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Abstract 
Riverine flood event situation awareness and emergency management decision sup-
port systems require accurate and scalable geoanalytic data at the local level. This 
paper introduces the Water-flow Visualization Enhancement (WaVE), a new fra- 
mework and toolset that integrates enhanced geospatial analytics visualization 
(common operating picture) and decision support modular tools. WaVE enables us-
ers to: 1) dynamically generate on-the-fly, highly granular and interactive geovisual 
real-time and predictive flood maps that can be scaled down to show discharge, in-
undation, water velocity, and ancillary geomorphology and hydrology data from the 
national level to regional and local level; 2) integrate data and model analysis results 
from multiple sources; 3) utilize machine learning correlation indexing to interpolate 
streamflow proxy estimates for non-functioning streamgages and extrapolate dis-
charge estimates for ungaged streams; and 4) have time-scaled drill-down visualiza-
tion of real-time and forecasted flood events. Four case studies were conducted to 
test and validate WaVE under diverse conditions at national, regional and local le-
vels. Results from these case studies highlight some of WaVE’s inherent strengths, 
limitations, and the need for further development. WaVE has the potential for being 
utilized on a wider basis at the local level as data become available and models are va-
lidated for converting satellite images and data records from remote sensing tech-
nologies into accurate streamflow estimates and higher resolution digital elevation 
models. 
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1. Introduction 

In order to make effective decisions, first responders and other key local level decision 
makers involved in riverine (channel) flood emergency management require both 
timely ground-level and contextualized flood information and the means of making 
sense of and drawing insight from that information.  

Local decision makers formulate and implement plans and anticipate and respond to 
flood events based on many hydrologic factors, but the most critical decisions are de-
pendent upon an awareness of the three variables of knowing when (historical, real- 
time and forecasted times), where (temporal location of stream flow and inundation), 
and how much (depth, volume and inundation extent, velocity) the flooding is occur-
ring or will occur. For true situational awareness, decision makers need to know when 
and where the rising rivers will occur or are occurring, what depth the inundation is at 
locations of concern, what points, places and people of interest are being affected, and 
where potential access and evacuation routes and directions exist for first responders.  

Despite technological advances and new research in areas related to flood analysis 
and decision-making, challenges remain, particularly in the area of providing accurate 
streamflow and flood inundation data for remote and/or ungaged streams, developing 
high resolution digital elevation models for producing highly granular and locally scal-
able geovisual flood maps (real-time and predictive), and delivering reliable, useful 
flood data to local decision makers during flood events [1]. Even when these complex 
issues are addressed, the challenge remains of making sense of large amounts of data in 
such a way as to be easily understood and effectively utilized by individual practition-
ers, while at the same time providing a common operating picture and knowledge 
framework across the various groups involved in flood emergency management.  

In this article, we introduce and test Water-flow Visualization Enhancement (Wa- 
VE), a new geospatial visualization framework and decision support (DS) toolset de-
signed for first responders, water resource managers, scientists and other decision 
makers. WaVE’s extensible and flexible framework and toolset transforms historic, 
real-time and forecasted streamflow and flood inundation data into accurate actionable 
intelligence, enables down-scaled geospatial analysis and visibility, and provides users 
with easy-to-use and customizable DS tools. 

The following sections of this article 1) provide background information on flood 
geospatial analytics and decision support; 2) describe the three development phases of 
the WaVE design framework, the future development of the framework for enhancing 
the platform, review case studies that test and demonstrate WaVE’s capabilities; 3) dis-
cuss issues and implications of results from the model and the case study; and 4) sum-
marize the authors’ conclusions.  

2. Background 
2.1. Flood Data—Where, When & How Much 

Two groups in particular require and utilize local-to-regional scaled historical, real- 
time, and forecasted riverine water flow and flood inundation data—floodplain water 
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managers and first response emergency management teams.  
The first group, floodplain and water resource managers, require this data for effec-

tive planning and operations. They gather and assimilate data from research scientists, 
issue warnings and alerts, create emergency plans for flood scenarios, communicate 
flood stages to the community, and create predictive models. Water resource managers, 
such as those from the US Army Corps of Engineers (USACE), use flow data and preci-
pitation predictions for such flood mitigation activities as managing flood control re-
servoirs, floodway outlets, diversions, levees, and navigation locks. They need timely 
and accurate forecasts and flow data to predict inflows to reservoirs and pool elevations 
in order to determine downstream discharge, as well as to make daily decisions regard-
ing adjustment of water elevation levels in reservoirs to minimize downstream flooding 
and maximize storage [2].  

Similarly, first responders and emergency management operations—both before and 
during actual flooding events—rely on historical and real-time water elevation, time, 
and water velocity data for situational awareness and executing such emergency opera-
tions as fighting floods, evacuations, closing bridges and roads, etc. When and how 
these tasks are implemented can determine the degree to which lives and property are 
saved [3] [4].  

For these groups, time sensitive decisions are often based on information and 
attributes related to fluctuations in channel and flood water. The elevation and volume 
of water flow within any watershed basin typically fluctuate in accordance with such 
weather events and variables as melting snow, rain, surface runoff (the flow over the 
earth’s surface of excess water from storm water, snowmelt or other sources), subsur-
face flow, and in regulated streams by such variables as dams, storage reservoirs, and 
levees. Heavy precipitation and snowmelt runoff in upstream areas of a catchment can 
cause high water volumes in river streams, full capacity in river reservoirs, and riverine 
flood inundation (i.e., extending beyond its channel boundaries) of normally dry areas. 
The extent of flood inundation is influenced by such factors as channel depth, volume-
tric discharge, stream velocity and geomorphological features outside of the channel.  

Two hydrologic data parameters—water elevation and time—are essential for ad-
dressing these issues. Using these two fundamental pieces of geospatial information, 
hydrologists can calculate: 1) the volume rate (Q) of water flow (also referred to as str- 
eamflow, discharge or flow rate) in a channel—calculated as the product of a cross-sec- 
tional area (A) and the mean velocity (ū) of a stream, and typically expressed as cubic 
feet/second (f3/s) or cubic meters per second (m3/s); and 2) the inundation of water that 
extends outside of normal channel banks.  

Traditionally, this streamflow data has been recorded using physical streamgages, 
devices that monitor and test surface bodies of water within watershed basins and that 
primarily function to measure water level surface elevation. For hydraulic models and 
flood maps in the United States, the most important source of real-time and historical 
streamflow data records is provided by the US Geological Survey (USGS), a federal 
agency tasked with overseeing the deployment, operation, and maintenance of roughly 
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8000 streamgages throughout the US. 

2.2. Flood Mapping 

Different models and measurement tools historically have been used to identify or pre-
dict flood situations that occur in a variety of geographical and topographical land-
scapes. These have ranged from traditional static flood maps, historical flood tables, 
datasets and statistics developed by analysts and cartographers, to newer tools that le-
verage developments in digital elevation and terrain that feature modeling, geospatial 
analysis and geovisualization, and that integrate hydraulic models with visualized 
geospatial data and interactive flood maps. Analysts and planners can use digital inun-
dation maps overlaid on city maps and combined with other overlaid geographic in-
formation systems (GIS) layers to assess potential flood risks and damages. These tools 
are used to help predict flood occurrences and inundation extent, achieve situational 
awareness during events, and communicate risks and consequences of current and pre-
dicted flooding.  

Digital maps are created by superimposing “layers” of pixel or raster-based images 
that represent geocoded geomorphological features on “top” of digital elevation models 
(DEMs)—digital models or three-dimensional representations of terrain surfaces [5]. 
These models are developed using terrain elevation data acquired and recorded by such 
means as direct land surveys, remote sensing, and photogrammetry. Some earlier 
coarse resolution DEMs were interpolated from digital contour maps based on direct 
land surveys, although increasingly these models are higher resolution and generated 
from remote sensing. 

Modern hydrological flood mapping models combine data from historic flood inun-
dation maps with real-time data to predict inundation of current and future flood 
events. To visualize flood data, a hydraulic model is combined with a digital ground 
surface elevation model according to a grid cell layout, whereby the digital representa-
tion of the elevation of surface water is overlaid onto a time-sequenced digital repre-
sentation of ground surface elevation in a geospatially corresponding grid area to de-
termine how far flooding will extend beyond normal channel banks. Inundation extent 
is then calculated for each grid cell.  

The vertical accuracy and spatial resolution (ground surface area within a grid cell) 
of the base DEM (primary topography) influences the degree of accuracy of hydraulic 
models and flood maps [6]. The higher the number of cells in a unit area, the greater 
the resolution and scalability (i.e., the finer the resolution of rasterized data at smaller 
distances from ground surface elevation, the more accurate the representation of gro- 
und surface topography).  

