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Abstract 
Phosphorus (P) risk indices are commonly used in the USA to estimate the 
field-scale risk of agricultural P runoff. Because the Ohio P Risk Index is in-
creasingly being used to judge farmer performance, it is important to evaluate 
weighting/scoring of all P Index parameters to ensure Ohio farmers are cre-
dited for practices that reduce P runoff risk and not unduly penalized for 
things not demonstrably related to runoff risk. A sensitivity analysis provides 
information as to how sensitive the P Index score is to changes in inputs. The 
objectives were to determine 1) which inputs are most highly associated with 
P Index scores and 2) the relative impact of each input variable on resultant P 
Index scores. The current approach uses simulations across 6134 Ohio point 
locations and five crop management scenarios (CMSs), representing increas-
ing soil disturbance. The CMSs range from all no-till, which is being pro-
moted in Ohio, rotational tillage, which is a common practice in Ohio to full 
tillage to represent an extreme practice. Results showed that P Index scores 
were best explained by soil test P (31.9%) followed by connectivity to water 
(29.7%), soil erosion (13.4%), fertilizer application amount (11.3%), runoff 
class (9.5%), fertilizer application method (2.2%), and finally filter strip 
(2.0%). Ohio P Index simulations across CMSs one through five showed 
that >40% scored <15 points (low) while <1.5% scored >45 points (very high). 
Given Ohio water quality problems, the Ohio P Index needs to be stricter. The 
current approach is useful for Ohio P Index evaluations and revision decisions 
by spatially illustrating the impact of potential changes regionally and state- 
wide. 
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1. Introduction 

With 74,000 farmers, farming more than 10 million crop acres in Ohio, USA [1] 
agricultural phosphorus (P) runoff is a major environmental concern. Due to 
continued water quality concerns, the Ohio Lake Erie Phosphorus Task Force II 
Final Report [2] is calling for approximately a 40% reduction in P loading into 
the Western Lake Erie Basin (WLEB). The target reductions are based on a 
harmful algal bloom (HAB) projection model [3] using the correlation between 
P loading into the WLEB (March 1 to June 30) and subsequent HAB severity. 
Despite reductions in total P loading to Lake Erie [4], the proportion as soluble P 
shows distinct increases [5] [6].  

In response to water quality concern, there is an increased emphasis on the 
use of state P indices in the recently revised USDA Natural Resources Conserva-
tion Service (USDA-NRCS) Practice Standard Code 590, Nutrient Management 
[7] [8] [9] [10] which considers both crop production and P runoff risk. Lemu-
nyon and Gilbert [11] first introduced the P risk index approach as a qualitative 
estimate of P runoff risk based on field characteristics and farmer management 
practices. The Ohio Phosphorus Risk Index (P Index) is intended to provide a 
field-scale estimate of P runoff risk [12]. In Ohio there is an ongoing effort to 
evaluate and revise the Ohio P Index to ensure that P Index scores accurately re-
flect field-scale runoff risk. Typical of P indices [13] [14] [15], the Ohio P Index 
[12] includes field specific P source and transport factors. Information regarding 
P source factors is provided by the farmer and includes soil test P (STP, Bray-P1 
mg·kg−1), planned fertilizer/manure application amount and method of applica-
tion. Key field specific P transport factors include erosion potential [16], con-
nectivity-to-water, based on proximity to intermittent or perennial streams and 
evidence of surface runoff and finally runoff class which considers the combined 
effect of hydrologic soil group with slope steepness. Each factor has an associated 
weighting/scoring based on its presumed contribution to P runoff risk. Com-
paring multiple state P Index weighting/scoring and interpretation for the same 
sets of field data has revealed substantial differences [13] [17] among state P in-
dices. Ideally, weightings should be evaluated based on measured P runoff data 
[9]. Field work currently underway in Ohio should be able to better inform 
weighting/scorings as they are related to P loss. In the meantime sensitivity 
analysis is being used to investigate the relationship between Ohio P Index pa-
rameters and current Ohio P Index scores. Using sensitivity analysis to assess the 
impact these input parameters have on Ohio P Index scores will guide Ohio P 
Index revision efforts to ensure farmers will be credited for management prac-
tices that reduce P runoff risk and not unduly penalized for things not demon-
strably related to runoff risk.  

