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Abstract 
 
Land cover (LC) and land use (LU) dynamics induced by human and natural processes play a major role in 
global as well as regional patterns of landscapes influencing biodiversity, hydrology, ecology and climate. 
Changes in LC features resulting in forest fragmentations have posed direct threats to biodiversity, endan-
gering the sustainability of ecological goods and services. Habitat fragmentation is of added concern as the 
residual spatial patterns mitigate or exacerbate edge effects. LU dynamics are obtained by classifying tem-
poral remotely sensed satellite imagery of different spatial and spectral resolutions. This paper reviews five 
different image classification algorithms using spatio-temporal data of a temperate watershed in Himachal 
Pradesh, India. Gaussian Maximum Likelihood classifier was found to be apt for analysing spatial pattern at 
regional scale based on accuracy assessment through error matrix and ROC (receiver operating characteristic) 
curves. The LU information thus derived was then used to assess spatial changes from temporal data using 
principal component analysis and correspondence analysis based image differencing. The forest area dy-
namics was further studied by analysing the different types of fragmentation through forest fragmentation 
models. The computed forest fragmentation and landscape metrics show a decline of interior intact forests 
with a substantial increase in patch forest during 1972-2007. 
 
Keywords: Land Cover, Algorithms, ROC Curve, Spatial Change, Correspondence Analysis, 
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1. Introduction 
 
Landscape refers to a portion of heterogeneous territory 
composed of sets of interacting ecosystems and are cha- 
racterised essentially by its dynamics that are partly gov-
erned by human activities. The physical state of the 
earth's immediate surface in terms of vegetation, soil, 
water, and human-made structures (e.g. buildings) at any 
instant of time constitute land cover (LC). Land use (LU) 
refers to the way humans and their habitat use land re-
sources, usually with assent on the functional role of land 
for economic activities. LC changes in the recent times 
have influenced economics, environment, culture, and de- 
mography at regional levels. Consequences of LC changes 
such as forest fragmentation pose serious threats to bio-
diversity and endanger the sustainability of ecological 
goods and services. The change in LC and LU types can 
be obtained from multi-satellite sensor spatio-temporal 
data using efficient classification algorithms and pattern 

recognition techniques [1]. The classification algorithms 
can either be unsupervised or supervised. In the former, 
no training data is utilised for classification. Instead the 
classifiers examine the unknown pixels in an image and 
aggregate them into comparatively well-separated spec-
tral classes based on the natural groupings or clusters. In 
the latter case, the analyst has training data which is used 
to train the classifier and also the outcome of the classi-
fication is validated with the independently collected test 
data.  

Numerous statistical classification algorithms exist, 
each one having a genesis behind its evolution. Depend-
ing on the nature of the data sources and methodology, 
multi-source, multi-sensor, multi-temporal, multi-frequency 
or multi-polarisation data are being used [2-4]. In most 
of the cases, the algorithms perform well with high de-
grees of accuracy, however, in an undulating terrain, 
where there is a large variation in spectral response due 
to high relief and shadow, the performance of a classifier 
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deteriorates. Another major problem with these classifi-
ers is their inability to classify data at different meas-
urement scales and units due to invalid assumptions of 
statistical distributions. Temporal analysis of the spatial 
data provides an idea of the extent of changes happening 
in the landscape. LU details derived from temporal re-
mote sensing (RS) data offer potential for assessing the 
changes in land uses, forest fragmentation and its impact 
on biodiversity, economics, greenhouse gas emission and 
hydrology. Spatial LU maps indicate only the location and 
type of forest, and further analyses are needed to quantify 
forest fragmentation. Hence, fragmentation of forests was 
assessed to understand the implication of temporal dy-
namics on forest habitats. Forest fragmentation is the 
process whereby a large, contiguous forest is both re-
duced in area and divided into two or more fragments. 
The decline in size of the forest and the increasing isola-
tion between the two remnant patches of the forest has 
been the major cause of declining biodiversity [5]. The 
primary concern is direct loss of forest area, and all dis-
turbed forests are subject to “edge effects” of one kind or 
another. Forest fragmentation is of additional concern, 
insofar as the edge effect is mitigated by the residual 
spatial pattern [6]. In this context, objectives of this 
communication is to  

1) evaluate the performance of the different classifica-
tion techniques (for land use analysis). 

2) analyse the landscape dynamics using temporal RS 
data. 

3) model the forest fragmentation in the landscape. 
 
