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Abstract

During the last subprime crisis, the concentration risk issue has become increasingly important in
the world of finance. This risk is defined as the loss that we can get from a large exposition of a
single name counterparty, a sector or a product. This paper represents some mathematical models
for evaluating and quantifying the concentration risk under the Ad-Hoc approaches. This study is
based on indexes developed by the theory of inequality and the theory of industrial concentration.
This work is about the comparison between these measurements to get which one fits most the fi-
nancial context. We have selected a set of concentration indexes than we have implemented an
empirical test. We propose also a new concentration index. As a result, we shortlist three competi-
tive indexes.

Keywords

Financial Risk, Credit Risk, Concentration Risk, Concentration Indexes

1. Introduction

The world of finance becomes huge and banks get more and more large exposures without guaranties to hedge
some default risks. However, the banks portfolios generate more and more concentration towards counterparties
and also sectors. As a result, when the financial system goes into stress then these banks get a big loss and it can
drive to the bankruptcy. The main of our issue is the choice of the measurements that can fit most the concentra-
tion risk in the financial context.

During the US saving and loan crisis in 1980 more than 1000 institutes had been in default because of the
real-estate and energetic sectors concentration. So, most banks of Texas and Oklahoma had got a huge loss due
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to the debt activities of those sectors. Moreover, in the middle of 90°s and during the real-estate crisis, many of
Scandinavian banks had become in bankruptcy situation due to their concentration in this sector. In 2001, Ger-
man Schmidt Bank had been insolvent and the cause was their concentration of the emergent country.

More recently, the subprime crisis had cost large losses to the financial institutes between 170 billion dollars
and the principal reason was their concentration of some product like the Mortgage-Backed Securities and the
Collateralized Debt Obligations. The Lehman Brothers was directly after the fall of the MBS/CDOs market in
bankruptcy. In the same way, two of the biggest Europeans banks, IKB Deutsche Industries bank and Dexia,
cashed a heavy loss. The sovereign crisis in 2010 jeopardized the Dexia bank because of the large concentration
of the sovereign debt towards to Greece and Italy.

The concentration risk was discussed the first time as a regulatory issue on the Basel committee in 1999
(BCBS63). It management was reduced to following up the large exposures of the financial institutes and it
wasn’t their priorities like the others risks. Therefore, the Basel comities defined the concentration risk as the
potential exposure that could be the origin of some large loss into the adverse market conditions. Indeed, the
concentration risk could impact both as assets and liability of the bank.

Lutkebohmert (2009) suggests a definition of the concentration risk intothe credit portfolio. So, she defines it
as an unequal distribution between the debts exposures under a single counterparty (name concentration) or in
many sectors or industries (sector or industry concentration), and there is a strong correlation between this risk
and the contagion risk.

Broadly speaking, we can generalize the concept of the concentration risk as the excessive exposure that can
be the origin of a big loss according to a single counterparty, a sector, an industry, a product or a risk factor.

The indexes conception for financial purpose is coming from the inequality (Gajdos, 2006; Lubrano, 2014)
and the industrial concentration (Bikker & Haaf 2002) theories. In fact, these theories develop some properties
that indexes must fulfill. Using these results, Becker, Dullmann, & Pisarek (2004) have listed six properties.

Getting some portfolio with N exposures and denoting that the amount of the i exposure by x, >0, with

le: X =M defines the total amount exposure of the portfolio. We can define also the share vector of each ex-
. N X . . .

posure by s= (sl, sz,...,sN) with Zi:lsi =15 =M The ascending sorted vector of shares (i.e.: Vi < Jisg) < s(j))

is denoted by S =(s(l),s(2),-~,s(N)).

The concentration indexes verify C, (s) =C, (s(.)) and respect the following properties:

1) Transfert principle: The reduction of an exposure and the increase another higher than the first with the
same amount must increase the concentration.