A sensitivity analysis can provide information as to how sensitive the final P 
Index score is to changes in inputs [18] [19] [20] [21] [22]. Sensitivity analyses 
have also been used to evaluate other nonpoint-source pollution models [23] 
[24] [25] [26] [27] [28]. Inputs that exert extreme influence on the final score 
should be prioritized for reevaluation, and field studies verifying the accuracy of 
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the relationship between the inputs and final score can be designed in a way that 
provide the most power for testing those inputs. In addition, an understanding 
of sensitivity will allow farmers to prioritize changes to their management prac-
tices in order to reduce their runoff risk. 

Typically sensitivity analyses use a deterministic or stochastic approach. A 
stochastic sensitivity analysis [19] [20] [22], explores the effect of all input va-
riables simultaneously, and is able to make statements regarding the effect of an 
individual variable while accounting for the effects of all other variables. A sto-
chastic sensitivity analysis allows for the specification of a complete probability 
distribution for each input variable, as well as accounting for unexplained varia-
bility in the output variable [29]. A stochastic approach is able to account for 
correlation among the input variables, and can make overall statements about 
how an input variable impacts the output variable instead of being limited in 
scope to statements with respect to a baseline condition.  

Unlike stochastic approaches, deterministic sensitivity analyses based on base-
line scenarios have been shown to give results that vary depending on the base-
line scenario chosen [30]. A deterministic sensitivity analysis [18] [19] [21] [31] 
explores the impact of each variable separately, by calculating a relative sensitiv-
ity when the particular variable of interest varies over some subset of its range of 
possible values while all other variables are fixed at a baseline or average level.  

An earlier sensitivity analysis [22] evaluated Ohio P Risk Index inputs for five 
Ohio watersheds, using a stochastic approach. The range of several input para-
meters were estimated using uniform or triangular distributions or professional 
judgement. Building on the work of Williams et al. [22], three sensitivity analys-
es, two using a stochastic approach were used to understand the relationship 
between each P Index parameter and the Ohio P Index scores using data from 
the entire population of interest across a broad range of crop management sce-
narios (CMSs) for all of Ohio, and evaluate the relationship between the com-
ponents that make up the individual parameters and the P Index scores and one 
using a deterministic approach to evaluate the impact of each P Index parameter 
on the range of P Index scores is presented in the current study. The objectives 
of this study are to 1) determine the inputs to which the P Index scores are most 
sensitive, and 2) understand the degree to which individual P Index parameters 
can impact the range of P Index scores.   

2. Materials and Methods 

Our approach comprised a data generation phase and a data analysis phase. In 
the first phase, data were generated to create a representative distribution of P 
Index input parameters across the state of Ohio and five CMSs. These inputs 
were generated using a combination of stochastic data generation and logical se-
lection of combinations of inputs. Having generated the data, the second phase 
proceeded by conducting statistical analysis of the simulated data and the final P 
Index scores derived from those data. The statistical analysis was conducted in 
three parts corresponding to their explanatory power and possible range of P 
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Index score movement to the combinations based on two types of inputs. The 
two input types include the P Index parameter and the raw component inputs 
that contribute to the P Index parameter. 

2.1. Data Generation 

An overview of the Ohio P Index [12] worksheet, including P Index parameters, 
associated sub-value scoring/weighting and interpretation, is provided in Table 
1. Sub-values for parameters are added together to determine a final P Index 
score. To obtain a representative spatial distribution of P Index input parameters 
for running P Index simulations across varying crop management scenarios 
(CMSs, Table 2), a random sample of 20,000 Ohio point locations was generated 
in ArcMap [32]. Point locations were filtered to remove those not designated as 
crop land (corn, soybeans and wheat) using the 2012 cropland data layer, at a 10 
m raster resolution [33] resulting in 6134 point locations.  

