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Abstract 

We are looking at what if the initial cosmological constant is 2 2 2
initial initial ~H tγΛ ≈  

due to min~a a tγ  if we furthermore use 2
min initial~ttg aδ φ⋅  as the variation of 

the time component of the metric tensor ttg  in Pre-Planckian Space-time up 
to the Planckian space-time initial values. This assumes initialφ  as an initial in-
flaton value, as well as employing Non-Linear Electrodynamics to the scale 
factor in min~a a tγ , and the upshot is an expression for initialφ  as an initial 
inflaton value/squared which supports Corda’s assumptions in the Gravity’s 
breath Electronic Journal of theoretical physics article. We close with an idea 
to be worked in further detail as to density matrices and how it may relate to 
gravitons traversing from a Pre-Planckian to Planckian space-time regime. 
We will write up an idea in far greater detail in a future publication. 
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1. Basic Idea, the Padmabhan Approximation of 
( )H o2

initial initial 1−Λ ⋅ ≈  
To do this, we look at [1] which is of the form 

( )2
initial initial 1H o−Λ ⋅ ≈                        (1) 
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Our objective is to use Equation (1) with [2]  

min~a a tγ                            (2) 

and [2]  

( ) ( )0
min 0

8π 16πln exp
4π 3 1

GV Ga a t t V V t
G

γ γφ φ
γ γ γ

      ≈ ⇔ ≈ ⋅ ⋅ ⇔ ≈ ⋅ − ⋅   
⋅ −      

 (3) 

and [2] [3] 

( )
08π

ln
4π 3 1

GV
t

G
γφ

γ γ

  ≈ ⋅ ⋅ 
⋅ −  

                  (4) 

and [3] [4] [5] 
2
min~tt ttg g aδ φ≈                        (5) 

and [4] 

 ( )2
min initial~ ~ttE t g aδ φ ∆ ∆ ⋅ �                  (6) 

The next step will be to utilize [6]  

( )2
6

PP
L E EΛ ≈                         (7) 

where [6] 

( )1 25 19  10  GeVPE c Gh= ≈                    (8) 

as well as use the Non-Linear Electrodynamic minimum value of the scale factor 

mina  [7] which is in the spirit of [8] and which is avoiding using [9]. 

2. Using the Section 1 Material to Isolate a Minimum Value 
of the Inflaton, beyond Equation (4) 

From [4] we make the following approximation, i.e. simply put a relationship of 
the Lagrangian multiplier giving us the following: if  

( )2
min

1~
tt

g
g a

λ
κ δ φ

−
⋅Λ

≈
                    (9) 

If the following is true, i.e. in a Pre-Plankian to Planckian regime of space- 
time 

( )2
min

Constant
tt

g
g aδ φ

−
≈

≈
                  (10) 

Here, −g is a constant, as assumed in [4] which means in the Pre-Planckian to 
Plackian regime we would have Equation (5) as a constant, so then we are look-
ing at, if initialφ φ≡ , an energy density as given by Zeldovich, as talked about with 
[10] setting a minimum energy density given by  

( )22 6
3

8 4

G E c GEl
l c

ρ −
Λ ≈ =


                   (11) 

And with the following substitution of  
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( )Pr e Planckian Planckian 2
min initial

~
tt

E E
t g aδ φ− →→∆

∆ ⋅ ≈

�          (12) 

Then to first order we would be looking at Equation (11) re written as leading 
to 

 
( )

6

8 4 2
min initial

~
tt

G
c t g a

ρ
δ φΛ

 
 ⋅
 ∆ ⋅ ≈ 

�
�

               (13) 

And if Equation (1) holds, we would have by [1] 
2 2 2

initial initial
2 123

initial

~

10p

H t

L

γ
−

Λ ≈

Λ ⋅ ≈
                    (14) 

So 

( )2123 2 2 210 ~ P ttL E gγ δ− ⋅ ∆ ⋅ �                  (15) 

And if 2
PL  is the square of Planck’s length, after some algebra, and assuming 

Pr e Planckian Planckiant t− →→∆  

( ) ( )

( )

3 2123/4
min

2 2
initial

~ 10 ~

& ~

P

P

a E E

o E Lφ γ

− ∆

∆ ⋅ ⋅ �
                  (16) 

We will examine the consequences of these assumptions as to what this says 
about the NLED approximation for the initial scale factor, as given in [7]. 