Getting two portfolios S =(s;,s,,",Sy ) and s:(slszsN) with:

s—h k=i
S =15, +h k=]
s, k=i, j

and s, <s;,h>0,thenC, (s)<Cy (s)

2) Uniform distribution principle: If all exposures are equal then the concentration is minimal.
11 1
Let define a portfolio s=(s;,S,,"--,Sy) and S, =|—,—,-,—|.
p (Sl 2 N ) e ( N'N N j
Then Cy (s)=Cy (s.)-
3) Lorentz criterion: If we have two portfolios with the same number of exposures and the sum of the k biggest
exposures for the first one is higher than the second one then the concentration indexes follow the same or-
der.

*

Let’s take two portfolios S=(s;,S,,+,5,) and s =(SI,S;,-",SN ) and denote the portfolios with ascend-

ing order in shares by S =(S(1),S(2),-",S(N)) and SZ) =(SE1)’SZ2)""’SZN))'
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Ifwe have Y "\S0) = > s, k=1, N then Cy(s)<Cy(s").
4) Superadditivity: The fusions of exposures increase the concentration.

Let s=(S;, 8,5, Sy ) a portfolio with N exposures and §" =(S;,,5, 5, Sy, Sjp o+, Sy ) i
the regeneration of a second portfolio with N —1 exposures using the first one with s =s +s;, then
Cy(s)<Cyy(s7).

5) Independence of exposures quantity: If we have a homogenous portfolio with equal shares, then the in-
creasing of the exposures number decrease the concentration indexes.

. 11 1 1 1 1 .
Let’s have two homogenous portfolios S,y =| —,—,--,— | and S,y = , with
' N N N ’ N+1 N+1 N+1

number of exposures Nand N +1 then Cy (S, ) 2 Cyy (Senes ) -

6) Irrelevance of small exposures: A low additional exposure must not increase the concentration.

Let’s define a portfolio S=(s,,S,,-+,Sy) and X is the new exposure verifying

i =l,---,N;SN+1=LSSi :%, then C, (S)ZCNH(S*).

(M +%)
X; .
-1 |:]_,...’N
e [ s . . (M +%)
With 8" =(s],55, 85, ) 0 s ="
% .
ree— |:N+1
(M +%)

Furthermore, the number of exposures doesn’t change in the first three properties contrary to the last three
ones. We conclude a relationship between the concentration concept and the number of exposure. However, the
properties 1), 2) and 3) come from the inequality theories of revenues. It was mentioned by Lorenz (1905) and
Pigou (1912) in their papers, and the aim was about the socials inequalities. The others ones were evoked in in-
dustrial concentration context and the purpose was about a monopole issue. Calabrese & Porro (2006) prove
that if we have 1) Transfer principal and 6) Irrelevance of small exposures then we have all others properties.
Indeed, we get these assertions:

e Transfer principle = 2) Uniform distribution principle

e Transfer principle = 3) Lorentz criterion

e Transfer principle and 6) Irrelevance of small exposures = 4) Superadditivity

* Uniform distribution principle et 4) Superadditivity = 5) Independence of exposures quantity

It must be a link between these properties and the daily transactions upon the exposures to make sense of all
these theories. In the other side, they don’t have any use in the concentration concept. In fact, the sixth and the
fourth properties give the transaction that could get a credit portfolio. For example, the sell/buy of bonds or the
emergence of two or more counterparties. The first one is limited on some risk transfer between two counterpar-
ties using some guarantee mechanisms.

The aim of this paper is taking the indexes developed in the inequality and industrial concentration theories
and making tests on those to verify the respect of all properties in banking environment.

2. The Most Used Concentration Indexes

Many indexes and ratios were developed to measure the concentration and most of these measurements take the
following form:

of =§:si x f(s7)

With s, is the share of an exposure, W, = f (si) is the weight of this share and N represents the number of
portfolio exposures. Refer to C. Marfels (1971), these kinds of concentration measurements were classified by

weight form as four classes:
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* We give 1 to the shares weight values of the k biggest portfolio exposures taking a decreasing sort
(w,=1,Vi<k and w =0,Vi>k).Asanexample we find the concentration ratio.

