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1. Introduction, Setting up for Calculation of Using the Results  
of Initial Temperature T as a Way to Answer Initial Time  
Step Value, Initial Energy, and Also Entropy of the  
Universe, from First Principles 

In making the initial assumptions, we will be considering what was brought up by S. 
Carroll in [1] which reads as follows: If we assume that there is a Schwartzshield radius 
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of the universe, we have to directly qualify it by saying that we are assuming flatness, as 
a result of inflation, almost from the beginning. We also state that the universe is NOT 
a black hole, and that we use the Swchwartzschield radii as an approximation only for 
the purpose of getting initial conditions. Here is what Carroll put in which we quote. 

Quote: 
You can figure this out by looking at the Friedmann equation, which relates the 

Hubble parameter to the energy density and the spatial curvature of the universe. The 
radius of our observable universe is basically the Hubble length, which is the speed of 
light divided by the Hubble parameter. It’s a straightforward exercise to calculate the 
amount of mass inside a sphere whose radius is the Hubble length (M = 4πc3H−3/3), and 
then calculate the corresponding Schwarzschild radius (R = 2GM/c2). You will find that 
the radius equals the Hubble length, if the universe is spatially flat. Voila! 

End of quote. 
Our approximation assumes that right after the Pre Planckian regime of space time, 

that we approach flatness. 
In the Pre Planckian space time, we assume that there is a regime of space-time in-

volving a different uncertainty principle than the usual Heisenberg, which we state below. 
Start first from [2] 
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If we use the following, from the Roberson-Walker metric [2] [3]. 
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Following Unruth [4] [5], write then, an uncertainty of metric tensor as, with the 
following inputs. 

( )2 110 35~ 10 , ~ 10 metersPa t r l− −≡                    (3) 

Then, the surviving version of Equation (1) and Equation (2) is, then, if ~ttT ρ∆ ∆  
[4] [5] 
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This Equation (4) is such that we can extract, up to a point the HUP principle for 
uncertainty in time and energy, with one very large caveat added, namely if we use the 
fluid approximation of space-time [6]. 

http://en.wikipedia.org/wiki/Friedmann_equations


A. W. Beckwith 
 

480 

( ), , ,iiT diag p p pρ= − − −                     (5) 

Then by [2] 
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Then, 
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This above is what is within the Schwartzshield radius, but also within the Pre- 
Planckian spacetime regime. In place of a traditional black hole, we have a break from 
the usual uncertainty relationship. I wish to thank the referee whom pointed out that, 
of course, that the early universe is not a black hole. However as far as early universe 
models, the following can be referenced. i.e. look at Valev, as of [7] as to how the 
Schwarzshield radius of the Universe is commensurate as to the Hubble radius today. 
i.e. see the work done past Equation (4) of the reference [7] to get: if 1

todayH −  is the in-
verse of the present Hubble’s law expansion parameter of today, then by [7] 
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( ) ( ) 1 10
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Without making too much of it, we will be assuming that in the early universe, the 
same equivalence shows up, i.e. for the very early universe 

( ) ( ) 1
initiallySchwartzhield ~ Hubble ~R R cH − .               (9) 

Within the Hubble radius, as within the presumed Schwartzhield radius, we are as-
suming that Equation (7) holds, and that right afterwards, the following holds, i.e. Just 
outside the Hubble “radius” we will be evaluating we assume that instead of Equation 
(7) that the usual uncertainty principle holds. 

~E t∆ ∆                            (10) 

This usual treatment of the uncertainty principle holds for space-time just outside 
the radius as given in Equation (9) whereas Equation (7) would hold for just within the 
calculated radius as given by Equation (9). Having said that, we will proceed with the 
thermodynamics of what happens as to the boundary of space-t9me delineated by Equ-
ation (9). 

We follow what Ha wrote up [1] [8] that there is a way to outline some basic ther-
modynamic arguments pertinent to quantum gravity. Our first move will be outlining 
equations of state, thermodynamically speaking as far as entropy, internal energy and a 
partition function given by Ng [2] [9] as to “infinite quantum statistics” which can be 
used, then to extract, first an initial temperature, T, which then can be linked to the en-
ergy per degree of freedom of the initial cosmological configuration. The temperature T 
so identified with, is proportional to energy per degree of freedom, and if the degrees of 
freedom as initially configured, by Kolb and Turner [3] [10] are as high as 100g∗ = , 
which is in part confirmed by Standard model. With degrees of freedom contributing to 
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an initial energy configuration as given by 

( ) ( )
initial initial initial

initial1initial
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.           (11) 

Then in the spirit of Mukhanov [11] using time 1E t∆ ∆ ≡   to have, here 

( ) ( )time initial
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.                (12) 

Then, we go to the Entropy, and state it is due to calculation given by Kolb and 
Turner [10] 

( ) ( ) ( ) ( )
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3
volume initial
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.     (13) 

Our article will be developed by making sense of the above formalism, and we start 
by getting the entropy, in its final state, pretty well bench marked, and from there scal-
ing back to determine what entropy should be initially. In doing so, we take some ar-
guments fromBarrau, Rovelli, and Viddotto, [12] [13], as to quark stars, and minimum 
quantum effects, as well as some more details given as to [14]-[16] as to the change in 
degrees of freedom as given in Equation (13) above. 