Crop Management Scenarios. Crop management scenarios (Table 2), re- 
presenting increased levels of soil disturbance for soybean/corn rotations, were 
chosen in consultation with Ohio USDA-NRCS personnel. The CMSs include all 
no-till, which is a practice being promoted in Ohio, rotational tillage, which is a 
common practice in Ohio to full tillage to represent an extreme practice (Table 
2). 

Erosion Potential. To compute the soil loss values and field residue cover at 
each point location, the dll version of the Revised Universal Soil Loss Equation 
[16] was used. Required RUSLE2 inputs including county, soil map unit, slope 
length, slope steepness were extracted from the gridded Soil Survey Geographic 
database (gSSURGO) data for Ohio available at a 10 meter raster resolution [34]. 
The representative slope length and steepness of the dominant (having the high-
est component percentage) soil series within each map unit was used at each 
point location. In addition to SSURGO inputs, RUSLE2 requires crop manage-
ment inputs including yield goal (Table 2). A yield goal of 50 bu·A−1, for soy-
beans and 160 bu·A−1 for corn, was used for all crop management scenarios. 

Connectivity to Water. The Ohio P index considers the presence or absence 
of runoff concentrated flow from a field as well as the field’s adjacency to an in-
termittent or perennial stream (Table 1) in determining connectivity to water 
sub-values. Because the distribution of these inputs is not known, a set of deci-
sion making criteria was established in consultation with Ohio USDA-NRCS 
personnel. The presence of a surface drain was presumed where hydrologic soil 
group was a C/D or D and slope was <1 percent. Similarly where hydrologic soil 
group was C/D or D and slope was >2 percent the presence of a defined water-
way was presumed. A point locations’ adjacency to an intermittent or perennial 
stream was assigned based on a buffer distance of 250 m using National Hydro-
graphy stream Data [35] based on professional judgement in consultation with 
Ohio USDA-NRCS personnel.  

Runoff Class. Runoff class sub-values at each point location were determined 
by extracting the representative percent slope steepness and hydrologic soil  
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Table 1. Ohio Phosphorus Risk Index (P Index) overview of parameters (Site Characteristic Line Items) with associated weighting 
or scores (sub-values) and interpretation. Sub-values are added together to determine the P Index score. Also, Ohio Phosphorus 
(P) Risk Index score categories and abridged interpretations. 

Site Characteristic 
Line Item 

Phosphorus Vulnerability Values 

1. Soil Erosion 
Soil Loss (tons/acre/yr) × 1 

(Revised Universal Soil Loss Equation ver. 2, RUSLE2) 
Includes: Map Unit, Crop Management Zone, Climate, Farmer Management, Slope Length/Steepness 

2. Connectivity to Water. 
Does concentrated flow 
(via a defined waterway, 
tile inlet, or surface drain 

leave the site? 

No, and the  
site is NOT 

adjacent to an  
intermittent or 

perennial stream 

No, but the site IS 
adjacent to an 
intermittent or 

perennial stream. 

Yes, but the site is 
Not adjacent to an 

intermittent or 
perennial stream 

Yes, and the site IS  
adjacent to and/or the 

concentrated flow  
outlets into an  

intermittent stream or 
through a tile inlet. 

Yes, and the site IS adjacent to 
and/or the concentrated flow 

outlets into a perennial stream 
or through a tile inlet; OR  
Outlets to a pond or lake  

within 1 mile. 