2. Materials and Methods 
 
2.1. Data 
 
Survey of India (SOI) toposheets of 1:50000 and 
1:250000 scales were digitised to derive base layers. 
Ground control points (GCPs) for geo-rectification and 
training data for supervised classification of RS data 
were collected through field investigations using a hand-
held GPS. Google Earth data (http://earth.google.com) 
were used pre and post classification and also for valida-
tion. The RS data used for the study are Landsat MSS 
(79 m, 4 bands, acquired: November 15, 1972), Landsat 
TM (30 m, 6 bands, acquired: October 9, 1989), Landsat 
ETM+ (30 m, bands 1 - 5 and 7, band 8 - Panchromatic 
of 15 m, acquired: October 15, 2000) and IRS LISS-III 
(23.5 m, 3 bands, acquired: May 9, 2007). Landsat data 
were downloaded (from http://glcf.umiacs.umd.edu/data/) 
and IRS data were procured from National Remote 
Sensing Centre, Hyderabad, India. Bands were geocor-
rected with the known GCP’s, and projected to geo-
graphic latitude-longitude with WGS-84 datum, followed 

by masking and cropping of the study area. Landsat data 
(of 1972) were resampled to 60 m, Landsat TM data of 
1989 and IRS LISS III were resampled to 15 m using 
nearest neighbourhood technique. 

Study area: Moolbari watershed is situated in Shimla 
district, Himachal Pradesh, India as a part of Yamuna 
river basin and encompasses an area of 13.41 sq. km. 
from 31.07 - 31.17˚N 77.05 - 77.15˚E (Figure 1). The 
altitude ranges from 1400 - 2000 m amsl. 

The vegetation in Moolbari is of mid-temperate com-
prising mixed deciduous (up to 1500 m) and sub-tropical 
pine forest (above 1500 m) in two different altitudinal 
ranges. There are reserve forests managed by state forest 
department, insofar cutting of trees is prohibited. How-
ever, lopping and collection of fallen wood for household 
purposes by the villagers are noted. 
 
2.2. Methods 
 
The methods adopted in the analysis involve principal 
component analysis (PCA) based fusion, Land cover 
(LC), Land use (LU) analysis, change detection and for-
est fragmentation analysis. 
 
2.2.1. Image Fusion 
This was done using PCA fusion to increase the spatial 
resolution of multichannel image by introducing an im-
age with a higher resolution. PC analysis was performed 
separately on the 6 bands of Landsat TM of 1989 (of 
spatial resolution 15 m) and 4 bands of Landsat MSS 
data of 1972 (of spatial resolution 60 m). PC1 of Landsat 
TM 1989 was stretched to have same mean and variance 
as that of PC1 of Landsat MSS using equation 1 [7]. 

 _
ref

new image old old ref
old

DN DN


 


       (1) 

where DNnew_image is the image that has same mean and 
variance as that of principal component (PC) 1 of Land-
sat MSS, μref and σref refers to the mean and standard 
deviation of PC1 of Landsat MSS. DNold, μold and σold 
represent the digital number, mean and standard devia-
tion of PC1 of Landsat TM (1989). 

PC1 of Landsat MSS was replaced with PC1 of higher 
resolution Landsat TM of 1989 as it contains the infor-
mation which is common to all bands while the spectral 
information is unique for each band. PC1 accounts for 
maximum variance which can maximise the effect of the 
high resolution data in the fused image. Finally, 
high-resolution multispectral images were determined by 
performing the inverse PCA transformation. Similarly, 
Panchromatic band at 15 m resolution was fused with the 
6 bands (at 30 m) of Landsat ETM+ (2000). With this, 
the RS data corresponding to 4 time periods were at a 
uniform spatial resolution of 15 m for easy analysis, con- 
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Figure 1. Moolbari watershed. 
 
sistency and multi-date pixel to pixel comparison. These 
data were used subsequently for LU classification and 
spatial change analysis. 

 
2.2.2. Land Cover (LC) 
NDVI was computed to segregate regions under vegeta-
tion, soil and water using NIR and Red bands of tempo-
ral data. 
 
2.2.3. LU Classification 
The classification techniques evaluated on temporal data 
(with diverse spatial and spectral resolutions) are: Gaus-
sian Maximum Likelihood Classifier (GMLC), Mini-
mum distance to means, Mahalanobis distance, Paral-
lelepiped and Binary Encoding (BE). 

1) GMLC—It quantitatively evaluates both the vari-
ance and covariance of the category spectral response 
patterns when classifying an unknown pixel [8], assum-
ing the distribution of data points to be Gaussian. The 
distribution of a category response pattern can be com-
pletely described by the mean vector and the covariance 
matrix. The statistical probability of a given pixel value 
being a member of a particular class are computed. After 
evaluating the probability in each category, the pixel is 
assigned to the most likely class (highest probability 
value). 