* The weights take the exposures shares as value (w, =s;, Vi ). The Herfindahl-Hirschman index (HH]I) is an
example of this family of indexes.

* The rank of exposures can represent the weights value, giving an increasing or decreasing sort of the portfo-
lio exposures (w, =i, Vi ). We can take as example the Hall-Tidman index (HTI).

* The last class weight is a function of shares like a logarithmic function (W, = - Iog(si ),Vi ). For example we

have the entropy measurement.
Thereafter, we present the most used indexes.

2.1. The Concentration Ratio

The easiest way to conceive a concentration measurement is to calculate the accumulation of the largest expo-
sures under the global exposure of a portfolio. For this we take some portfolio with N exposures and we sort the

sharesas s, >s,>---2>5s, with Zilsi =1. The concentration ratio is defined by:

k
CR =>5s,1<k<N

i=1

This ratio verifies the six properties and his implementation is straightforward, however it has a principal
drawback: the number k is arbitrary and doesn’t cover the entire distribution of the exposures.

2.2. The Gini Index

The Gini index (Gini, 1921) comes to complete the Lorenz analysis (see annex). This index calculates the devia-
tion according to the perfect repartition. It is defined by the surface between the Lorenz curve and diagonal line.
Let’s have a portfolio with N exposures and shares s,,---, s, , the numerical formula of the Gini index is:

G Zi’il(Zi_l)si 1
N

Broadly speaking, we have the following form in case of a continuous distribution:
1
G=1-2] L(q)dq

When the value of this index is close to 0, then the portfolio isn’t concentrated and all the exposures are
equally distributed. Other way, if the value is close to 1 then we have a portfolio extremely concentrated. The
Gini index respects the following properties: 1, 2, 3 and 5. So it is independent of the number of exposures be-
cause it doesn’t verify the sixth property, but it’s still a complementary tool for analyzing the concentration risk.

2.3. The Hall-Tidman Index (HTI)

This index was developed by Hall & Tidman (1967) for the industrial concentration context. The HTI verifies all
of the six properties and the weights get the decreasing rank value of shares. It is defined by the following way:

1
25" (N=i+1)s -1

The relation between this index and the Gini index is:

HTI =

1

HTl=—
N-(N-1)G"

2.4. The Hannah-Kay Index (HKI)

Hannah & Kay (1977) suggested the following formula to calculate the concentration:
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1
N (a-1)
HK'Z(Z&‘ZJ( " aveca>0eta #1
i=1

The «a parameter gives the elasticity of the weights distribution according to the portfolio composition. This
index respects also the six properties of concentration.

2.5. The Herfindahl-Hirschman Index (HHI)

The HHI (Herfindahl, 1950; Hirschmann, 1964) is the most useful index to calculating the concentration and we
find it on the macroeconomic empirical studies. This index is equal to the sum of the square shares and it has the
following form:

ZEX.Z N 2
HHI = =0 =3 s
(Zi:lxi)

The Herfindahl-Hirschman index verifies the six properties of concentration and it equals to theHKI index for
a=2.

2.6. The Theil Entropy Index (TEI)
The Theil index (Theil, 1967) is defined as:

TEI :isi In(s;)+In(N)

This index doesn’t respect the fourth and sixth properties and the relation between TEI and HKI is:
lim HKI = exp(TEI - In(N))

3. The Comparative Study
3.1. The Methodology Presentation

The aim of this study is the implementation of comparative tests between indexes to have the more suitable in

the financial context. We define three tests:

e Test of the transfer property: this test allows verifying the respect of the transfer property.

* Test of the ISE property: the conception of this test allows viewing the behavior of all indexes according to

the adding of a small exposure.

* Test of the convergence: this test studies the relationship between the concentration indexes and the number
of exposures.