Developments in the field of remote sensing (RS)—the passive recording or active 
detection and measurement of objects and areas by aerial sensor technologies—have 
enabled greater efficiencies in creating more accurate digital elevation maps, measuring 
streamflow, and analyzing and predicting floods. RS was traditionally largely passive, 
conducted using manned or unmanned aircraft and, to a lesser extent, land-based ap-
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plications. This method uses such sensing instruments as infrared and film photogra-
phy to gather and record information about the radiation (from the sun or other 
sources) reflected or emitted by the target area or object. The reach and options of pas-
sive RS increased significantly with the launching of Landsat in 1972 and the advent of 
satellite platform-based RS. By contrast, active sensors emit energy to detect remote 
targets and then measure the radiation reflected back or backscattered from those tar-
gets. Advances in active RS using satellite, airborne and terrestrial altimetry technolo-
gies have led to increased insights into river flow dynamics and provide alternatives to 
traditional methods.  

Hydrological model-based analysis used in flood forecasting and building static ha-
zard maps for situational awareness historically have been dependent on discharge data 
from in situ streamgage networks. While foundational to much of hydrologists’ under-
standing of surface water, gage networks are limited in the information they can pro-
vide about local floodplain flow and watershed dynamics. During a flood event, these in 
situ sources provide only a one-dimensional, point-based set of surface water data [7], 
without addressing the additional challenge of extrapolating downstream volume after 
the water passes the monitor and predicting what the water will do if it rises and ex-
tends beyond its normal channel. The limited availability of in situ streamflow mea-
surement resources hampers flood detection in river areas and restricts the ability to 
validate real-time flood forecasting models [8]. Furthermore, these streamgages are 
physically vulnerable and can stop transmitting critical flood water data during storm 
events or at other critical times.  

This risk was illustrated in the August 2016 flood event in Baton Rouge, Louisiana. 
During the floods, 15 USGS streamgages were damaged or destroyed [9]. For three key 
days during the storm, stations in critical locations stopped sending vital near real-time 
data to first responders (see Figure 1) who relied on the data for situational awareness 
about the rising of the river, warning and evacuating at-risk people, and taking steps to 
protect property [10]. 

These risks are among the reasons that RS is increasingly being advocated as a com-
plement to in situ streamflow measurement and for providing vital data where no 
streamgages exist [11] [12] [13]. This interest is reflected in the growing body of re-
search related to validating inundation maps used during actual flood events, RS mod-
els and applications, techniques for working alongside in situ methods, and building 
proxy streamflow measurement models [14] [15] [16] [17] [18]. 

RS is also increasingly being used for developing DEMs of higher resolution and 
greater accuracy. Today, flood inundation maps are commonly derived from passive 
microwave sensors or moderate resolution spectroradiometer imagery (i.e., MODIS 
and Landsat TM) [19] [20] [21]. Testing and experimental remote sensing systems are 
being set up to detect and map spatial resolution in near real-time [21], as well as mon-
itor ongoing floods by comparing imagery with on-the-ground data information ob-
tained from flood disasters [22]. Results from studies indicate that daily spatial resolu-
tion results and measurement data from passive microwave satellite observations and  
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Figure 1. USGS hydrographs from the National Streamflow Information Program illustrating the 
streamflow condition and equipment malfunction during the August 10-15, 2016, Baton Rouge, 
LA, flood event. http://waterdata.usgs.gov/la/nwis/rt. 

 
satellite altimeters [23] [24] [25] correlate well with in situ streamflow and are suitable 
for analyzing and predicting streamflow and flood events at national and regional 
scales.  

The demand for higher spatial resolution, accurate DEMs, and hydraulic and channel 
flow routing model output that can be scaled from the regional to local level, has 
spurred the growth of related research and applied resources. In the US, an important 
step toward this goal is the continual development and enhancement of The National 
Map (TNM), the collaborative effort of USGS and its partners to provide publicly-av- 
ailable digitized topographic data—elevation, boundaries, transportation, structures, 
land cover, geographic names, hydrography, aerial photographs, etc. In 2011, the US 
Government completed the National Enhanced Elevation Assessment, a result of which 
is the 3D Elevation Program (3DEP), an initiative launched by the USGS. Its initial ser-
vices and products begun in 2015, 3DEP collects and adds to the seamless layers of 
TNM’s high-quality topographic and enhanced elevation light detection and ranging 
(lidar) data for the coterminous United States, Hawaii and the US territories, and in-
terferometric synthetic aperture radar (InSAR, or commonly abbreviated as IfSAR) da-
ta for Alaska [26]. 

This first active RS source, lidar, is a surveying and elevation measuring technology 
that works by actively illuminating (pulsing) a target with laser light—different parts of 
the visible and near-infrared sections of the electromagnetic spectrum—and measuring 
the distance of the return signal of the pulse reflected back [27], thus providing the pre-
cise location of the target (e.g., surface area, vegetation, hard surface buildings, etc.). 
Conventional lidar measures only the elevation of water surfaces, but specific spectrum 
laser light (blue-green wavelength) can penetrate water and be used for river bathyme-
try [28]. While lidar can be carried out with terrestrial, airborne, satellite, or mobile 
platforms, most enhanced elevation scanning and measurement for elevation models is 
carried out using airborne platforms such as fixed-wing manned aircraft or unmanned 
aerial vehicles (UAVs), the latter being explored and developed as an economical alter-
native to manned aircraft, particularly in more remote areas.  

http://waterdata.usgs.gov/la/nwis/rt
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IfSAR, on the other hand, is an active RS technology generally used in places like 
Alaska, where cloud cover and the remote locations of target areas make the use of lidar 
less effective and relatively impractical. Radar from satellites can penetrate overcast 
weather and provides valuable continued round-the-clock imagery during storm events 
[29]. This active sensing technique combines two or more synthetic aperture radar 
(SAR) images that are derived from recording the stereoscopic effect caused by the dif-
ferences in the phases of radiation waves that return from the target area after it is 
struck by a narrow radar beam transmitted from an antenna on a satellite platform- 
based sensor.  

In addition to lidar and IfSAR, other laser scanning (LS) technologies for airborne 
(ALS), mobile (MLS) and set-terrestrial (TLS) laser scanning platforms are also being 
developed for flood mapping support [30]. 

A growing body of research studies has focused on flood impact at the regional wa-
tershed level, some of which have analyzed the results from RS flood extent and in situ 
streamflow measurements [19] [31]. Other research has explored the use of data from 
multispectral and microwave sensors to supplement in situ stream data [32]. Some stu-
dies have explored the use of inundation maps derived from higher resolution images 
to ground truth, while others have focused on testing and validating the accuracy and 
effectiveness of using RS image datasets for flooding events and inundation maps [33] 
[34] [35]. Once RS images and derived data are recorded, it greatly impacts the efficacy 
of the tool for measuring real-time, local impact during flood events, given that satel-
lites used for those events may not be at the optimal location for the right times and 
durations required for best coverage. Despite these limitations, streamflow time series 
from simulated satellite RS models have been developed, tested, and are starting to im-
prove flood inundation maps [1] [36] [37].  

2.3. Flood Data Visualization for Decision Support 

Streamflow and flood inundation data from traditional and RS sources can be analyzed 
and visualized using either stand-alone flood mapping tools or those integrated into 
sets of other emergency management decision support systems (EMDSS)—compute- 
rized or hybrid human and computer-based information systems used by organization-
al management to facilitate the solving of unstructured and partially-structured prob-
lems and making decisions related to planning, management, and operations processes 
[38]. The appropriate use of EMDSS can help emergency management teams address 
workload and labor requirements, schedules and deadlines, resource availability and 
other constraints, and assist them in making more effective time-sensitive labor as-
signments and resource allocations [39]. High-profile emergency response decision 
failures during disaster events like Hurricane Katrina and other large-scale national and 
international flood scenarios have highlighted the need for better decision-making 
processes and systems [40] [41]. The growing public perception of this need has been 
reflected in the field of theoretical and applied research on EMDSS for floods and other 
crises [42], as well as in the development of systems, hardware and communication 
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technologies to assist practitioners in these areas. 
The development of EMDSS has been further enabled by advances in data storage, 

retrieval and processing technologies that greatly increase the potential accuracy and 
efficiency of these systems. Technologies now exist for creating platforms that can 
combine many different data sources (including discharge data derived from such ac-
tive and passive remote sensors as lidar and active sensor SAR), compute billions of da-
ta elements to identify multivariate correlations across diverse environments, analyze 
and multi-scale that data, and transform that data into customizable and visualized 
knowledge needed by decision makers. 