2. Entropy, as Calculated as a Function of Quark Star Arguments, 
and Quantum Effects. And Number of Operations 

The quark star argument comes as to giving the cube of a minimum quantum wave-
length for quantum gravitational effects and the linkage to quark stars, etc, as com-
mensurate with [12] [13]. 

We are taking a Primoridial black hole mass, in Equation (14) to be such that it 
would be really small, i.e. if the Earth has a 6 times 1024 kilogram mass, then its 
Schwartzhield radius would be 8.7 times 10−3 meters. i.e. what we are thinking of is a 
consortium of mass for tiny black holes of about 3 times 1022 Kilograms, i.e. ~1/10 the 
mass of the Earth, as a start. So then the following roughly hold. 
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This is assuming that there would be a continual injection of space-matter energy 
into the universe, possibly utilizing the cyclical cosmological construction, i.e. a variant 
of Penrose Cyclic conformal cosmology as given in [14]. i.e. given this the following 
happens. i.e. we need to look at the phenomenology given in [15]-[17]. 

The end result, is if we use Equation (13) and also reference Equation (14) above, as a 
proportionality factor as far as how to obtain entropy is in having the following set up, 
i.e. 

( ) ( ) ( )33
Schwartzshield-radii-Universe Universe QM-effects BH

4π
3

R S λ≈ × .          (15) 

Furthermore, there is a linkage which can be made to Seth Lloyds number of opera-
tions, i.e. [18] 
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Note the completely different ways of charactering the number of operations, as giv-
en by Equation (16) in terms of a linkage to the radii of the universe, at Z ~ 1100, as 
opposed to the entropy as linked to a radii of the Schwartshield “radii”, as given in Eq-
uation (15) and part of the evolution displayed in Equation (14). 

3. Conclusion. Calculation of Temperature, and of All That, as Far 
as Equation (12). Leading to a Graviton Mass? 

In order to do this line of reasoning, the temperature can have the following linkage 
[19] 

Energy
Deg.of.freedom

2π 2π
2
TEλ
 

=   
 

 .                (17) 

This would then entail making the following identification. i.e. comparing the wave-
length of Equation (17) with the quantum wavelength and linking it to Equation (5) so 
as to then make the following identification. If so, then if Entropy is identifiable with 
Equation (5) and then we would use the following identification, namely, if [2] [9] 

Entropy ~ graviton #S N ≈ .                    (18) 

Also, if a Holographic relationship holds, [20] 
3

graviton
1 1

Hr

cN N
G

= = ⋅ ≈
⋅ Λ Λ

.                  (19) 

And if [13] is true as well, then perhaps if so we have a first principle confirmation of 
[21] 

2
Einstein-Const. Radius-Universe1 lΛ =                   (20) 

which in turn may help us understand when the formation of this value occurred, i.e. 
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[20] 

( ) ( )
graviton

2 2
3 3
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 .                  (21) 

We are supposing that Equation (21) holds at the formation of a Schwartzshield mass 
of the Universe radius. Also, here is our candidate as to the formation of an initial time 
step. As given. 

initial Planck2 3
2 10~t L

Ng

α

∗

⋅ ⋅                     (22) 

Then, up to a point, if the above is in terms of seconds, and N sufficiently large, we 
could be talking about an initial non zero entropy, along the lines of the number of 
nucleated particles, at the start of the cosmological era. As given by 

( ) ( ) Planck2 3
initial

2 10initial ~ ~S N n L
tg

α

∗

⋅ ⋅
.             (23) 

Initial entropy would be small, but non zero, and would be affected by g∗  strongly, 
i.e. the initial degrees of freedom assume would play a major role as far as how initial 
entropy and initial time steps would be initiated. 

If g∗  increased, then an initial time step would also change. This supposition has to 
be balanced against the following identification, namely, as given by T. Padmanabhan 
[22] that there also may be initial quinessence as far as the evolution of the “cosmolog-
ical constant”, 

( )62
Einstein-Const.Padmanabhan Planck Planck1 l E EΛ = ⋅ .          (24) 

With an initial Graviton formation of mass occurring perhaps as early as 
21

initial ~atomic-size
~ 10 Hz

Hrω .                (25) 

This frequency would be though massively redshifted down due to the onset of infla-
tion. Also, our starting point as to wavelength, is due to the considerations given in [13] 
and may indeed give confirmation as far as a start to early universe nucleation similar 
to what is given in the physics written in [23] below. As well as understanding why a 
graviton mass, as so discussed in Equation (21) as forming at the edge of the Schwartz- 
shield radii of the universe, may form at a distance 1018 or so meters from the big bang, 
and is still congruent with [24] in the later universe. 
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