These tests will be established on R and under the following assumptions:
The HKI parameter is equal to 3.

* The generation of exposures follows the Log-normal distribution.

3.2. Test Results of Ad-Hoc Approach

* Test of the transfer property :

This property permits the decrease of portfolio concentration (or the increase of the concentration), in the case
of we do some transfers from a high level exposure to a lower level exposure (or in the opposite way to increas-
ing the concentration). This principle is conditioned by respecting the same order between the initial and the fi-
nal portfolio shares.

First, we generate a portfolio with N =1000 exposures following a Log-normal distribution with the mean
equal to the 10 and the variance equal to the 3. Then, we sorted it in the increasing order. Thereafter, we proceed
to a 1000 transfers from the higher exposures than the fourth quartile to the lower exposures than the second
quartile assuring the respect of the initial portfolio order. Then, we calculate the concentration indexes in each
iteration. The steps of the processing test are:

1. Generating 1000 exposures following.
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Sort the exposures in the increasing order.
Compute the concentration indexes.
Compute the quartiles.

Random selection of an exposure higher than

© N oML

Iterate the steps 2 to 7 a 1000 times.

Make a transfer of an amount equal to min (x

Random selection of an exposure lower than the second quartile x; .

the fourth quartile x; .

=X, X —xj_l) toward X, .

i+l

Table 1 summarizes the evolution of the concentration indexes before and after the transfer.

We notice a decreasing of the concentration indexes after a 1000 transfers. Figure 1 visualizes the evolution

of these indexes in each transfer iteration.

Figure 2 gives us the allure of the Lorenz curve after and before transfer.

These results show the respect of the first properties for all indexes. Indeed, in each iteration of transfer the
concentration indexes decrease on the first graph. Furthermore, the Lorenz curve also respects this property be-
cause the surface between the perfect line and the portfolio distribution was reduced after this simulation.

Test of ISE property:
We process in the same way to the last test

add 1000 new exposures with a 1 as value. The d

to implementing the ISE test. Indeed, we generate N =1000
exposures with the Log-normal given the mean between 1 and 10, and the variance between 0.3 and 3. Then, we

escription of the test steps is:

S -
0
®
2 s S, — GINI
g8 o, - HHI
5 | e T HTI
£ B e T s W - HKI
= o T TEI
~ e
sl T e
e
=) T T T T 1
0 200 400 600 800 1000
Number Transfert
Figure 1. The evolution of the concentration indexes based on the number of exposures.
oo 7
= - ]
e —Parfait |
~ <~ -Avant
— S ~Apres
=) —
(=) I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
p
Figure 2. The Lorenz curve before and after transfers.
Table 1. The test transfer results.
Initial portfolio After 1000 transfers
GINI 0.96 0.89
HHI 0.56 0.12
HTI 0.06 0.01
HKI 0.64 0.19
TEI 0.74 0.40
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Initializing the mean and variance value to the 1 and 0.3.

Generating a 1000 exposures with the Log-normal (1, 0. 3) distribution.
Computing the concentration indexes of the portfolio.

Adding an exposure equal to 1.

Computing once more the concentration indexes of the new portfolio.
Iterating 1000 times the step 4.
Increasing the value of the mean with a one unity and the variance with 0.3.
Repeating the steps 2 to 5 ten times.

Table 2 summarizes the test results before and after the adding of small exposures.
The impact of the small exposure is insignificant for HHI, HKI and HTI. However, we observe a significant
increase on the Gini and theTEI indexes according to the initial portfolio. Figure 3 gives the evolution of index-

es in each iteration of the adding.

Figure 4 illustrates the concentration indexes in 3D based on the distribution parameters.

Indices

0.0 02 04 0.6 08 1.0

:

0 200 400 600 800 1000
Number ISE

Figure 3. The concentration indexes evolution based on the number of the adding.

I

Figure 4.The surface of the test ISE based on the Log-normal parameters.

Table 2. The test ISE results.