2) Minimum distance to Means—Here, the mean spec-
tral value in each band for each category is determined 

[8,9]. These values comprise the mean vector for each 
category. A pixel of unknown identity may be classified 
by computing the distance between the value of the un-
known pixel and each of the category means. After 
computing the distances, the unknown pixel is assigned 
to the closest class. 

3) Mahalanobis distance—When the covariance ma-
trices for all of the classes are identical but otherwise 
arbitrary [1,10], samples fall in hyperellipsoidal clusters 
of equal size and shape, the cluster for the ith class being 
centred about the mean vector μi. The optimal decision 
rule to classify a feature vector x would be to measure 
the squared Mahalanobis distance    1t

i i   x x  
from x to each of the mean vectors, and assign x to the 
closest category.  

4) Parallelepiped classifier—Parallelepiped classifier 
[11] is a multidimensional analogy of the box classifier 
[12]. It allows multi-dimensional boxes that are used for 
multispectral bands. Each box in the parallelepiped clas-
sifier is formed by the maximum (max.) and minimum 
(min.) values in each training class data in each band. 
For multispectral bands, the parallelograms will be ob-
tained. The sensitivity or category variance is introduced 
by considering the range of values in each category 
training set defined by the highest (max.) and lowest 
(min.) digital number in each band. An unknown pixel is 
classified according to the decision region in which it lies 
[8]. The class signatures come from the analyst defined 
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training sites. A pixel is classified as a member of a class 
if and only if all of its band information or signature falls 
within the corresponding ranges of the bands defined by 
that class.  

5) BE—The most primitive and natural preprocessing 
of spectral data for qualitative identification is binary 
(one bit) encoding [13,14]. Hamming distance, which is 
the binary equivalent of the Euclidean distance, is used 
as a dissimilarity metric. The vector for an individual 
spectrum represents a point in hamming space with unit 
edge in a hypercube. Since only 0 and 1 are assigned to 
peak intensities, all of the spectral points lie only on the 
corners (vertices) of the hypercube. Hamming distance 
between two spectral points is equal to the number of 
mismatches between the binary encoded data vectors 
(spectra) being compared and is the same as the result 
obtained by application of the logical exclusive OR op-
erator (XOR) to the two spectra. 

Accuracy assessment of these techniques was done 
using error matrix and receiver operating characteristic 
(ROC) curves to choose the best classifier.  
 
2.2.4. LU Change Detection 
This is performed by change/no-change recognition fol-
lowed by boundary delineation on images of multi time 
periods [15]. Changes across a period of 35 years were 
analysed through PCA, correspondence analysis (CA) 
and Normalised Difference Vegetation Indices (NDVI) 
differencing based change detection.  

1) PCA—PCA is effective for change detection [16,17] 
and is implemented on bi-temporal multispectral images. 
The major components of the time two image are sub-
tracted from the corresponding components of the time 
one image to obtain differences related to changes in LU. 
Changes are detected at the lower-end and higher-end 
tails of the PC difference image pixels distribution histo-
gram. 

2) CA transformation—In CA [18], data table is 
transformed into a table of the contribution using Pear-
son chi-square statistic. Pixel (xij) values are initially 
converted to proportions (pij) by dividing each pixel (xij) 
value by the sum (x++) of all the pixels in the data set. 
This threshold in a new dataset of proportions (Q) with 
the size of (rxc). Row weight pi+ is equal to xi+/x++, where 
xi+ is the sum of values in row i. Vector [pi+] is of size (r). 
Column weight p+j is equal to x+j/x++, where x+j is the sum 
of values in column j. Vector [p+j] is of size (c). The 
Pearson chi-square statistic χ2

p, is a sum of squared χij 
values, computed for every cell ij of the contingency 
table. qij values were used instead of χi values to form the 

matrix r cQ   so that ij ijq x   and eigenvalues 

would be smaller than or equal to 1. Multispectral data 
are then transformed into the component space using the 

matrix of eigenvectors. Image differencing is applied to 
CA components to perform change detection.  

3) NDVI differencing—In NDVI differencing [19,20], 
areas of change can be identified through the subtraction 
of the NDVI image of one date from the NDVI image of 
another date. However, NDVI technique produces lim-
ited discriminating abilities in areas less dominated by 
vegetative ground cover types. 
 
2.2.5. Forest Fragmentation 
Forest fragmentation analysis was done to quantify the 
type of forest in the study area-patch, transitional, edge, 
perforated, and interior based on the classified images. 
Additionally, landscape metrics were computed to un-
derstand the fragmentation process at a patch and class 
level. These metrics along with the state of the forest 
fragmentation index was used to quantify and investigate 
the fragmentation process.  