One area of significant growth in the past few years is the processing of “big da-
ta”—data sets that are too large for computation by traditional computing. It is esti-
mated that since the 1980s the world's per-capita capacity to store data has doubled 
every 40 months [43]. Large data sets related to streamflow and flood inundation, plus 
myriad ancillary emergency management data that in the past required the computing 
power of supercomputers, can now be processed by running massively parallel software 
on tens-to-thousands of powerful and smaller servers in multiple locations, all linked 
together in a “grid”. These grids form virtual supercomputers that can also utilize 
“cloud computing”—remotely-located shared processing and storage resources for 
computers and applications that are available on-demand from anywhere for customers 
with high-speed Internet connections. 

This rapid growth in available and interrelated data and the need to process and 
make sense of it all has overwhelmed traditional data analysis methods. A promising 
area being explored as a potential solution is machine learning, a developing field of 
study of how computers can learn without explicit programming—a type of artificial 
intelligence whereby computers assimilate data and then use algorithms to make in-
creasingly accurate predictions as they are exposed to new data [44]. A growing number 
of researchers are studying how machine learning can be applied to hydrology [45] 
[46]. Even with the use of machine learning and other means to analyze large amounts 
of statistical and other structured data, there still remains the challenge of presenting 
analytic results in such a way as to be easily accessible and understood, both by analysts 
and by decision maker practitioners. 

One approach to this issue has been to provide users with visual and graphical re-
presentations of data analysis. Such information visualization attempts to help users 
comprehend, analyze and make sense out of large-scale data sets by representing that 
data in graphical and other visual display means. Visual analytics, on the other hand, 
have been described as interactively combining information visualization and data 
mining by integrating human factors and data analysis with visualization in order to 
assist analytical reasoning [47]. Bertini and Lalanne [48] argue that the goal of visual 
analytics should be to combine natural and artificial intelligences through the collabo-
ration of human abilities and the power of data mining. Visual analytics help provide a 
means of exploring and analyzing large amounts of data to support complex problem 
solving and decision making by combining the data storage and processing of comput-



T. R. Petty et al. 
 

700 

ers with the exploration (finding, action) and verification (insight, hypothesis) loops of 
knowledge generation [49].  

The integration of flood maps with other tools are examples of a subset of informa-
tion visualization and visual analytics called geovisual analytics (or geospatial visual 
analytics)—a multidisciplinary field that seeks to develop new approaches to solving 
complex problems related to geographical space and objects, events, processes and 
phenomena within that geo-temporal context [50]. It is multidisciplinary in that it 
combines information, scientific and geographical visualization with the computational 
processing capabilities of statistical analysis and modeling, machine learning, data min- 
ing, and geographical analysis and modeling [51]. 

3. Methods 
3.1. WaVE Design Framework 

In response to the need for visualizing and making sense of flood water and related 
impact factors, WaVE is being designed and developed in collaboration with and for 
first responders, water managers and other decision makers to provide flood decision 
makes with a common operating picture and decision support. It consists of a geospa-
tial analytics visualization framework and DS toolset (currently under development) 
that transforms historic, real-time and forecasted streamflow and flood inundation data 
into accurate analytic results, down-scaled visibility, and customizable DS tools. The 
geospatial design, research and testing for the study areas are performed and developed 
using an Esri ArcGIS (Version 10.3) platform.  

WaVE’s extensible and flexible framework and toolset is designed to provide users 
with easy-to-use and customizable tools to: 
• Generate moderate to highly granular and interactive geovisual real-time and 

predictive flood maps that can be scaled down to show discharge, inundation and 
water velocity (and ancillary geomorphology, hydrology and elevation data) at any 
point along a mapped stream at the national and regional levels, with some loca- 
tions providing enough high resolution data to enable maps to also be available on a 
local level.  

• Integrate data from multiple sources and analysis results from commercial, open 
source or user’s own tools and models.  

• Utilize machine learning correlation indexing to interpolate streamflow proxy 
estimates for non-functioning streamgages and extrapolate discharge estimates for 
ungaged streams, while also providing a streamflow baseline to use computational 
analysis to test and rate the degree of reliability of the various geospatial data 
sources and forecast estimates being analyzed.  

• Supply ancillary GIS data visualization of environmental features, alternate evacu- 
ation routes, city and community analysis of socio-economic demographics, webcams, 
points of interest, e.g., residences, schools, roads, hospitals (see Figure 2). 

WaVE’s common operating geospatial intelligence applications and toolsets for deci-
sion makers are developed through a three-phase process: 1) gathering, 2) processing, 
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and 3) performing. These three phases are described in Table 1. 

3.1.1. Phase 1—Gathering 
The first phase consists of selecting, aggregating, and preparing historical, real-time and 
forecasted streamflow and inundation data.  

Selection 
The first phase begins by selecting the primary historical and forecasted streamflow 

and flood inundation datasets WaVE will use for preparing its baseline analyses, model 
results, estimate comparisons, and geovisual tools. WaVE develops its baseline datasets 

 

 
Figure 2. An example of ancillary flood data that can be integrated into WaVE—screenshot of an 
interactive June 2016 Texas flooding ArcGIS Story Map, showing Civil Air Patrol flight path with 
clickable markers of aerial reconnaissance photos of flood area. 

 
Table 1. Key variables and three phases of the WaVE design process polygons. 

Key variables of 
flood water flow 
and inundation 

When Time (historical, real-time, forecasted) 

Where Location and extent 

How much Volumetric discharge and velocity 

Phase 1 
(gathering) 

Phase 2 
(processing) 

Phase 3 
(performing) 

What 
(content/tools) 

Streamflow and  
inundation data 
• Historical 
• Real-time 
• Forecasted 

Geospatial 
• Platform 
• Framework 
• Applications/toolsets 

Flood event decision support 
• Common operating 

geovisual intelligence 
system and applications 

• Server, desktop & 
mobile-based 

How 
(functions) 

• Selection 
• Inputs & aggregation 
• Preparation (clean, 

code and scale) 

• Integration 
• Mapping 
• Analysis & estimation 
• Testing & evaluation 
• Validation & scoring 

• Geovisualization 
• Scalable localization 
• Interactive customization 
• Contextualization 
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from historical and forecasted data derived from weather forecasts provided by the fol-
lowing American and European forecasting modeling systems: the US Weather Re-
search and Forecasting Hydrological (WRF-Hydro) model and the European Centre for 
Medium-Range Weather Forecasts (ECMWF) model. In Phase 1, WaVE begins build-
ing its baseline by gathering datasets from either WRF-Hydro or ECMWF to complete 
the baseline of its framework. 

For coverage of the US, WaVE uses historical and forecasted gridded discharge and 
inundation data from WRF-Hydro. This modeling extension package was developed by 
the federally funded US National Center for Atmospheric Research (NCAR) and its re-
search partners, and through affiliated research projects.  

WRF-Hydro is both a community-based and supported stand-alone hydrological 
modeling system and coupling architecture designed to link multi-scale process models 
of the atmosphere and terrestrial hydrology on different spatial grids, as well as to pro-
vide accurate and reliable streamflow prediction across scales. WRF-Hydro integrates 
the following hydrological models: column land surface models, terrain routing models 
(overland, subsurface flow modules), and channel and reservoir routing models (hy-
drologic and hydraulic modules). WRF-Hydro receives data (one-way coupling) from 
gridded meteorological analysis models, nowcasts and forecasts, as well as data (two- 
way coupling) from weather and climate predictions—using Multi-Radar/Multi-Sensor 
System radar-gauge observed precipitation data, High Resolution Rapid Refresh, Rapid 
Refresh, and Climate Forecast System forecast data. It also receives critical numerical 
prediction results from the global computer models and variation analyses of the Nu-
merical Weather Prediction and US National Weather Service's Global Forecast System 
(GFS).  

Within WRF-Hydro, the GFS model is essential for the forecasting component for 
WaVE as it generates medium-range forecasts every six hours for up to 16 days out, 
with decreasing resolution after 10 days. WRF-Hydro inputs this data using its driver 
and data assimilation tools, and then processes this data, conservatively regridding and 
downscaling as needed for use in its various models. The WRF-Hydro system features 
possible component configurations for streamflow prediction, including 5 channel flow 
schemes [52]. As described later, one of these, RAPID-Muskingum for NHDPlus, is 
used by WaVE. 