Initial portfolio After 1000 adding
GINI 0.92 0.96
HHI 0.09 0.09
HTI 0.01 0.01
HKI 0.15 0.15
TEI 0.42 0.47
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Giving these results, Only HHI, HKI and HTI respect the sixth property. On the other side, both Gini and TEI
don’t verify this property. In fact, the increase of exposures number should decrease the concentration; contrari-
wise we get the opposite effect in the inequality theory. Besides that, the Gini and TEI were developed for mea-
suring the inequalities, and then they must have an opposite effect according to the sixth property.

* The test of the convergence :

This test defines a new property to analyze the evolution between the concentration indexes and the number
of exposures. Indeed, the portfolio granularity is characterized by a number of exposures higher enough such as
makes the idiosyncratic risk vanish. According to this result, we can conclude that portfolios with a very higher
number of exposures should be less concentrated than those with a lower number of exposures. The purpose of
this test is to verify amongst of which indexes respect this result.

The implementation of this test is based on generating of one million of the exposures with the Log-normal
distribution, and we randomly select 50 portfolios with n exposures between 2 and 1000. We calculate in each
iteration the mean and the variance of the concentration indexes for these portfolios. The steps processing of this
test are:

1) Generating 10° exposures following the Log-normal (10, 3) distribution.

2) Initializing the number of exposureto n=1.

3) Selecting 50 portfolios with n+1 exposures.

4) Computing the concentration indexes of each portfolio.

5) Computing the mean and the variance of all portfolios concentration indexes.
6) Incrementing the number of exposures by 1.

7) lterating 1000 times the steps 3 to 6.

Table 3 gives means and variances of concentration indexes with two and one thousand exposures.

Figure 5 shows the evolution of the mean concentration indexes according to the number of the exposures.

Giving this graph, we notice that HHI, HKI and HTI decrease according to the number of exposures. On the
other side, the Gini index increases based on the number of exposures. Moreover, the TEI index has a stagnating
trend. We also conclude that all indexes become constant for higher levels of number of exposures.

3.3. Recapitulation

Table 4 summarizes the indexes formula of the concentration indexes with some drawbacks:

0.6 0.8 1.0

Average of Indices

0.0 02 04

0 200 400 600 800 1000
Number Exposition

Figure 5. The evolution of the concentration indexes based on the number of the exposures.

Table 3. The convergence test results.

Portfolio N = 2 Portfolio N = 1000
Mean Variance Mean Variance
GINI 0.39 0.13 0.96 0.02
HHI 0.84 0.16 0.14 0.13
HTI 0.86 0.15 0.03 0.02
HKI 0.86 0.16 0.19 0.15
TEI 0.63 0.33 0.52 0.11
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Table 4. The concentration indexes summarize.

Index name Formula Drawbacks
k
Concentration Ratio CR, = ZS, Doesn’t consider the overall distribution portfolio
i=1
N . , . .
The Giniindex G- Z|:1(2| -1)s, i Dc()jesn t’take into account the portfolio size and
TN oesn’t respect all concentration properties
The Herfindahl-Hirschman index R
(HHI) HHI = ;s,
N
The Hall-Tidman index (HTI) HTI =]/(2 (N=i+1)s, —1j
i=1
R
The Hannah-Kay index (HKI) HKI = (ZSIGJ(M aveca >0eta =1
i=1
N
The Theil entropy index (TEI) TEI=)7sIn(s)+In(N) Doesn’t respect all concentration properties
i=1

4. The Index Proposal: The Hammami-Slime Index (HSI)

We will try in this section to make a suggestion of an index, in one hand, to calculate the portfolio concentration
taking account to the banking environment, and on the other hand, to keep the relationship with the number of
exposures. This index includes an a parameter allowing the adjustment of the concentration according to the
number of exposures in the portfolio. In fact, if we have one exposure then the concentration is maximal and
equal to 1 for HHI, HTI and HKI. This result is still logical with the concentration concept. But, if we go to two
exposures for a homogeneous portfolio the concentration indexes become 0.5. It means that the concentration is
divided by two, however the portfolio is still always very concentrate and the index must have a very higher
value. The new index will adjust the discrepancy over the number of exposures. The index is defined by:

N
HSIy (a) =Y 0<a<1
i=1

If si=%,vi=1,---,N then the index is equal to HSI (o) =N"".