Value = 0 Value = 4.0 Value = 8.0 Value = 12 Value = 16 

3. Runoff Class 

Represents the effect of the Hydrologic Soil Group (A, B, C, D) combined with the effect of slope steepness.  
This factor represents the site’s surface runoff vulnerability 

See Runoff Class Matrix (0 to 15 points) 

4. Soil Test  
Bray-Kurtz P1 PPM 

Bray-Kurtz P1 (PPM) × (0.07) 

Application Rate 
5. Fertilizer (P2O5) 

7. Organic (P2O5) 

Fertilizer (P2O5) Applied (Lbs/Acre × 0.05) 
Available Manure/Biosolids (P2O5) (lbs/Acre × 0.06) 

Fertilizer OR Manure  
(P2O5) Application  

Method 
0 Applied 

Immediate  
Incorporation 

OR 
Applied on 80% 

Cover 

Incorporation <1 
Week 

OR 
Applied on 50% - 80% 

Cover 

Incorporation >1 Week  
<3 months 

OR 
Applied on 30% - 49% 

Cover 

No Incorporation 
OR 

Incorporation >3 months 
OR 

Applied on <30% Cover 

6. Fert. App. Meth. Value = 0 Value = 0.75 Value = 1.5 Value = 3.0 Value = 6.0 

8. Man. App. Meth. Value = 0 Value = 0.5 Value = 1.0 Value = 2.0 Value = 4.0 

9. Filter Strip Deduct 2 points if field runoff flows through a designed filter strip-minimum 33 ft. wide 

Ohio Phosphorus (P) Risk Index scores and abridged interpretations 

P Index 
Score 

P Transport Risk Abridged Interpretation of P Index and Management 

<15 Low 
Manure or biosolids can be applied to meet the recommended nitrogen requirements for  

next grass crop or nitrogen removal of the next legume crop 

15 to 30 Medium 
Runoff reduction practices should be considered to reduce P loss impacts. Manure/biosolids can be applied to 

meet the recommended nitrogen requirements for next grass crop or nitrogen removal of the next legume crop.  
Applications of P at the crop removal rate should be considered 

31 to 45 High 
Runoff reduction practices should be considered to reduce P loss impacts.  

Limit application of P to crop removal rates 

>45 Very High 
Remedial action is required to reduce the risk of P loss.  

A complete soil and water conservation system is needed. Apply no additional P 

Source: USDA-NRCS-OH (2001). 
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Table 2. Crop management scenarios (CMSs) used as inputs to the Revised Universal Soil 
Loss Equation Version 2 (RUSLE2) representing soybean/corn rotations with increasing 
levels of soil disturbance. 

CMS Crop Management Scenario Operations 

1 

Soybeans: no-till, drill or air seeder with single disk opener planter, harvest 30%  
standing stubble  
Corn: no-till, double disk opener with fluted coulter planter, harvest 60%  
standing stubble 

2 
Soybeans: no-till, double disk opener w/fluted coulter, harvest 30% standing stubble 
Corn: no-till, double disk opener w/ fluted coulter planter, harvest 60% standing stubble 

3 

Soybeans: no-till, drill or air seeder with single disk opener planter, harvest 30% standing 
stubble 
Corn: no-till, double disk opener with fluted coulter planter, harvesting crop 60%  
standing stubble, coulter caddy w/ smooth coulters & rolling basket incorporator 

4 
Soybeans: no-till drill or air seeder with single disk opener planter, harvest 30% standing 
stubble fall chisel, straight point 
Corn: spring field cultivator, double disk opener planter, harvest 60% standing stubble 

5 

Soybeans: chisel, straight point, field cultivator, drill or air seeder with single disk opener 
planter, harvest 30% standing stubble, fall moldboard plow 
Corn: spring disk, field cultivator, double disk opener planter, harvest 60% standing 
stubble 

 
group from the gSSURGO data [34] and assigned to each point location based 
on the lookup table provided in the P Index [12]. If a point location had a dual 
hydrologic soil group, for example C/D (drained/un-drained condition), the 
drained condition C was used as input. 