WaVE can also use ECMWF as an option to utilize flood forecasting. ECMWF is an 
independent intergovernmental organization based in the United Kingdom that oper-
ates one of the largest supercomputer complexes in Europe and has the world's largest 
archive of numerical weather prediction data [53]. ECMWF’s operational global me-
teorological forecasting model, the Integrated Forecast System (IFS) inputs and assimi-
lates meteorological data collected and transmitted by satellites and earth observation 
systems, and uses these data in computerized atmospheric models to generate medium- 
range (up to 15 days ahead), monthly, and seasonal weather forecasts. Every twelve 
hours, IFS generates deterministic and ensemble operational forecasts of up to ten days 
out. IFS’ deterministic forecasts are double the resolution of the ensemble forecasts, but 
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require more computational resources, whereas the ensemble forecasts use a variation 
of Monte Carlo analysis and generate a representative sample of possible forecast pre-
dictions by running the model 51 times in parallel under slightly different initial condi-
tions [54]. ECMWF makes publicly available some of the IFS model’s most important 
forecast data and calculations, which can be incorporated into WaVE. 

Both the ECMWF [55] and WRF-Hydro systems provide precipitation forecasts and 
precipitation runoff predictions that are plotted according to a geospatial grid, trans-
forming rainfall runoff forecasts from weather-hydro forecast models into gridded 
streamflow (discharge) runoff predictions and inundation forecasts [56] [57]. 

Input and aggregation 
To input gridded discharge runoff and inundation prediction data, WaVE creates 

connectivity files and inflow files from ECMWF and WRF-Hydro runoff database 
tables, and then creates RAPID-Muskingum parameter files and subset files. 

Data downscaling and preparation 
Because gridded forecast data from ECMWF and WRF-Hydro are provided at the 

global or regional level, there is a spatial resolution gap between the forecast values and 
local impact assessments. Even if one can zoom in to see higher resolution of surface 
areas or objects within a grid cell, there is still only one forecast for the entire area, thus 
potentially providing a completely inaccurate runoff prediction at the local level. As the 
highest resolution global model is neither detailed enough nor scalable, its usefulness at 
the local level is significantly limited [58]. Since the global model result cannot be used 
directly, this spatial resolution gap needs to be bridged so that the scaled forecast values 
can correspond to the local level resolution [59]. 

WaVE framework tools bridge the spatial resolution gap by downscaling the fore-
casted streamflow runoff and inundation data from the global and regional models for 
later input into flow routing models. Downscaling is a two-step process (see Figure 3) 
using Python Geoprocessing Workflows: 1) Create weight table by overlaying catch-
ments on a computational grid, and 2) Create inflow file by computing the weighted 
average runoff for each catchment. Dividing the downscaling process into two steps in-
creases efficiency because once the weights are computed and the table created (the 
most time consuming part of the conversion and downscaling process), these weights 
can be reused with a new forecast. 

In the first step, weight tables are created (and continually updated) from the pre-
viously created files derived from WRF-Hydro or ECMWF runoff and geogrid data (a 
program in the Weather Research and Forecasting Model Preprocessing System that 
defines model domains and interpolates static geographical data to the grids). These 
tables are developed by overlaying watershed catchments on a computational grid of 
the earth’s surface and using a geospatial digital elevation map (DEM) as a base. This 
grid can be either low or high resolution. Watershed catchments (also referred to as 
drainage basins) are areas of land where surface water comes together at a single point 
to drain into another body of water. Smaller catchments drain hierarchically into larger 
catchments. The catchment data layer is represented by polygons generated from eleva-
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tion data using a web service. As shown in Figure 4, forecast data are then run through 
a series of geoprocessing operations to spatially overlay the gridded runoff forecast (at 
the top) with the watershed polygons (at the bottom), and the total runoff per water- 
shed is summarized for each time step. 

The grid cells associated with each catchment are identified and calculated using 
NHDPlus hydrological flow characteristics and terrain surface and digital elevation da-
ta. Each grid cell is given a relative weight (W) assigned at each geospatial gridded cell 
point (i) where the total area (Ai) of each cell is divided by the catchment area (Acat-
chment) (see Equation 1). 

i i catchmentW A A=                          (1) 

A collection of open source Python script tools (which can be extended or modified 
to support other types of runoff or forecast data) are then used to store the identifica-
tion of the catchment, cells they fall into, and the associated weights in a file. This file 
serves as the weight table used in the second step of the downscaling process. 

Total runoff is then calculated using the appropriate weights divided by the areas of 
the contributing points. 

The second step consists of creating an inflow file for the model forecast by compu-
ting weighted average runoff for each catchment. To do this, the WaVE tool extracts  

 

 
Figure 3. The two-step downscaling process. 

 

 
Figure 4. Gridded runoff forecast spatially overlaid on top of watershed polygons. 
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forecasted runoff time series (for all time steps) from each grid cell associated with a 
respective catchment, multiplies them by the appropriate weight (or area) to generate 
Q, or river discharge, and then adds all the grid cells. As shown in Equation (2), the to-
tal runoff (Runofftotal) for the combined catchment areas of all cells is equal to the sum 
total of all the cells (∑) of cell grid runoff (Runoffi) multiplied by the weight (Wi) for 
each cell grid point (i), and multiplied by the catchment area (Acatchment) for each cell 
Equation (2). 

( )totalRunoff Runoffi i catchmentW A= × ×∑                    (2) 

The process is repeated for all catchments. This step results in the weighted inflows 
that can be used to map streamflow and inundation. 

3.1.2. Phase 2—Processing 
Once prepared, in Phase 2, WaVE processes and integrates the data with results and 
output from other hydraulic and analytic models, estimates forecasts, analyzes, tests 
and evaluates results, and validates and scores results for accuracy and uncertainty. 

Integration 
In order to analyze and geovisualize the prepared data, WaVE integrates and utilizes 

a variety of existing open source, public and commercial hydraulic, geospatial analytic, 
machine learning algorithms, and geovisualization models and tools. As discussed later, 
WaVE’s flexible framework allows it to easily add and integrate new and existing tech-
nologies from its geospatial application toolbox.  

Weighted inflow data from processed historical, real-time and forecasted streamflow 
runoff in Phase 1 can then be visualized by computing discharge and choosing selec-
tions from flow routing models. Once it is known how much water runoff comes from 
each watershed at each time step, WaVE models the flow routing in catchments using 
the Routing Application for Parallel Computation of Discharge (RAPID).  

RAPID is a river routing model that can compute the flow and volume of surface and 
groundwater inflows and water flows anywhere within river networks, and, assuming 
basic connectivity, can be adapted for any river network. To route the waterflow, 
RAPID uses a matrix version of the commonly used Muskingum hydrologic routing 
method [60]. Muskingum model uses uniform calculation procedures that build on 
river characteristics that include: (channel geometry, upper and lower watershed reach 
and length of a river, surrounding topography, slope of the river) to estimate the river 
water flow parameters including both the inflow and outflow hydrology without intri-
cate and costly algebraic solutions [61]. The model parameters can be easily optimized 
to reflect the multivariate differences for individual sub-catchments (e.g., presence of 
major manmade infrastructures) or water withdrawals on a river network. RAPID is 
written in FORTRAN and can be run on a wide range of computing devices, from per-
sonal computers and networked servers to grid and cloud-based servers for computing 
big data [62]. While other, more sophisticated, flow routing models could be used and 
would be appropriate at finer scales, RAPID works well for this WaVE process because 
it handles a large number of watersheds. 
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For flow routing of water networks within the United States, RAPID utilizes the 
NHDPlus dataset, an integrated geospatial hydrologic framework and datasets built by 
the US Environmental Protection Agency and US Geological Survey. NHDPlus com-
bines the vector National Hydrology Dataset (NHD) stream network and Watershed 
Boundary Dataset (WBD) hydrologic unit boundaries, together with the National Ele-
vation Dataset (NED) gridded land surface, to show each NHD stream segment’s local 
catchment area. A catchment area layer contains water flowline, sink-points, area fea-
tures and bodies of water. NHDPlus produces the stream network datasets’ flowline 
attributes using five flow estimation models. 

The first version of NHDPlus (NHDPlus V1) launched in 2006, and NHDPlus ver-
sion 2 (V2), debuted in 2012. Both feature the NHD 1:100,000-scale stream network 
and the 30-meter ground spacing (1 arc-second) NED. NHDPlus V2 features over a 
thousand isolated networks in the NHD, NED coverage for over 40% of the country, 
and WBD expanded to cover all the US [63]. Currently under development is the US- 
GS High Resolution NHDPlus (HR-NHDPlus), with the stream network resolution in-
creased to a 1:24,000-scale and the 10-meter ground spacing (1/3 arc-second) NED 
[64].  

The model estimates streamflow by associating stream segments in each catchment 
with temperature, rainfall and runoff data. NHDPlus uses elevation to compute stream 
slope, streamflow and velocity, and other associated attributes [65]. 