Furthermore, if « =1, then HSI, (1) = HHI . This index verifies the six properties (see annex). The HSI in-
dex is less complex than the HKI and the relationship between both of these indexes is:

HSI () =(HKI, (1+a))’

Figure 6 illustrates the evolution of the concentration according to the number of exposures and the « para-
meter in case of homogeneous portfolio.

We find that the convexity of the concentration decreases on a for a homogeneous portfolio. So, this parame-
ter gives importance to the concentration according to the number of exposures. Indeed, if we have « =0.25
then the concentration goes from 1 to 0.84 for some portfolios with two exposures in case of the homogeneous
portfolio. This parameter can take the adjustment role of the concentration indexes according to the number of
exposures. This index gives a coherent quantification for portfolios with a small number of exposures than the
other indexes. The convergence test confirms this property also for inhomogeneous portfolios. Figure 7 gives us
the test results:

5. Conclusion and Future Directions

Gini and TEI indexes didn’t verify the six properties unlike the other indexes. For these results we implemented

O,
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Figure 6. The concentration curve based on the number of exposures and a.

2 -GINI
2 ~HHI

= ~HTI

o -HKI
& HSI

& -TEI

)

>

<

1000

Number Exposition

Figure 7. The comparison between the evolution of HSI and the others indexes based on
number of exposures.

the tests of the first and the sixth properties.

At the end, we got four concurrent indexes and we couldn’t have more flexibility to reduce this list. So, we
added a new test to study the evolution of these indexes according to the number of exposures. We concluded
that the HTI index tended to zero faster than the others. Indeed, it couldn’t give a good measurement of portfo-
lios with a small number of exposures.

These tests on the concentration indexes enabled us to choose among the most suitable to the financial context.
We retained the following indexes: HHI, HKI and HSI. Furthermore, the HSI index gave a more consistent
measurement of portfolios with a small number of exposures.

The Ad-Hoc approach was sample to implement and we could have a global view of the concentration risk.
However, this approach did not take into consideration de specific risk factors like the PD and LGD. On the
other hand, it did not allow computing the provision charge of capital requirement to cover the concentration
risk. For these raisons, the Add-On approach came to underpin the first approach and to complete these gaps.
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Appendix

* The Lorenz curve:

The Lorenz curve doesn’t give one concentration index and a unique ranking of concentration between two
portfolios, but it gives a global view according to the perfect diversification. It defines a cumulative percentile of
exposures sizes. Let’s a set of exposure such as x, < x, <---< X, , then The Lorenz curve is defined by:

N
X
L(n/N):%, i=1--,N and L(0)=0.
X
i=1 !
Given a continuous distribution f and it distribution function F invertible with finite mean, then The Lorenz
curve becomes:

Fr e U [ @

L(F(x)) (o [ [

The perfect concentration is given by L(q) =q,Vqe [0,1] , and the concentration of Log-normal distribution
is equal to:

L(q)=@(@™(q)-0")

With @ is the cumulative function of a Gaussian distribution.
The following graph gives an example of the Lorenz curve of a Log-normal distribution:

100% A
80% / / A
0, -
60% / / o=1
40% — o=Vv2

o

= Parfaite

O%' T T T T T T T T 1
XXX R R R XX

o O O O O O o O O O o

| N O < n O N 0 O 8

* Proof of concentration properties respect for the HSI index:
Let’s have two portfolios s and s” verifying the conditions of the first property, we define the following
function:

f (h)=HSI (S*)— HSI (s) =[k;jst“’ +(s,j + h)lm +(s - h)lmJ—kZN;s;“’