Soil Test Phosphorus. Soil test P (STP) values were randomly selected from a 
distribution of possible STP values derived from data provided by the three larg-
est soil test laboratories servicing Ohio (A & L Great Lakes Laboratories, Brook-
side Laboratories Inc, and Spectrum Analytic) at a zip code resolution. All STP 
(>500,000) values from 2009 to 2012 were candidates for use in the sensitivity 
analysis. Possible values ranged from 1 to 4172 mg·kg−1 Bray-P1. However across 
88 Ohio counties the 50 percentile ranged from 6.3 to 131 mg·kg−1 Bray-P1. A 
STP value was randomly drawn from all values within the same sub-basin 
(USGS Hydrologic Unit Code-8) as the point location.  

Fertilizer Application Amount. Fertilizer application amount was deter-
mined for the rotation based on the Tri-State Fertility Guidelines [36] using the 
assigned STP level and corn/soybean yield goal. 

Fertilizer Application Method. The fertilizer application method sub-value 
is based on whether or not fertilizer is applied, time until applied fertilizer is in-
corporated and/or the amount of field cover at the time of application (Table 1). 
A combination of random selection and deterministic selection was used for 
each of the 30,670 combinations of 6134 point locations and five crop manage-
ment scenarios. Field cover was determined from RUSLE2 [16] output based on 
a fall (Nov. 17) fertilizer application in crop year 1. If the application amount 
was zero (corresponding to a STP ≥ 40 mg·kg−1 Bray-P1), the application me-
thod sub-value is zero as well. If the fertilizer application amount was greater 
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than zero, the amount of field cover was examined to determine candidate val-
ues of application method, and one of the candidate values was selected based on 
a random selection of time until incorporation (Table 1). If field cover was 
greater than 80%, the only candidate application method sub-value was 0.75. If 
fertilizer was applied and field cover was <80% but ≥50%, the candidate sub- 
values were 0.75 and 1.5. If field cover was <50% but ≥30%, the candidate 
sub-values were 0.75, 1.5, and 3.0. If field cover was <30%, the candidate 
sub-values were 0.75, 1.5, 3.0, and 6.0. 

2.2. Data Analysis 

The sensitivity analyses were performed using a Monte Carlo approach in which 
P Index values were simulated for a variety of field conditions in Ohio agricul-
ture. All data simulation was performed using the R language and environment 
and was coded from scratch [37]. One simulated set of inputs (and, consequent-
ly, one final P Index score) was generated for each of the 30,670 combinations of 
6134 point locations and five crop management scenarios. Where possible, the 
value of each input parameter was generated stochastically from available data. 
Where that was not possible, decision making criteria, as previously discussed, 
were used to establish a distribution of possible input values. Though weightings 
in the P Index are slightly different for fertilizer and manure application rate and 
method (Table 1), for simplicity only fertilizer input weightings have been 
shown here. Having generated simulated P Index scores for the 6134 point loca-
tions across five CMSs, we proceeded to perform three sensitivity analyses.  

Analysis I, Sub-Value Contribution. The first stochastic sensitivity analysis 
examined the relationship between the P Index parameter sub-values and the fi-
nal score. A linear regression was constructed using the final P Index score as the 
dependent variable and each sub-value as independent variables. Type III Sums 
of Squares was used to quantify each input’s explanatory power. Across all in-
puts, the Type III Sums of Squares were normalized to sum to 1 to provide a 
simple measure of relative explanatory power for each input. 

Analysis II, Raw Component Contribution. The second stochastic sensitiv-
ity analysis examined the relationship between raw component inputs and crop 
management practices and the final P Index score. This analysis differs from the 
previous analysis in that raw component inputs and crop management practices 
are used as the independent variables rather than parameter sub-values. As with 
the parameter sub-value analysis a regression model was fitted to the data and 
the Type III Sums of Squares were used to estimate explanatory power for each 
of the characteristics. 