Analysis and Estimates 
In order to test the methodology for visualization analysis, a comparison and con-

trast system was developed to better understand the dataset relationships and dataset 
requirements for any given watershed tested. For this analysis, a watershed basin case 
study was developed in order to analyze for both a quantitative and qualitative mea-
surement perspective regarding the interaction between watershed basin datasets 
available for each given watershed tested and the basic methodology correlation com-
parison between the given watersheds tested. (See summary analysis in the Study Re-
gions section and the Discussion section.) 

Mapping streamflow and inundation forecasts 
For this big model array to be visualized, the data needs to be put on a map. WaVE 

uses an integrated automated process to geoenable (i.e., associate with geospatial prop-
erties) and publish this runoff forecast data using a multi-scale temporal map service. 
The maps are published at multiple scales in order to be viewed and show varying de-
grees of detail at different levels. 

NHDPlus provides an identification number for each stream segment within a wa-
tershed. The time series for each identification number gets loaded into a geodatabase, 
where each stream reach is a mapped feature with an attached time series flow forecast. 
Knowing the associated time is particularly important in visualizing forecasted stream-
flow on a timescale. For flood awareness and mitigation, WaVE combines streamflow 
forecasts from NHDPlus with visualization of flood extents (i.e., inundation mapping) 
and the impact by inputting data from a flood inundation database and using the multi- 
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scale temporal map service to generate visualizations of flood extents and impacts. This 
flood inundation database is rendered on a geo-enabled rating curve that correlates 
flood depth with flood extent for each watershed reach. To visualize water flow and 
understand depth for purposes of developing an inundation map, terrain is analyzed 
and pre-calculated for each modeling reach. Flood extent, depth of flooding, and water 
surface elevation are all calculated for a series of incremental depths. A pre-existing ob-
served rating curve can be used, or a synthetic one can be derived based on proven and 
tested hydraulic assumptions. 

Once the streamflow and inundation forecast data are prepared, the WaVE toolset 
can generate down-scaleable flood maps using a Raster Function Template (RFT) mod-
el. Using the RFT model, several analytical functions available right out of the box are 
chained together to create a complex model that can be used to perform on-the-fly 
analysis. This analytical capability can be extended using the Python Raster Function 
and Height Above Nearest Drainage (HAND) [66]. Flood maps are then created using a 
combination of HAND Raster Mosaic, Catchment Raster and the resulting visual mod-
el. HAND is a terrain model that normalizes topography according to the local relative 
water heights found along the drainage network by combining flood inundation map-
ping catchments and flowlines with elevation (DEM). The model defines river channel 
geometry and flood inundation extent for 5 million kilometers of stream reaches over 
the continental US. 

3.1.3. Phase 3—Performing 
In the third and final phase of WaVE, the performing step is publishing the forecast 
data and mapping the results as web services. Forecasted visualization maps can be 
consumed in a wide variety of web and mobile application services for a broad spec-
trum of end users. The capabilities of the applications are determined by the kinds of 
services that are published, as well as by the capabilities of the user applications. These 
variable map applications include: flow at a location, flow along a reach, depth at a lo-
cation, and depth raster needs. By publishing the modeling results as web services, the 
results become widely accessible, not just to specialists in the science, water resources 
managers and emergency management communities, but to the concerned public, in-
cluding residents living in a floodplain or business owners affected by potential floods. 

The multi-scale temporal map services are then used by various web applications re-
lated to predicting and responding to hydrologic events. Configurable application tem-
plate builders are available on a larger platform based toolset to easily create and pub-
lish interactive analytic applications (see Figure 5). 

Web applications like these are now much easier to create by using prebuilt confi-
gurable application templates or creating the user’s own design using drag and drop 
widgets, including the user’s published web maps, and mashing them up with other da-
ta. These apps can be 2D, 3D, time-enabled and combined with analysis tools, and can 
all be built responsively for browser, tablet, or phone. Based on the availability of na-
tional, regional and local data, WaVE’s GIS based pre-and post-processing tools are 
available to support a modular framework for runoff forecast impact analysis anywhere 
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in the world by selecting either the WRF-Hydro or ECMWF forecasting model systems 
(see Figure 5 and Figure 6). 

3.2. Building the Future Model—Enhancing the Framework for  
Accuracy and Localization 

3.2.1. Transforming Knowledge into Action 
In order to be confident that first responders are making decisions that accurately re-
flect the reality of a crisis event, decision makers need to be confident that they have  
 

 
Figure 5. An example of ancillary flood data that can be integrated into WaVE—Screenshot 
of an interactive June 2016 Texas flooding ArcGIS Story Map, showing moveable split screen 
comparing pre- and post-event satellite imagery of flood area. 

 

 
Figure 6. An example of ancillary flood data that can be integrated into WaVE—Screenshot 
of a dynamic interactive flood inundation map and ArcGIS Story Map. 
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previously considered and made sense of all the relevant observations and information 
before they can strategize, plan, create and implement response scenarios [42].  

Muhren and Walle [67] define this sense-making as contextualizing and making un-
derstandable a situation or scenario when there is an absence or loss of meaning, a pe-
riod often precipitated by “unforeseen changes in the environment which break the 
imaginary link between expectation and reality and force actors to reevaluate what they 
are doing and where they should go.” To make sense of all the various bits of structured 
and unstructured data and often conflicting human interpretations, responders need 
and search for the right frame of reference they can use in order to interpret, contex-
tualize and draw insight for making decisions and acting.  

In crisis situations, where events often unfold very quickly and there is a high degree 
of uncertainty regarding what is known or needed to be known, responders usually ei-
ther lack an adequate frame of reference (ambiguity) or are confronted with multiple, 
conflicting interpretations and frames (equivocality). Decision makers can develop an 
adequate frame of reference or reduce the equivocality of multiple frames by making 
use of a variety of sources to notice what is going on around them, interact with others, 
and communicate with others to enable action. A well-designed EMDSS can provide 
the means for dealing with ambiguous or equivocal frames of reference [67].  

Having a common operating picture (knowledge base), the conditions for which 
must be developed before a crisis event, is essential for sharing information, coordina-
tion, focused action and support among different geographically diverse organizations 
and jurisdictions. While in reality, sense-making, decisions and actions are carried out 
at individual group levels according to roles and competencies, emergency manage-
ment without a common operating picture tends to revert to hierarchy as a means of 
control [41]. 

WaVE is an integrated support system that aggregates relevant hydrologic and ancil-
lary data, analyzes that data, and publishes the geoanalytic results using common-
ly-shared (yet providing user-defined customization) geovisualization platform and 
toolsets for flood event situational awareness and EMDSS (see Figure 7). 

3.2.2. Integrating Machine Learning for Enhancing River Flow Accuracy 
Accuracy and reliability of data are critical for decision makers, not only as a basis for 
making time-sensitive and effective choices, but also as factors that influence the level 
to which decision makers trust, adopt and use these tools. The next phase of develop-
ment of WaVE will likely integrate a hydrologic machine learning predictive model de-
veloped and tested by the authors (and currently under peer review for publication). 
This new model will interpolate and extrapolate streamflow and inundation data for 
gaged and ungaged catchment channels, and test, analyze and score the degree of both 
accuracy and uncertainty for results from other hydraulic models.  

Developed in collaboration with researchers from Microsoft and leveraging the latest 
Esri GIS hydrology and Microsoft Azure cloud computing technologies, this new pre-
dictive model (either standalone or integrated with WaVE) can: 
• Provide accurate and timely proxy streamflow data for inoperative streamgages (i.e., 
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offline or damaged during flood events).  
• Interpolate data from ungaged streams deemed to be similar to proximally indexed 

gaged streams. 
• Be used to identify the optimal locations for positioning physical streamgages.  
• Estimate streamflow in ungaged water catchments using datasets derived from sate- 

llites and other remote sensors. 
• Create a virtual streamgage historical index for interpolation of missing discharge 

data and extrapolation of forecasted discharge.  
• Compare and test runoff forecasts developed from WRF-Hydro and ECMWF mo- 

dels. 
Using cloud computing to compute billions of data elements, the model relies on 

machine learning to process (i.e., teach itself) and interpret large volumes (“big data”) 
of historic complex hydrologic information. The model uses this information to con-
struct a virtual dataset index of correlations and groups (clusters) of relationship corre-
lations between selected streamgages in a watershed and under differing flow condi-
tions. These estimates are continuously tested, scored and revised using multiple re-
gression analysis processes and methodologies. WaVE can then integrate this conti-
nually updated, forecasted and real-time streamflow data into its framework. 

Integrating this machine learning correlation indexing model enables WaVE to util-
ize large volumes of forecasted data to make more accurate predictions and better test 
local-downscaled inundation map models in the future. 