Forest fragmentation statistics and the total extent of 
forest and its occurrence as adjacent pixels is computed 
through fixed-area windows surrounding each forest 
pixel, which is used to classify the window by the type of 
fragmentation. The result is stored at the location of the 
centre pixel. Thus, a pixel value in the derived map re-
fers to between-pixel fragmentation around the corre-
sponding forest location [21]. Forest fragmentation cate- 
gory at pixel level is computed through Pf (the ratio of 
pixels that are forested to the total non-water pixels in 
the window) and Pff (the proportion of all adjacent (car-
dinal directions only) pixel pairs that include at least one 
forest pixel, for which both pixels are forested.) Pff esti-
mates the conditional probability that given a pixel of 
forest, its neighbour is also forest. Based on the knowl-
edge of Pf and Pff [21], six fragmentation categories: (1) 
interior, when Pf = 1.0; (2) patch, when Pf < 0.4; (3) 
transitional, when 0.4 < Pf < 0.6; (4) edge, when Pf > 0.6 
and Pf – Pff > 0; (5) perforated, when Pf > 0.6 and Pf – 
Pff < 0, and (6) undetermined, when Pf > 0.6 and Pf = Pff 
are mapped.  

Based on these forest fragmentation indices, Total for-
est proportion (TFP: ratio of area under forests to the total 
geographical extent excluding water bodies), weighted 
forest area (WFA) and Forest continuity (FC) are com-
puted. TFP provides a basic assessment of forest cover in 
a region ranging from 0 to 1. Weighted values for the 
weighted forest area (WFA) are derived from the median 
Pf value for each fragmentation class as given by Equa-
tion (2) below: 

 
  

   

WFA 1.0 interior

0.8 perforated edge undertermined

0.5 transitional 0.2 patch

 

   

   

  (2) 
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weighted forest area
FC

total forest area

area of largest interior forest patch

total forest area




   (3) 

TFP designations are as per Vogelmann (1995) [22] 

and Wickham et al. (1999) [23]. Forest fragmentation 
become more severe as forest cover decreases from 100 
percent towards 80 percent. Between 60 and 80 percent 
forest cover, the opportunity for re-introduction of forest 
to connect forest patches is the greatest, and below 60 
percent, forest patches become small and more frag-
mented. The FC regions were evenly split and designated 
as high forest continuity (above 0.5) or low forest conti-
nuity (below 0.5). FC value examines only the forested 
areas within the analysis region. The rationale is that 
given two regions of equal forest cover, the one with 
more interior forest would have a higher weighted area, 
and thus be less fragmented. To separate further regions 
based on the level of fragmentation, the weight area ratio 
is multiplied by the ratio of the largest interior forest 
patch to total forest area for the region. FC ranges from 0 
to 1. 
 
3. Results and Discussion 
 
NDVI was computed with the temporal data of 1972, 
1989, 2000 and 2007 for land cover analysis to delineate 
area under green (agriculture, forest and plantations/or- 

chards) and non-green (built up land, waste/barren rock 
and stones). This shows the reduction of region under 
vegetation by 5.59% during three decades.  

Further analyses of four datasets were done using It-
erative Self-Organising Data (ISO data) [24,25] cluster-
ing to understand the number of probable classes. It in-
dicated that mapping of the classes could be done accu-
rately, giving an overall good representation of what was 
observed in the field. Initially 25 clusters were made, and 
clusters were merged one by one to produce a map with 
three distinct classes: forest, agriculture and barren land 
that were the dominant categories in the study area. Sig-
nature separability of the LU classes was done using 
Transformed divergence (TD) matrix and Bhattacharrya 
(or Jeffries-Mastusuta) distance and spectral graphs (Fi- 
gure 2). Both the TD and Jeffries-Mastusuta measures 
are real values between 0 and 2, where ‘0’ indicates 
complete overlap between the signatures of two classes 
and ‘2’ indicates a complete separation between the two 
classes. Both measures are monotonically related to clas-
sification accuracies. The larger the separability values, 
the better the final classification results. The possible 
ranges of separability values are 0.0 to 1.0 (very poor); 
1.0 to 1.9 (poor); 1.9 to 2.0 (good). Very poor separabil-
ity (0.0 to 1.0) indicates that the two signatures are statis-
tically very close to each other [26]. Figure 2 shows that 
all the classes are well separable except barren and agri-
culture in band 4 of Landsat TM/ETM and IRS LISS-III 
data.  