Analysis III, Sub-Value Potential Impact. While the normalized Sums of 
Squares provide information about the unique explanatory power of each varia-
ble, they do not provide information about how much influence each sub-value 
can have on the final P Index score. Following Brandt and Elliot [18], we per-
formed a third analysis to quantify the amount the final P Index score can be 
changed by varying a single parameter. This deterministic sensitivity analysis 
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used the same stochastic output used in the previous analysis of explanatory 
power. We first obtained a central P Index score (15.29), calculated by setting all 
sub-values at their average level. Next, we calculated the 2.5th and 97.5th per-
centiles of each sub-value. This range of values was used to represent a reasona-
ble range of sub-values, excluding some potential outliers that might unduly 
impact the results. Next, we multiplied each regression coefficient from the pre-
vious analysis by its corresponding 2.5th and 97.5th percentiles of the sub-values 
to determine the range of score movement. For some inputs, the result is known 
beforehand and this analysis provides no useful information. For continuous va-
riables and for some categorical scales, this second analysis provides some in-
sight into how much impact a variable can have across a reasonable range of 
values for the input variable. 

3. Results and Discussion 

Erosion Potential. Increased levels of soil disturbance, resulting from increasing 
tillage across the CMSs, resulted in increased erosion. The percent frequency of 
erosion results of <2.24 Mg·ha−1·y−1 (<1 t·ac−1·y−1), 2.24 to 4.47 Mg·ha−1·y−1 (1 to 2 
t·ac−1·y−1), 4.48 to 6.71 Mg·ha−1·y−1 (2 to 3 t·ac−1·y−1) and >6.72 Mg·ha−1·y−1 (>3 
t·ac−1·y−1) are shown in Figure 1(a). Both no-till soybeans/corn but with a single  
 

 
Figure 1. Frequency distribution of (a) soil erosion and 
(b) field cover, from RUSLE2 output for point locations 
across crop management scenarios (CMSs). 
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(CMS1) or double (CMS2) disk opener on the soybean planter, had similar low 
erosion levels with 97.1% and 93.2% of point locations having <2.24 Mg·ha−1·y−1 
respectively. For other CMSs, erosion levels were distributed across the erosion 
classes <2.24 to >6.72 Mg·ha−1·y−1 (Figure 2). The Ohio P Index attributes 1 
point per t·ac−1·y−1 soil loss. Results of simulations show that, except at extreme 
levels of tillage or slope steepness, soil loss was generally <2 t·ac−1·y−1.  

Running RUSLE2.dll simulations across Ohio point location using appropri-
ate gridded SSURGO [34] inputs and a range of crop management scenarios 
should better represent the range of erosion potential than earlier work [22] 
where erosion potential was estimated using “professional knowledge” and the 
average slope steepness, 5.4% for Great Miami River, 5.06% for Little Miami 
River, 11.98% for Scioto River, 2.78% for Upper Wabash and 1.80% for Western 
Lake Erie Basin, for specific Ohio watersheds. 

RUSLE2 outputs for field cover, which are used in the determination of ferti-
lizer placement method are presented in Figure 1(b). Across the CMSs, results 
show decreased field cover with increased soil disturbance. The proportion ru-
noff total P that is particulate bound needs to be evaluated with field studies to 
determine the weighting to be sufficiently protective from a runoff P standpoint 
[11]. Runoff P measurements [38] indicated that runoff sediment accounted for 
78% of runoff total P. 

Connectivity to Water. Based on the decision making criteria, established 
with Ohio USDA-NRCS personnel, approximately 28% of point locations are 
presumed to have concentrated surface flow leaving the field. Defined waterways 
account for approximately 13% and surface drains 15% of the concentrated flow. 
Additionally, approximately 12.4% of point locations were considered adjacent 
(≤250 m) to an intermittent or perennial stream. Approximately 60% of P Index 
connectivity to water sub-values were 0 while 8.5%, 28%, 3% and 1% of sub- 
values were 4, 8, 12 and 16 points.  