=(sj + h)M +(s - h)lm —s7 -5

The function f:R"— R is continuous, and lim,_, f (h)=0. The derivative of this function according to
h is:
o (h)
oh
Then HSI(s")2 HSl (s)

In the same way, we can demonstrate the sixth property defining two portfolios verifying the conditions of
this property, and the following function g:R" — R such as:

:(1+a)((sj +h) =(s,-n)")20= f et £ ()20
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k=1

o . ~ N Xk l+a % l+a N o
g(%)=Hsl (s")-Hsl (S)_(Z(M +)~() +(M +)~(j J—%sk
This function is continuous and lim,_; g (X)=0. The derivative accordingto % is equal:
zsﬂxk ()?“ - x{f)
(M +x)"

N lra
a X;
-1k
M Z k=1 J

%
(M +5)™ (M +%)*

aga—gj):(l+a)

=————(MR“ -M"™“IC(s))

-

= X=Mx(IC(s))«
. . L ag(%)
We conclude the following result % <M x(HSI (s))« = — 5 0= gletg<0,andalso
X
lim,,.. 9(X)=1-HSI(s). Otherwise we get g T. The necessary condition to have IC(S*)S IC(s) (the

1
property 6 is verified) is X <M ><(HSI (s));.
The minimum of this function is equal to:

min(g(%)) = g [M x (HSI (s))ij - HSI (s) 1 J [1_(1+(HSI (S))ija]

(1+(HSI (s))=

With g (%)= (M2 = (M +%)" ) st (s) + £

_r
(M + %)™
In order to complete this study, we calculate the roots of g :

sw-o=(3(e) (@) R

N s\t N
= l Zxk1+a _( M + Xj Zxk1+a + )~(1+a — 0
X k=1 M k=1

(M n )l+a

M=

=

:;((MM — (M +2)" ) H8I (5) + £ ) =0

\H+a

(M +%)
In case of the HHI index « =1, we get the following solutions of the last equation:
2xM x HHI (s
%, = 0et 5, = M xHHI (5)
1-HHI(s)

As a conclusion, the g function becomes positive beyond an adding upper than X, . The second root gives us
the magnitude order of the new exposure to increase the concentration. So, if we have the concentration index of
some portfolio closer than 1, then we need many adds to reduce the concentration because we have the follow-

ing assertion: HSI (s) —1= X — . Indeed, the concentration couldn’t increase because in the practice there

©,
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are limits of the operations amount.
On the other side, if a portfolio has a minimal concentration in other word exposures are equiponderant, then
it will be very sensitive to the concentration and some small adding could increase the concentration because we

have HSI (s) — 0= X% — 0. To study the impact of the small exposure in terms of concentration, let’s have a

portfolio with Log-normal distribution.
In our case, the portfolio is characterized by:

M 20.86
Moyenne 0.51
Médiane 0.35

Min 0.10
Max 1.49

The figure illustrates the evolution of g(X) for & =1(HHI),0.75,0.5and 0.25:

01%
01%
00%
00%
00%
00%
00%
00%

g(x' ,a=1)

g(x' ,a=0,75)

g(x ,a=0,5)

02 g(x ,a=0,25)

The table gives the roots and also the abscissas where this function changes the sign:

a 1 (HHI) 0.75 05 0.25
HIS (s) 0.04 0.08 0.19 0.43
% 0 0 0 0

% 1.66 1.68 1.70 1.76
g'(%)=0 0.80 0.76 0.73 0.69
Min (g) ~0.0014 ~0.0022 ~0.0032 ~0.0035

Therefore, the concentration will increase in the case of X > X, and we also notice that all roots are bigger
than the maximum of exposures. So as we know, in the real life we can’t have this kind of operation to obtain
the last condition. On the other hand, as we see the concentration increases on a, the same applies to the root
which explains the adjustment of the concentration in relation to the overall structure of the portfolio.
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