 

 
Figure 7. Integrating geospatial analytics, visualization and machine learning into WaVE’s com- 
mon operating picture framework and decision support toolset. Images courtesy of Esri. 
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3.2.3. Developing Satellite Remote Sensing to Derive Streamflow Data  
The United States has upwards of 8000 streamgages, yet there is a continued demand 
from water resource managers and flood emergency managers for more streamflow in-
formation, especially during a flooding event. Many streams and large portions of 
streams throughout the country lack in situ gauge measurement resources. In response 
to this lack of streamgage availability, Gleason [68] designed the At Many-stations Hy-
draulic Geometry (AMHG) model to derive streamflow discharge data estimates solely 
from multiple satellite imagery. This innovative computational riverine research is an 
example of RS application being developed to meet the demands of the quantity and 
quality of data required for WaVE framework integration. In the AMHG model, Glea-
son describes its functional research relationship to river streamflow by using RS and 
computational analytic river flow width (w), mean streamflow depth (d), and mean ve-
locity (v) in order to build a critical discharge (Q), where Q = wdv. Significant practical 
applications using this discharge data can be developed for the building of inundation 
maps with WaVE’s framework, by using RS discharge river datasets, building a histori-
cal indexing river (Q) dataset system, and then integrating new methodology applica-
tions outlined in the machine learning analysis. Three of the four watersheds hig-
hlighted in the case study section below used AMHG methodology for measuring river 
discharge which can then be used for building historical and actual inundation maps 
using the streamflow estimation methodology and WaVE framework. 

3.3. Study Regions: Testing Integration Analysis 

WaVE was studied and tested at watershed sites in four US geographical regions, cho-
sen for their diversity in topography, river geomorphology, climatic conditions, popu-
lation in the environs and the amount of available data from various hydrologic com-
putation models: 1) Southwest United States (Texas), 2) Central United States (Louisi-
ana), 3) Northwest United States (Idaho), and 4) the far north Arctic region (Alaska). 
The broad variety of local conditions in these settings belong to five of the ten main 
land cover classes by GlobCover [69] and represent four of the five types of climate 
classification (see Table 2) [70]. 
 
Table 2. Land cover & climate characteristics of watersheds. 

 Land cover (Peel) Climate (GlobCover) 

Texas: Colorado River watershed Sparse vegetation and crops, urban Arid 

Louisiana: Mississippi River  
at baton rouge region watershed 

Mosaic cropland or grassland,  
urban 

Temperate 

Idaho: Boise River watershed 
Closed to open forest, 

mosaic cropland or  
grassland, urban 

Cold 

Alaska: Tanana River watershed 
Closed to open forest, 

mosaic vegetation urban 
Polar 
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The three-phase process of Gathering, Processing and Performing, described in the 
methods section, was used to test WaVE in order to evaluate its capability and effec-
tiveness in downscaling data from a global, national and regional level to the local level 
(as close as possible, depending on data availability and spatial resolution of the under-
lying hydraulic model and DEM), with the goal of transforming this data into a visua-
lized local level flood inundation map. With the goal of eventually incorporating into 
WaVE other application models that derive discharge for forecasting purposes, two ad-
ditional models were tested: a machine learning hydrology estimation model and a sa-
tellite RS model. 

Texas: Colorado River Watershed Basin 
This Texas watershed basin has an arid climate with minimal seasonal rainfall, mixed 

sparse vegetation in the upper watershed, and irrigated crop vegetation. The region is 
directly impacted by irregular storms and hurricane events that can cause high flash 
floods in an area with a large population at the base of the watershed, threatening sig-
nificant property damage and loss of life. To help prevent or mitigate these flood risks, 
water managers and floodplain managers face the challenge of balancing reservoir sto-
rage levels and flood control systems.  

When WaVE was tested on the Colorado River watershed, it successfully downscaled 
the available data and produced a forecasted enhanced inundation map of the national 
and regional levels, but lacked adequate data to be able to downscale to the local level.  

Figure 8 depicts an example of the dynamic, interactive and time-sequential WaVE 
screenshots of the Colorado River watershed. They demonstrate streamflow estimation 
using 6 hour intervals over a 10-day occurrence highlighting the ability to simulate fo-
recasted streamflow with precipitation impact of national, state, regional, and partial 
local watershed regions. This same process, generating visual enhanced streamflow 
models, was also created on each of the other three watersheds with different outcomes. 

 

 
Figure 8. Plates created by WaVE demonstrating forecasted and real-time scaled levels of geos-
patial streamflow. Images courtesy of Esri and designed using ArcGIS 10.3 and Arc Hydro. 
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Louisiana: Mississippi River, Baton Rouge Regional Watershed 
A segment of the Mississippi River within the Baton Rouge regional watershed basin, 

located in the central-southern US, was selected for its temperate climate, mosaic vege-
tation, and the broad river basin’s high flood impact on local populations. Large vo-
lume water accumulation during rain runoff can result in high flood inundation, creat-
ing a flood hazard potential for the large number of residents, particularly in the Baton 
Rouge community.  

When WaVE was tested on the Mississippi River within the Baton Rouge watershed, 
the model successfully downscaled the available data and produced an enhanced inun-
dation forecast map at the national and regional levels, but lacked adequate data for 
downscaling to the local level. The two maps portrayed in Figure 9 are historically ac-
curate, localized inundation maps that have been verified by local flood officials at the 
end of the August 2016 flood event in Baton Rouge. Localized inundation maps like 
these were used to validate WaVE’s prediction of inundation in all four study regions. 

Idaho: Boise River Watershed 
The Boise River basin is located in the Northwest United States, west of the Rocky 

Mountains, with high mountain ranges and steep slopes east and north of the city of 
Boise. The land cover is closed-to-open forest and mosaic cropland. This watershed was 
selected for its combination of high flood inundation events caused by irregular season-
al rainfall that can occur in early spring; the melting of large accumulations of snow in 
the mountains creates high volumes of spring runoff that can result in flash floods that 
threaten the state capital’s large population and surrounding communities. In this wa-
tershed basin, water and floodplain managers have to balance water storage capacity for 
agriculture and water utilities with necessary flood control precautions and measures.  

When WaVE was tested on the Boise River watershed, it successfully downscaled the 
available data and produced a forecasted enhanced inundation map of the national and 
regional levels, but lacked adequate data and adequate DEM spatial resolution to be 
able to downscale to the local level. 

The images in Figure 10 highlight and demonstrate streamflow estimation using 6 
hour intervals over a 10 day occurrence, illustrating the ability to simulate forecasted 
streamflow with precipitation impact on a state and regional level. However, lack of 
high resolution datasets prevented WaVE from downscaling to the local level with the 
detail requested by emergency responders for the watershed region. This same process 
was implemented on each of the other three watersheds with different outcomes. 

The Boise River Watershed was specifically selected as part of this case study because 
of the availability of many years of informationally-rich, well-documented hydrology 
streamgage data for testing the machine learning methodology. Together with near 
real-time data, the historical data was measured and applied to acquire historical dis-
charge rates that could be utilized for flooding events like the August, 2016 Baton 
Rouge flood event when streamgages stopped transmitting and information was lost as 
a result of the flood.  

Although all four watersheds received preliminary testing for the machine learning  
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Figure 9. Flood inundation map of August 2016 Baton Rouge Regional Area. Images designed 
using ArcGIS 10.3 and Arc Hydro and the Federal Emergency Management Association (FEMA) 
datasets. 

 
process, the Boise River watershed provided the most complete data to utilize the me-
thodology. The Texas and Louisiana watersheds demonstrated adequate hydrological in 
situ data to use this methodology in the future. The Alaska Tanana River watershed 
lacks the necessary in situ discharge data at this time to use the machine learning me-
thodology. 
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Alaska: Tanana River Watershed 
The Tanana River watershed is a large, glacially-defined riverine system formed by 

numerous mountain ranges and arctic streams within the central part of Alaska. The 
region is characterized by a polar climate and land cover of closed-to-open forest with 
mosaic vegetation. This watershed was selected because of the complex flooding events 
caused by large amounts of snow runoff in the spring that flow into and meet with ice 
sheets in the Tanana River. Since much of the inland (non-coastal) Alaskan human 
population is located in the city of Fairbanks and within the Tanana River drainage ba-
sin, this frontier city is often threatened with the possibility of extensive riverine flood 
devastation (see Figure 11). 

 

 
Figure 10. Plates demonstrating WaVE forecast and pre and post flood inundation in 
downtown Boise. Images courtesy of Esri and designed using ArcGIS 10.3 and Arc Hydro 
and Google Map services. 