 

 

Figure 2. Spectral signature separability for various sensor data. 
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Supervised classification was performed for land use 

analysis based on the training data uniformly distributed 
representing / covering the study area using the five al-
gorithms. GMLC output is shown in Figure 3. The error 
matrix [27] is given in Table 1 and ROC curves [28] 
were plotted for each class (Figure 4) to assess the ac-
curacy of the classified data. 

ROC curve helped in visualising the performance of a 
classification algorithm as the decision threshold could 
be varied algorithm-wise for each class. The best possi-

ble classification would yield a point in the upper left 
corner or coordinate (0,1) of the ROC space, represent-
ing 100% sensitivity (all true positives are found) and 
100% specificity (no false positives are found). The (0,1) 
point is also called a perfect classification. A completely 
random guess would give a point along a diagonal line 
(line of no-discrimination) from the left bottom to the top 
right corners. The diagonal line divides the ROC space in 
areas of good or bad classification. Points above the di-
agonal line indicate good classification results, while points 

 

 

Figure 3. GMLC based LU classification using (a) Landsat MSS, 1972, (b) Landsat TM, 1989, (c) Landsat ETM, 2000 and (d) 
IRS LISS-III, 2007. 

 

 

Figure 4. ROC curves for [a] Forest (1972); [b] Agriculture (1972); [c] Barren (1972); [d] Forest (2007); [e] Agriculture 
(2007); [f] Barren (2007) for the five different classifiers. 
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Table 1. Overall accuracy and kappa statistics for each classifier (OA - Overall Accuracy). 

1972 1989 2000  2007 
Algorithm 

OA Kappa OA Kappa OA Kappa  OA Kappa 

GMLC 88.95 0.84 88.52 0.85 80.85 0.76  88.36 0.83 

Mahalanobis distance 84.41 0.76 77.78 0.74 80.66 0.77  72.27 0.69 

Minimum distance 79.66 0.75 86.33 0.79 76.53 0.59  85.01 0.81 

Parallelepiped 82.55 0.74 77.33 0.73 56.70 0.53  76.66 0.72 

BE 75.16 0.68 86.00 0.81 61.20 0.56  79.73 0.68 

 
below the line indicate wrong results [29]. 

There is a good agreement between results obtained 
from error matrix and ROC curves to the ranking of the 
performance of the classification algorithms. They indi-
cate that GMLC is the best performing algorithm for dif-
ferent sensor datasets (Table 2). This conventional per- 
pixel, spectral-based classifier constitutes a historically 
dominant approach to RS-based automated LU and LC 
derivation [30,31]. In fact, this aids as “benchmark” for 
evaluating the performance of novel classification algo-
rithms [32]. 

Results of all these algorithms are valid only for the 
particular architecture or parameter settings tested al-
though there may be other architectures that offer better 
performance. Selection of parameters is done based on 
the training data, evaluation, and test set methodology. 
Finally, for one particular application, the best way to 
select a classifier and its operational point is to use the 
Neyman-Pearson method of selecting the required sensi-
tivity and then maximising the specificity with this con-
straint (or vice versa). The spectral signature curve for 
IRS LISS-III shows confusion between barren and agri-
culture. A similar result was obtained in the Jeffries-Ma- 
tusita matrix with the separability values of 1.4 (poor 
separability). This was also observed while performing 
the clustering on LISS-III data. 

The analysis showed GMLC to be better among the 
five algorithms. However, the successful application of 
GMLC is dependent upon having delineated correctly the 
spectral classes in the image data of interest. This is nec-
essary because each class is to be modelled by a normal 
probability distribution. GMLC can obtain minimum 
classification error under the assumption that the spectral 
data of each class is normally distributed. The disadvan-
tage is that it require its’ every training set to include at 
least one more pixel than the number of bands. If a class 
happens to be multimodal, and this is not resolved, then 
clearly the modelling cannot be very effective. Maha-
lanobis distance is similar to any other statistical classi-
fier and uses Mahalanobis distance as a metric. It takes 
into account errors associated with prediction measure-
ment such as noise, by using the feature covariance ma-
trix to scale features according to their variances. This 

classifier performed well on 1972 and 2000 images. Mi- 
nimum distance to Means is mathematically simple and 
computationally efficient. However, it has more error of 
omission and commission. It is insensitive to different 
degrees of variance in spectral response data. Therefore 
it should not be used where spectral classes are close to 
one another in the measurement space and have high 
variance. Although Parallelepiped algorithm did not per-
form very well, it is known for its good computational 
speed. When pixels are within overlapped region of par-
allelogram, then it may perform unsatisfactorily as pixels 
will end up unclassified and lead to error of omission. 
BE did not perform very well for any dataset. However, 
this technique has been reported useful for high spectral 
resolution data where high-speed spectral signature 
matching is required. In order to effectively use this tech-
nique for spectral clustering, one must account for spectra 
which are relatively flat and devoid of absorption fea-
tures.  