 

 
Figure 2. Fertilizer application method sub-values across crop man-
agement scenarios (CMSs). 
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Runoff Class. Approximately 66% of point locations are in the C hydrologic 
soil group with other hydrologic soil groups having a percent occurrence of 2 
(A), 17 (B) and 16 (D). Runoff class sub-values for the point locations ranged 
from 0 to 15 with a sub-value of 4 having the highest frequency of occurrence at 
approximately 31%. Approximately 32% of runoff class sub-values are <4, while 
37% are >4. 

Soil Test Phosphorus. Following the Tri-State Fertility Guidelines [36], 
17.2% of point locations had Bray-P1 STP in the build-up range (<15 mg·kg−1 
Bray-P1), while 35.8% had STP in the maintenance range (15 to 30 mg·kg−1), 
14.8% of STP were in the drawdown range (30 to 40 mg·kg−1) and 32.2% had 
STP >40 mg·kg−1 indicating no additional P fertilizer should be applied. 

Fertilizer Application Amount. Fertilizer application amount was deter-
mined based on Tri-State Fertility Guidelines [36] using the randomly selected 
STP and yield goal. Fertilizer application amount decreased as Bray-P1 STP in-
creased with zero fertilizer application beyond 40 mg·kg−1 Bray-P1.  

Fertilizer Application Method. A frequency distribution of fertilizer applica-
tion method sub-values across CMSs is presented in Figure 2. Fertilizer place-
ment method scores are highly impacted by field surface cover (Figure 1(b)), 
regardless of incorporation. This is evident in the fertilizer placement scores 
(Figure 2). The presumption is that surface cover will reduce P runoff. This 
presumption needs to be investigated in order to evaluate the P Index weighting 
for this parameter. 

Ohio Phosphorus Risk Index Scores. A frequency distribution of Ohio P 
Index scores across crop management scenarios is presented in Figure 3. 

The increase in P Index score due to crop management scenario is apparent 
and is a result of increased soil disturbance and decreased field cover. Increased 
soil disturbance increases erosion potential while decreased field cover increases 
both erosion potential and possible fertilizer placement method sub-values. 
Across the crop management scenarios, one through five, respectively, the current  

 

 
Figure 3. Frequency distribution of Ohio P Index scores across 
crop management scenarios (CMSs). 
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study found that, 64.0%, 63.0%, 57.6%, 51.1%, and 40.7% scored <15 points 
(low); 35.1%, 36.0%, 40.6%, 45.7%, and 52.3% scored 15 to 30 points (medium); 
0.65%, 0.67%, 1.42%, 2.66%, and 5.73% scored >30 to 45 points (high); while 
only 0.29%, 0.29%, 0.39%, 0.57%, and 1.24% scored very high or >45 points 
(Figure 3). 

The current approach of evaluating Ohio P Index scores using simulations 
across a wide range of CMSs, a spatial distribution of point locations and run-
ning the RUSLE2.dll, provides improved soil erosion estimates as well as calcu-
lated field cover, resulting in a refinement of earlier work. The P Index scores in 
the current study are considerably lower than those reported in Williams et al. 
[22] where 65% to 76% of P Index scores were medium and between 88% and 
95% of scores were within the medium and high risk categories. Contributing to 
these discrepancies are considerably higher connectivity to water sub-values due 
to the modified uniform probability distribution Williams et al. [22] used as-
signing 4% of sub-values as zero and 24% each to other possible sub-values of 4, 
8, 12 and 16 points. While still an estimate, following the language in the P In-
dex, which evaluates presumption of concentrated flow first and subsequently 
considers adjacency to intermittent or perennial streams, and the decision mak-
ing criteria developed with Ohio NRCS personnel the current study estimated 
60% of P Index connectivity to water sub-values were 0 while 8.5%, 28%, 3% and 
1% of sub-values were 4, 8, 12 and 16 respectively. Runoff class sub-values were 
also higher in Williams et al. [22] possibly due to high estimates of average Ohio 
watershed slope steepness values (1.80% to 11.98%) used. In the current study 
runoff class sub-values were assigned based on point location representative 
slope steepness (median 1%) and hydrologic soil group and ranged from 0 to 15 
with a sub-value of 4 having the highest frequency of occurrence at approx-
imately 31%. The seemingly high estimates of average slope steepness [22] may 
also have inflated estimates of erosion potential. Across the five CMSs used in 
the current study 97.1%, 93.2%, 61.4%, 51.5% and 31.7% had soil loss <2.24 
Mg·ha−1·y−1. Additionally assigning fertilizer application method sub-values 
based on a uniform probability distribution [22] probably results in an overes-
timation. In the current study a fertilizer application method sub-value of zero 
was assigned to 32.2% of point locations based on no fertilizer application 
(STP > 40 mg·kg−1). Further, based on field cover, it is not possible to have a 
uniform distribution of fertilizer placement method across a broad range of far-
mer management. 