 

 
(a)                                         (b) 

Figure 11. (a) Aerial photo (provided by US Army Corps of Engineers) of the braided 
Tanana River outside Fairbanks. (b) Tanana River USGS Landsat imagery used to analyze 
and test the accuracy of AMHG model's river discharge estimates. 
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When WaVE was tested on the Tanana River watershed, it successfully used the 
available data to produce a broad national hydrology water map using both the WRF- 
Hydro and ECMWF. However, the lack of in situ discharge measurement tools pre-
vented the ability to gather the data needed to produce an enhanced inundation fore-
cast map at even the regional level for the Tanana River. Anticipating these limitations, 
the AMHG remote sensing application was used as another means of forecasting inun-
dation. Testing AMHG [12] parameters and cross-referencing the research on several 
of the lower latitude watersheds provided tangible research data for further investiga-
tion for the WaVE integration model.  

Data Analysis Methodology and Indicator and Agreement Comparison 
Analysis results are highlighted in Table 3. The need still exists to develop tools for 

gathering discharge data that will operate in this high northern latitude region. Apply-
ing the WaVE methodology to each case study region, a comparative and contrasting 
quantitative and qualitative measurement analysis was created by testing available da-
tasets within the full integration framework as a downscaling analysis (see Table 4). 

The quantitative measurement analysis, that was conducted, compared and corre-
lated the visualized map results of forecasted (pre-) integrated datasets and actual 
(post-) integrated datasets, and evaluated the available forecasting datasets and the 
downscaling process for each study region. Using Pearson linear correlation coefficient 
(r), the formula for testing and analyzing the forecasting (pre-) and actual inundation 
(post-) event dataset for each watershed basin is as follows: 

( )( )( ) ( ) ( )2 2
1 1 1

n n n
i i i ii i ir x x y y x x y y

= = =
= − − ÷ − −∑ ∑ ∑           (3) 

 
Table 3. WaVE—Forecasted data visualization downscaling analysis (Flood Inundation Map). 

Case Study National Regional Local 

Texas Yes Yes No 

Louisiana Yes Yes No 

Idaho Yes Yes No 

Alaska Yes Partial No 

 
Table 4. WaVE—Forecasted Data Visualization Analysis of (pre-) and (post-) dataset detection. 

 

Qualitative Quantitative 

Assessment Assessment 

Case Forecasting (pre-) (post-) Time-Series Correlation 

Study Downscaled effectiveness effectiveness Effectiveness Tested 

Texas Partial Yes Yes Yes 0.61/poor 

Louisiana Partial Yes Yes Yes 0.61/poor 

Idaho Partial Partial Yes Yes 0.41/poor 

Alaska Partial Partial Yes Partial 0.10/very poor 
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In this equation, (x) is the forecast dataset collection event, (y) the mean of the actual 
dataset (post-) collection event, ( x ) is the mean of (x), ( y ) is the mean of (y), and (n) 
is the time (in days) of a forecasting time scale event (Equation 3). Note: The forecast-
ing datasets for each tested watershed contain multiple variables and integration 
processes for each location, measurement, and time, are not evaluated for dataset quan-
tity. Therefore, testing with large quantity data methods, including root mean square, 
mean absolute error, and R-square error calculations was not performed on this re-
gional case study project at this time. 

Future application models for WaVE framework 
All four watersheds received preliminary testing for the hydrology machine learning 

prediction model for discharge analysis using in situ measurement data and the AMHG 
model for discharge analysis using RS measurement data. During a flooding event, pro-
viding estimated forecasting discharge data and integrated WaVE methodology, new 
estimated inundation map for first responders on a local level could be assessed. Table 
5 summarizes the test results of all four watersheds for both the authors’ hydrologic 
machine learning model (previously described) and the AMHG model [12]. 

4. Discussion 

The purpose of WaVE is to provide flood event decision makers with enhanced geoa-
nalytic visualization (common operating picture) and user-customized DS toolsets for 
contextualizing, making sense of and acting upon accurate and scalable hydrologic and 
ancillary flood data. The previously described case studies were conducted to test and 
demonstrate the functionality, reliability, and effectiveness of the WaVE framework 
and toolsets (including the use of machine learning for estimating proxy streamflow 
data) under diverse geomorphology, streamflow and flood-related conditions at na-
tional, regional and local levels. Results from these case studies highlight some of 
WaVE’s inherent strengths (both existing and potential), limitations, and the need for 
further development. 

4.1. Capabilities and Functional Validation 

Framework, downscaling, and visualization 
The primary goals of the case studies were to:  
 

Table 5. WaVE framework—forecasted data: using machine learning & AMHG for gauging river 
discharge and flood inundation maps. 

Case study Machine learning AMHG discharge Comments 

 
Discharge value Value 

 
Texas Partial Not tested More testing required 

Louisiana Partial Yes—0.91/very good Good long term dataset 

Idaho Good Yes—>0.80/good Good long term dataset 

Alaska No Yes—<0.20/poor Minimal gauges/braided river 
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• Input, aggregate, and prepare historical, real-time and forecasted data used in base- 
line analyses, models, estimate comparisons and tools. 

• Demonstrate the ability to downscale and utilize national precipitation, flood fore- 
casting, hydrography, and landscape topography datasets to the regional and local 
scale level (depending on DEM spatial resolution and availability of streamflow and 
inundation data). 

• Demonstrate the use of hydrologic machine learning to produce accurate stream- 
flow estimates that can be integrated into WaVE models. 

• Transform this downscaled data into visualized local-level flood inundation fore- 
casts and other useful actionable flood-related knowledge elements of where, when, 
and what. 

• Develop a precipitation, flood forecast visualization map for each of the watersheds 
and compare their output maps with some form of calibration for pre-, mid-, and 
post-processing integration of data sets for all technologies into functioning GIS 
platform characteristics for each of the watershed regions. 

• Demonstrate how other models and model results can be integrated into, analyzed 
and geospatially visualized using WaVE.  

Three of the case studies—Texas, Louisiana, and Idaho—provide clear parameters 
and datasets for a fully integrated test analysis for the WaVE framework as applied to 
different types of land use and local and regional roles in watershed flooding events. 
The fourth case study area—Alaska—was used to develop the data requirements. As 
discussed below, the lack of ground station measurements results in a limited availabil-
ity of streamflow data and highlights the importance of RS as a source of data. 

All six goals of the case studies were achieved to varying degrees according to the av- 
ailability, quality, and spatial resolution of the data. Overall, the results from the case 
studies indicate that WaVE can capably and effectively downscale forecast data, as well 
as transform that data on-the-fly into dynamic streamflow routing and inundation 
maps. Analysis of forecasted case study map results, compared and contrasted with ac-
tual flood inundation maps, demonstrated a medium to high correlation and degree of 
accuracy.  

Ubiquity, flexibility and extensibility 
Addressing fundamental limitations of existing flood visualization tools and EMDSS, 

WaVE was intentionally designed to use a standard and widely available software archi- 
tecture, together with a flexible and extensible framework that could be easily adapted 
to users’ needs and integrate their existing tools and data. The lack of ubiquitous, inte-
roperable, flexible and extensible systems and standardized data formats are primary 
reasons why many decision makers and communities either don’t acquire flood aware-
ness and EMDSS or are unable to effectively utilize existing programs. 

Which flood models and data acquisition methods are selected by users depends on 
many factors respective to those individual communities [71]. For some floodplain 
communities, current and traditional flood modeling methods demonstrate tolerable 
flood analyses, supportable technical complexity, acceptable cost effectiveness, and le-
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verage existing structures for in-place procedures. Acquisition and adoption of new 
technologies to build flood hazard prediction models may be unacceptable due to per-
ceived costs—additional time and training requirements, the restructuring of old pro-
grams, problems associated with the short-term loss of flood programs, accuracy issues 
of flood prediction tools, or even the increased cost of hiring new staff. Furthermore, 
for many practitioners, these models and tools simply are not seen as sufficiently ac-
cessible or useful to justify acquisition and adoption. This is due to the fact that these 
models and tools are generally computationally complex, data-intensive, and accessible 
only to the domain experts who build them, frame the issues, model the results, and de-
sign the products they’ve determined practitioners need [72]. Plus, for many users, ac-
cessing near real-time data is expensive and often cost-prohibitive.  

Other user groups are willing to undertake the transition because they perceive the 
realized and potential future benefits to be greater than short-term considerations and 
the cost of acquiring new emergency flood mapping resources or restructuring existing 
ones. For these groups, however, such a transition is complicated by the variances in 
user needs, availability of required data and resources, and limitations of satellite-based 
flood detection systems [18]. The frequent lack of data continuity from one region to 
another, the lack of historic flood images, and the poor quality of available data often 
result in poor coverage datasets. Disruptions of datasets often created by the use of dif-
ferent platforms and access points imagery by data providers further complicate flood 
map development.  