Spatial change in LU pattern from 1972 to 2007 is 
shown in Table 3. There is a decline of forest patches 
(48%) during the last three decades due to increasing 
agricultural practices. Agricultural area has significantly 
increased from 264 hectares (1972) to 779 hectares 
(2007). Barren area has increased by 23% (during 1972 to 
2000). Barren land mainly constitutes the rocks, stones, 
and built ups. However, the proportion of barren land in 
2007 is less compared to earlier classified images as 
some pixels corresponding to barren areas with grass 
cover showed similar spectral aspects as agriculture, 
which can be ascertained from Figure 5. 

Difference of temporal PCs, CA-PC’s, NDVI images 
and bands (rescaled from –1 to 1) showed similar results. 
To see the change in forest and agriculture, the NIR band 
of 1972 (T1) and 2007 (T2) were used which have the 
advantage of highlighting vegetation pixels because of 
the maximum reflectance by the green plants. The two 
NIR bands were first normalised by subtracting the im-
age minimum and dividing by the image data range. 
Normalised temporal maps were then subtracted (T2 – 
T1) to see the absolute change in pixel values and were 
then converted to relative difference map with values 
ranging from –1 to +1 with 0 representing no change, –1 
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Table 2. Ranking of algorithms based on overall accuracy. 

Rank 1972 1989 2000 2007 

1 MLC MLC MLC MLC 

2 Mahalanobis 
Min. dist. To 
mean 

Mahalanobis 
Min. dist. To 
mean 

3 Parallelepiped 
Binary  
Encoding 

Min. dist. To 
mean 

Binary 
Encoding 

4 
Min. dist. To 
mean 

Mahalanobis 
Binary 
Encoding 

Parallelepiped

5 
Binary 
Encoding 

Parallelepiped Parallelepiped Mahalanobis 

 
Table 3. LU change from 1972, 1989, 2000 and 2007. 

Year Area Forest Agriculture Barren 

Ha 925 264 152 
1972 

% 68.97 19.67 11.35 

Ha 706 398 229 
1989 

% 52.97 29.84 17.18 

Ha 591 555 187 
2000 

% 44.37 41.63 14.00 

Ha 474 779 88 
2007 

% 35.38 58.08 6.54 

 

 

Figure 5. FCC of Landsat MSS (1972), Landsat TM (1989), 
Landsat ETM (2000) and LISS-III (2007). FCC of 2007 
shows similar reflectance of barren/stone and agricultural 
patch leading to confusion between these two classes. 

representing negative change and positive values repre-
senting increase in the value of the digital number of 
pixels from 1972 to 2007. 

In both the images of the non-standardized PCA, PC1 
had the highest information having all bands with un-
equal variances. CA puts less emphasis on bands that 
have low polarisation. Higher is the importance given to 
that band in the calculation of the between-pixel dis-
tances if more number of pixels are polarised in a band. 
First two components of CA explained approximately 
99% of the total inertia in both images (Table 4). Total 
inertia is a measure of how much the individual pixel 
values are spread around the centroid. 

Detailed change detection tabulation was done be-
tween two classified images of 1972 and 2007. The 
analysis focuses primarily on the initial state classifica-
tion changes—that is, for each initial state class (in 1972), 
it identifies the classes into which those pixels changed 
in the final state image (in 2007). Changes are reported 
as pixel counts, area and percentages in Table 5 that list 
the initial state classes in the columns and the final state 
classes in the rows for the paired initial and final state 
classes. The rows contain all of the final state classes 
(2007) which are required for complete accounting of the 
distribution of pixels that changed classes.  

For each initial state class (i.e., each column), the table 
indicates how these pixels were classified in the final 
state image. In Table 5, 18209 pixels (410.55 ha) ini-
tially classified as forest (in 1972) changed into agricul-
ture class in the final state image (2007). 23025 pixels 
were classified as forest in the initial state image (in 
1972). The Class Total Row indicates the total number of 
pixels in each initial state class, (42370 in the Forest 
column = 23025 + 18209 + 1136, similarly there are 
10350 pixels in agriculture and 6759 pixels in barren 
class) in 1972. The Class Total Column indicates the 
total number of pixels in each final state class (29361 
pixels were classified as agriculture in the final state im-
age).  