3. Conclusions: Examining the Contribution of the Inflaton 

In [11] Corda gives a very lucid introduction as to the physics of the inflaton. We 
urge the readers to look at it as it refers to Equation (17), second line. In particular, 
it gives the template for the possible range of values for E∆  in Equation (16). 

The take away is that we are assuming a relatively large initial entropy (based 
upon a count of massive gravitons) being recycled from one universe to the next, 
which would influence the behavior of the first line of Equation (16) and tie into 
the behavior of the 2nd line of the inflaton Equation (16) given above. The exact 
particulars of E∆  are being investigated.  

Keep in mind the importance of the result from reference [12] below which 
forms the core of Equation (17) below  

( )
( )

2

foldings 2
1Planck

8π d 65e

V
N

m V

φ

φ

φ
φ

φ
φ

− = − ⋅ ≥
∂ 

 ∂ 

∫              (17) 

We have to adhere to this e fold business, and this will influence our choices 
as to how to model the inflaton. 

Furthermore the constraints given in [13] [14] and [15] as to the influence of 
LIGO on our gravity models have to be looked into and not contravened. 

This is a way of also showing if general relativity is the final theory of gravita-
tion. i.e., if massive gravity is confirmed, as given in [16], then GR is perhaps to 
be replaced by a scalar-tensor theory, as has been shown by Corda.  
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Finally is a re-do of what was brought up in [17] by Tang. In a density equa-
tion of stated with a relaxation procedure, between different physical states, 
Tank writes if m, and n are different quantum level states, then, if mnT  is the 
“Atomic coherence time” 

 

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

theory

theory theory

d
d

0 0 exp  if  ;

AND

0 exp   if  ;

mn mnmn
mn mn

mn

mn mn mn mn mn

mn mn mn
mn

t
i

t T

t t t T m n

tt i t m n
T

ρ ρρ
ω ρ

ρ ρ ρ ρ

ρ ρ ω

−
= − −

 ⇔ = + − ⋅ − = 

 
= − + ≠ 

 

 (18) 

We will here, in our work assign ( )mn tρ  the same sort of physical state 
which would in place have if ;m n=  in which then the solution to this problem 
would be given by Equation (11). The idea would be as follows. If ;m n=  mod-
el the density of states as having the flavor of gravitons preserving the essential 
quantum “state” m n= , and not changing if we go from the Pre-Planckian to 
Planckian state. 

There would be then the matter of identifying ( )theory
mn tρ , ( )0mnρ  and the 

time mnT , if m n= . In our review we would put mnT  likely as the Pre-Planck- 
ian to Planckian transition time. 

Note that in the m = n time if our “density of states” was referring to gravi-
tons, keeping the same states as if m = n is picked, that the second part of Equa-
tion (17) is in referral to quantum states of a graviton having a non-planar cha-
racter which would not have a planar wave character. 

In the case of m n≠  we are then referring to changes in the states of pre-
sumed gravitons as information carriers, and the density equation, ( )mn tρ  has 
in Eq. (17) as a wave with explicit damped by time evolution wave component 
times a planar wave component. 

We presume here that the frequency term, mnω  would be in the high giga-
hertz range. 

In any case, the details of this sketchy idea should be from the Pre-Planckian to 
Planckian regime of space-time given far more structure in a future document. 

We should note that the removal of initial singularities is due to Non-Linear 
Electrodynamics, as seen in [7], by Camara et al., which is also in tandem with 
[18] [19] [20] which give also frequency specifications, which could also affect 

mnω , i.e. a tie in, with Gravitons, and Nonlinear Electrodynamics, which should 
be developed further.  
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