To address many of these limiting factors, the authors constructed WaVE to enable 
potential users to leverage already-owned and familiar building blocks of architecture, 
platform, framework, mapping and GIS tools. The core WaVE framework is built upon 
Esri ArcGIS (v. 10.3) and ArcHydro (v. 10.3) platforms and software architecture for 
three key reasons: 1) most potential US institutional users are decision makers at the 
federal, state and local government levels that already have Esri institutional licenses 
and ArcGIS–ArcHydro platforms and applications; 2) users’ existing programs and da-
tasets can be integrated into the full Esri suite; and 3) many hydrologic models (wheth-
er open source or proprietary) in current use or under development (e.g., WRF-Hydro, 
NHDPlus, RAPID, Tethys, USACE’s Hydrologic Engineering Center’s River Analysis 
System, HAND, etc.) are all built on top of Esri’s ArcGIS architectural platform. The 
worldwide GIS market is highly fragmented [73] and consists of a wide spectrum of 
open source, public and proprietary systems that often use incompatible, non-standar- 
dized platforms, data formats, etc. By contrast, ArcGIS, while owned by Esri, is the 
most common GIS mapping platform worldwide. 

WaVE is being designed in collaboration with Esri engineers to seamlessly integrate a 
suite of mapping, design and analytical tools, as well as to make the WaVE framework 
sufficiently interoperable and extensible in order to integrate or couple with other open 
source, public, or proprietary models and data sources. As part of the case study dem-
onstrations, various other models or their resulting datasets were integrated and tested 
with the WaVE framework.  
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Additionally, the case studies also show that WaVE’s framework accommodates data 
from newly-developing research models that use hydrologic machine learning and sa-
tellite RS imagery. These models interpolate or extrapolate estimated streamflow data 
in gaged and ungaged rivers, thereby providing valuable datasets of streamflow esti-
mates. This data can then be integrated into WaVE’s forecasting and prediction model 
and downscaled to the local level, expanding the possibility of developing new, accurate 
and predictive inundation maps. Although WaVE presently uses Microsoft’s Azure 
cloud computing platform, it is also compatible with other cloud services (e.g., Ama-
zon, Google, IBM, Oracle or open source), further illustrating WaVE’s flexibility and 
extensibility. 

4.2. Limitations 

While validating the overall WaVE framework and model, the case studies also hig-
hlighted WaVE’s inherent dependence on adequate historical streamflow and inunda-
tion forecast datasets and sufficiently high spatial resolution DEM and hydraulic model 
results for downscaling visualized data at the local level. 

Testing the WaVE model at different geospatial scales (e.g., regional or local) re-
quires high spatial resolution and detail of elevation and terrain, as well as adequate 
historical streamflow data. For some areas, there is neither sufficient data nor high 
enough resolution for adequate regional or local analysis and forecasts.  

Inadequate streamflow and inundation data 
Another significant limiting factor in the adoption and utility of contemporary hy-

draulic models and flood inundation maps is the lack of standardized and accurate 
streamflow and ancillary hydraulic data [18]. 

Severe climatic conditions or geographic inaccessibility in some regions greatly limit 
the ability to place and maintain a sufficient number of in situ streamgages for measur-
ing and recording quantitative data of river discharge. For example, many rivers in the 
Arctic, like the Tanana River, lack evenly-spaced in situ streamgages to gather quantita-
tive data of river discharge along the full flow of the watershed, thereby restricting the 
ability to provide advance warning of a flood event to the surrounding communities.  

In order to supply historical or real-time data estimates for gaged streams with non- 
transmitting gages or for ungaged streams, WaVE utilizes a new hydrologic streamflow 
estimation model to create proxy datasets by either interpolating missing data for inter- 
ruptions in streamgage datasets, or to extrapolate forecasted estimates using machine 
learning and correlation indexing. 

Another potential source of gathering critical streamflow data for ungaged rivers is 
remote sensing. RS is being researched as an alternative for measuring streamflow and 
forecasting flood inundation, but currently river discharge cannot be directly measured 
from any known satellite or airborne sensor. Gleason [12] created a systems model of 
measuring streamflow, highlighted in the case studies that estimated river discharge 
using sequenced remotely-sensed images of the river’s flow dynamics, physiographic 
characteristics, and computed geospatial and temporal measurement estimates. Glea-
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son’s analysis required no in situ measurements, but rather utilized hydraulic geometry 
that focused on river width, depth and other empirical parameters from remote sensed 
imagery to estimate measurements of log-linear velocity and discharge. This research 
process, now referred to as the “at-many-stations hydraulic geometry” (AMHG) model, 
was evaluated for potential integration into WaVE as an analysis tool. 

Challenge for localized data downscaling 
A second primary goal of WaVE—effectively scaling flood inundation and stream-

flow mapping down to a local level, whereby a first responder can accurately determine 
the extent and depth of inundation at any point along a stream—requires higher spatial 
resolution and detail of elevation, terrain, and streamflow data than what is currently 
available in most locations.  

While insight at national and regional levels is useful for analyzing trends, it is often 
of relatively little use to local decision makers who need accurate real-time or nearly 
real-time information at the local scale to both anticipate and prepare for flood events, 
as well as tailor mitigation actions and responses.  

The focus of research and the availability and spatial scale of data related to RS has 
shifted from global and national to regional and, increasingly, local. While moderate 
resolution imaging and passive microwave satellite observation datasets are valuable 
sources of land surface hydrological information, more frequent and quickly accessed 
and processed satellite images are needed to evaluate RS as a reliable and effective 
source of data for analysis and mapping. Combining remotely sensed data with ground- 
based information provides a more comprehensive overview than just in situ stream-
gage data of the holistic watershed, including landscape topography, geology, watershed 
drainage, soil moisture, visual history of changes in river water flow drainage, and va-
riables due to weather and seasonal changes [74]. Of the two RS methods, satellite im-
agery from SAR platforms is seen as superior for showing and measuring repeatability 
of land change awareness, whereas lidar technology toolsets are preferred for achieving 
local ground awareness [75].  

Currently only a small percentage of the surface elevation of the US (lower 48 
states) has been digitally mapped using lidar, and an even smaller percentage of the 
country (most of that in Alaska) has been digitally mapped using IfSAR [76]. A small 
percentage of the lidar-mapped surface is mapped at a high enough spatial resolution 
for effective down-scaling and localization. As higher resolution data becomes availa-
ble, WaVE will be able to provide localized mapping with greater accuracy and granu-
larity. 

4.3. Further Research and Development 

The research and testing of WaVE has revealed that in order for this framework to de-
liver downscaled, localized, predictive, and high resolution inundation maps for emer-
gency responders and flood managers, higher quality streamflow, elevation and remote 
sensed data are needed.  

Additional studies are planned for testing the WaVE model at the local level as high-
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er resolution digital elevation data becomes available. In order to accomplish this, the 
following research and development will be essential: 
• The systematic gathering of more complete elevation data and higher quality 

topographic data. This will require federal, state and local engagement. One exam- 
ple is the USGS 3DEP initiative currently being developed to systematically collect 
enhanced elevation data using lidar and IfSAR.  

• Further testing and integration of the hydrological machine learning model into 
WaVE, providing predictive datasets for streams that are ungaged or with gages that 
have stopped transmitting streamflow data.  

• Expanding the testing of AMHG as an integrated model for generating streamflow 
estimates for ungaged rivers. These estimates can then be processed by WaVE’s ma- 
chine learning correlation indexing to generate water discharge datasets. 

5. Conclusions 

There is a growing consensus among the academic, policy and practitioner communi-
ties regarding the need for accurate, scalable, and highly granular geospatial and ana-
lytic data at the local level for flood event situation awareness and EMDSS. Further-
more, there is also a general agreement about the need for decision makers to be able to 
easily access that information in a timely fashion, quickly make sense of all the salient 
issues related to the flood event, and share that knowledge within a common operating 
picture with other decision makers in geographically distributed organizations and ju-
risdictions. 

WaVE addresses this need with an integrated support system that provides enhanced 
geoanalytic visualization (common operating picture) and DS toolsets. To achieve this, 
WaVE aggregates relevant hydrologic and ancillary data, analyzes that data, and pub-
lishes the geoanalytic results using a commonly-shared, yet user-customizable, geovisu-
alization framework and toolsets for flood event situational awareness and EMDSS. 

Four case studies were conducted to test and validate the WaVE framework and 
toolsets under diverse conditions at national, regional and local levels. Results from 
these case studies highlight some of WaVE’s inherent strengths, limitations, and the 
need for further development. WaVE has the potential for being utilized on a wider ba-
sis as data becomes available and models are validated for converting satellite images 
and data records from RS technologies into accurate streamflow estimates and higher 
resolution digital elevation models. 
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