the Pre Planckian regime would be extremely small, i.e. if we 
are using the convention that Equation (4) holds, then it argues for a very large 

sg∗

 beyond the value of 102, as given in [5]. In any case, our boundary between 
the Pre Planckian regime and Planckian, as far as the use of Equation (4) yields a 
preliminary value of, for a distance less than or equal to Planck Length, of 
non-zero value, with 

( ) ( )20 3710 initial ~ particle-count 10
Pr l

S n
≤

≤ ≤           (6) 

This is also assuming a initial initial Plank-timet tδ ≈ ∆ ∝ , i.e. at or smaller than the 
usual Planck time interval. 

2. Counter Pose Hypothesis, by String Theory, for Equation 
(6) 

The author is aware of the String theory minimum length and minimum time 
which is different from the usual Planck lengths, but are avoiding these, mainly 
due to a change in the assumed entropy formulae to read as the square root of 
the above results, namely [6] [7] [8] 

( ) ( )10 16
String-Theory

10 initial ~ particle-count 10
Pr l

S n
≤

≤ ≤     (7) 

The above is still non-zero, but it cannot be exactly posited as in the Pre 
Planckian regime of Space-time, since the minimum length may be larger than 
Planck Length, i.e. as of the sort given in [8]. 

3. Questions as to Refining Both Equation (6) and Equation 
(7) for More Precise Entropy Bounds 

If from Giovannini [9] we can write 

https://doi.org/10.4236/jhepgc.2017.34049


A. W. Beckwith 
 

 

DOI: 10.4236/jhepgc.2017.34049 653 Journal of High Energy Physics, Gravitation and Cosmology 
 

( )2~ 1ttg a tδ φ⋅                         (8) 

Refining the inputs from Equation (8) means more study as to the possibility 
of a non-zero minimum scale factor [10], as well as the nature of φ  as specified 
by Giovannini [9]. We hope that this can be done as to give quantifiable esti-
mates and may link the non-zero initial entropy to either Loop quantum gravity 
“quantum bounce” considerations [11] and/or other models which may presage 
modification of the sort of initial singularities of the sort given in [12]. Further-
more if the non-zero scale factor is correct, it may give us opportunities as to 
fine tune the parameters given in [10] below: 
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where the following is possibly linkable to minimum frequencies linked to E and 
M fields [10], and possibly relic Gravitons are generated if 

0
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This can be contrasted with looking at what happens if [13] 
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So as talked about with [14] setting a minimum energy density given by 
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And with the following substitution of 
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Then to first order we would be looking at Equation (12) re written as leading 
to 
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And if Equation (15) holds, 

( )2
initial initial 1H o−Λ ⋅ ≈                         (15) 

we would have by [15] 
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So 

( )2123 2 2 210 ~ P ttL E gγ δ− ⋅ ∆ ⋅                     (17) 

Equation (17) would be key to the entire business, i.e. using this, we would 
have if 

gravitonE ω∆  
                        (18) 

Then 

( ) ( )2 2123 2 2 2 2 2
graviton graviton10 ~ ~P tt P ttL g L gγ ω δ γ ω δ− ⋅ ⋅ ⋅ ⋅      (19) 

Then if we go to Equation (10) we have a threshold magnetic field for the 
production of gravitons which looks like if we apply the minimum scale factor 
condition [16], that 
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i.e. we get graviton production if the last line of Equation (20) is satisfied, which 
means that the initial value of the inflaton, in this case is crucially important. 

With that initial inflaton value determined in part by Equation (11). 

4. Conclusions: The Inflaton Minimum Helps Determine a 
Lower Bound for a Cosmological Initial Production of 
Gravitons 

The last line of Equation (20) helps establish a minimum magnetic field for the 
production of relic gravitons, with a magnetic field established through Equation 
(10) and subsequently modified by Equation (20). 

This adds substance to what was brought up by Beckwith in [16] namely that 
we have a minimum scale factor of 
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But Equation (21) and Equation (20) interplay and also give more substances 
to the use of Equation (19) with our guess of Equation (18) for the determina-
tion of the initial graviton frequency, which has to be at least of the order of 
10^45 Hertz due to the fantastically small initial bubble of space time consi-
dered. 

In doing so, we need to consider initial conditions so considered that Equa-
tion (20) and Equation (21) should be consistent with the inflaton and “gravity’s 
breath” document by Corda [17]. In addition, Freeze’s statement of initial con-
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ditions for inflaton, as given by [18] should be adhered to. It is also extremely 
important that the LIGO results, even if this is of relic gravitational waves, as 
seen by Abbott in [19] [20] [21], should not be contravened. 

We conclude also with the hope that interpolating between the results of Equ-
ation (19), Equation (20) and Equation (21) will also in time confer answers as to 
the initial evaluative conditions for gravity as given in [22] by Corda. This also 
may in time with further analysis tie in with minimum values of entropy by fur-
ther analysis of Equation (4) in further future analysis of this problem. 
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