The Row Total Column is simply a class-by-class 
summation of all the final state pixels that fell into the 
selected initial state classes. Sometimes this may not be 
the same as the Class Total Column (i.e. final state class 
total) because it is not required that all initial state 
classes be included in the analysis. For example, if there 
was a fourth class “water” in 1972 and were absent in 
2007 classified image or not considered while classifica-
tion then the Row Total Column would not be equal to 
Class Total Column because total number of pixels in 
any final state class will not be equal to summation of all 
the final state pixels in that class. The difference in the 
Row Total Column and Class Total Column are due to 
those pixels. However, in the present case, Row total 
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Table 4. Eigen structure of 1972 and 2007 data after PCA and CA transformation. 

 Landsat MSS (1972) IRS LISS-III (2007) 

 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 

Band 1 0.3175 0.3370 0.8863 –0.3589 0.5657 0.7424 

Band 2 0.5484 0.6973 –0.4616 –0.4747 0.5742 –0.6670 

Band 3 0.7736 –0.632 –0.0366 0.8037 0.5918 –0.0624 

Eigenvalues 168.50 9.3156 0.9892 2.9085 1.5724 0.0291 

Proportion 94.23 5.20 0.57 64.49 34.87 0.64 

PCA 

Cumulative 94.23 99.43 100 64.49 99.36 100 

 Landsat MSS (1972) IRS LISS–III (2007) 

 Comp1 Comp2 Comp3 Comp1 Comp2 Comp 3 

Band 1 0.5155 0.8569 0.00001 0.6710 0.1153 0.7325 

Band 2 0.6059 –0.365 0.7071 0.6866 0.2762 –0.6725 

Band 3 0.6059 –0.365 –0.7071 0.2799 –0.9541 –0.1061 

Eigenvalues 0.2681 0.0119 –0.0001 0.2595 0.0765 0.0040 

Proportion 95.71 4.25 0.036 76.32 22.5 1.176 

Correspondence 
Analysis 

Cumulative 95.71 99.96 100 76.32 98.82 100 

 
Table 5. LU change detection statistics (1972 to 2007). 

Initial State (1972) 

  Forest Agriculture Barren Row Total Column Class Total Column 

Pixels 23025 1924 1797 26766 26766 

Area (ha) 519.13 43.38 40.52 603.03 603.03 
 

Forest 

Percent 38.71 3.23 3.02 44.96 44.96 

Pixels 18209 6993 4159 29361 29361 

Area (ha) 410.55 157.66 93.77 661.99 661.99 
 

Agriculture 

Percent 30.61 11.76 6.99 49.36 49.36 

Pixels 1136 1436 803 3375 3375 

Area (ha) 25.61 32.38 18.12 76.09 76.09 
 

Barren 

Percent 1.91 2.41 1.35 5.67 5.67 

Pixels 42370 10350 6759   

Area (ha) 955.29 233.42 152.39   
Class Total 

Row 

Percent 71.23 17.41 11.36   

Pixels 19345 3357 5956   

Area (ha) 436.16 75.76 134.27   
Class 

Changes 
Row 

Percent 32.52 5.65 10.01   

Pixels –15604 +19011 –3348   

Area (ha) –352.27 +428.57 –76.3   

Final State 
(2007) 

Image 
Difference 

Row 
Percent –26.27 +31.95 –4.32   
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Column indicates that there is no unclassified pixel as 
same numbers of pixels are also reported in the Class 
Total Column.  

The Class Changes Row indicates the total number of 
initial state pixel that changed classes. In Table 5, the 
total class change for forest is 19345 pixels. In other 
words, 19345 pixels that were initially classified as forest 
changed into final state classes other than forest. To con-
firm that this is correct, the number of initial forest clas-
sified pixels 23025 are subtracted from the forest class 
total 42370, which is 19345. The Image Difference Row 
is the difference in the total number of equivalently 
classed pixels in the two images, computed by subtract-
ing the initial state class totals from the final state class 
totals (i.e. Class Total Column-Class Total Row). An 
image difference that is positive indicates that the class 
size increased. The table shows that there is a decrease of 
15604 pixels (352.27 ha) in forest class and there has 
been an increase of 19001 pixels (428.57 ha) in agricul-
ture class. 

Temporal analysis revealed large scale LC changes in 
the region. To understand the level of changes, fragmen-
tation analysis was done, which would help in assessing 
the state of fragmentation and its implications. In this 
regard, Pf and Pff in a fixed-area window of 3 × 3 were 
computed [21] to identify forest fragmentation categories 
given in Figure 6 and Table 6.  

The case of Pf = 1 (interior) represents a completely 
forested window for which Pff is also 1. When Pff is lar-
ger than Pf, the implication is that forest is clumped; the 
probability that an immediate neighbour is also forest is 
greater than the average probability of forest within the 
window. Conversely, when Pff is smaller than Pf, the 
implication is that whatever is nonforest is clumped. The 
difference (Pf-Pff) characterises a gradient from forest 
clumping (edge) to nonforest clumping (perforated). 
When Pff = Pf, the model cannot distinguish forest or 
nonforest clumping. To understand the fragmentation pro- 
cess, 10 spatial metrics – Number of patches (NP), Patch 
density (PD), Total edge (TE), Edge Density (ED), 
Largest shape index (LSI), Shannon diversity index 
(SHDI) were calculated at landscape level using Frag-
stats [33].  

Quantitative assessment of the pattern of forest frag-
mentation and its trends showed that interior forest has 
declined by 68.81%. Patch forest which was absent in 
1972 image has increased up to 12 ha in 2007 and inte-
rior forest has decreased from 789 ha in 1972 to 246 ha 
in 2007. The values of TFP and FC for the temporal data 
were plotted that specifies six conditions of forest frag-
mentation in Figure 7. The amount of forest and conti-
nuity were high in 1972 and declined in 2007. 

Forest in Moolbari watershed was more contiguous  

 

Figure 6. Forest fragmentation map (a) 1972, (b) 1989, (c) 
2000, (d) 2007. 
 

 

Figure 7. Six forest fragmentation conditions based on the 
values for Total Forest Proportion and Forest calculated 
for a region. 
 
earlier (in 1972), with less number of patches than that of 
2007. There was a single contiguous patch of forest, 
which is now more fragmented with interspersion of ag-
riculture land and reduced area (925 ha in 1972 to 474 ha) 
in 2007. Individually, the largest patch in 1972 was 907 
ha, while in 2007, the largest patch is 273 ha. Number of 
patches and patch density, which are the direct measure 
of fragmentation effect also increased over years. Table 
7 details the fragmentation metrics calculated at land-
scape level.  
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Table 6. Forest fragmentation types details. 

 1972  1989 2000  2007 

 ha %  ha % ha %  ha % 

Interior 788.88 87.42  508.87 73.41 320.65 65.02  246.00 52.61 

Perforated 75.60 8.38  62.68 9.04 66.29 11.32  45.48 9.72 

Edge 28.63 3.17  85.68 12.36 91.54 15.64  110.50 23.63 

Transitional 9.29 1.03  35.75 5.16 46.63 7.96  53.35 11.41 

Patch 0.00 0.00  0.22 0.03 0.32 0.05  12.31 2.63 

Total 902.40 100  693.21 100 385.42 100  467.63 100 

 
Table 7. Forest fragmentation indices for 1972 to 2007. 

Index → NP PD TE ED LSI SHDI 

1972 41 1.75 57206.51 24.43 3.46 0.14 

1989 95 4.06 78993.03 33.74 4.58 1.48 

2000 152 6.49 86560.50 36.97 4.97 2.00 

2007 212 9.05 100043.80 42.73 5.67 2.10 

 
From this analysis, it is clear that Moolbari watershed 

in the ecologically fragile Himalaya is under the severe 
influence of forest fragmentation, necessitating immedi-
ate interventions involving integrated watershed man-
agement strategies. The results highlight higher anthro-
pogenic fragmentation in the watershed closer to villages 
than remote areas.  

 
4. Conclusions 
 
LU classification algorithms were reviewed to assess the 
best classifier in an undulating terrain. Error matrix along 
with ROC curves provided a richer measure of classifi-
cation performance showing that GMLC is superior with 
overall accuracy of 89% (1972 and 1989), 81% (2000) 
and 88% (2007). The study showed reduction of region 
under vegetation by 5.59% during 35 years. Change de-
tection methods revealed a declining trend of forest pa- 
tches (48%) during the last three decades due to increas-
ing agricultural practices which have significantly in-
creased from 264 ha (1972) to 779 ha (2007). Barren 
area has increased by 23% (during 1972 to 2000).  

Forest fragmentation model showed that interior forest 
has declined by 68.81% (from 789 ha in 1972 to 246 ha 
in 2007). Patch forest which was absent in 1972 image 
has increased up to 12 ha in 2007. Forested area is nega-
tively correlated to all the indices, hinting that decreased 
forest area has more fragmented patches. Patches come 
from many sources, ranging from our abilities to visual-
ise and delineate what they represent, to their usage as 
conceptual units and patch dynamics models and to so-
cietal biases such as land ownership and anthropogenic 
activities. The analysis places patches into perspective as 
one identifiable element along a continuum of forest 

fragmentation, and suggest that more attention should be 
given for the conservation of interior forests and restora-
tion of patch forests for the sustainability of watershed, 
livelihood and food security.  
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