Statistical Analyses. The first (sub-value) and second (raw component) as-
sessment (Table 3) of the sensitivity analysis quantified the unique explanatory 
power of each sub-value or raw component input. The regression analyses of the 
P Index parameter sub-value and raw component inputs (Table 3) produced 
remarkably similar results. In both analyses STP had the largest percent expla-
natory power with 31.9% in the sub-value analysis and 36.5% in the raw com-
ponent analysis. In the sub-value analysis, connectivity to water had the 2nd 
highest explanatory power at 29.7%. Similarly the 2nd and 3rd highest explanatory  
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Table 3. Results of sensitivity analyses for Ohio P Index sub-values (line-item) as well as 
raw component inputs with their corresponding P Index parameter. 

Factor Parameter 
Explanatory Power 

(%) 

Ohio P Index Sub-value Inputs 

Soil erosion 1 13.4 

Connectivity to water 2 29.7 

Runoff class 3 9.5 

Soil test phosphorus 4 31.9 

Fertilizer application amount 5 11.3 

Fertilizer application method 6 2.2 

Filter strip 9 2.0 

Raw Component Inputs 

Slope length 1 0.1 

Slope steepness 1, 2, 3 19.1 

Soil erodibility 1 0.0 

Rainfall erosivity 1 0.2 

Crop management 1, 5, 6 0.4 

Soil texture 1 0.0 

Concentrated flow leaving field 2 24.4 

Stream adjacent 2 4.6 

Hydrologic soil group 3 3.6 

Soil test phosphorus 4, 5 36.5 

Fertilizer application amount 5 6.0 

Field cover 6, 1 0.1 

Fertilizer incorporation/timing 6 2.4 

Filter strip 9 2.7 

 
power in the raw component analysis were two components of connectivity to 
water, slope steepness (19.1%) and concentrated flow (24.4%). However, adja-
cency to an intermittent/perennial stream, also a component of connectivity to 
water, contributed only 4.6% explanatory power. This suggests that a presump-
tion of concentrated flow and slope steepness rather than stream adjacency 
strongly influenced the connectivity to water sub-value. Slope steepness is also a 
component of erosion potential and runoff class, which may also contribute to 
its high explanatory power. In the sub-value analysis erosion had the 3rd highest 
explanatory power at 13.4%. Of the components of soil erosion in the raw com-
ponent analysis, slope steepness had the greatest explanatory power (19.1%), 
while slope length (0.1%), soil erodibility (0.0%), rainfall erosivity (0.2%), crop 
management (0.4%), soil texture (0.0%), and residue cover (0.1%) contributed 
little. In the sub-value analysis, fertilizer application amount provided the 4th 
highest explanatory power at 11.3%, and was similarly moderate at 6% in the  
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raw component analysis. The 5th highest explanatory power in the sub-value 
analysis was runoff class (9.5%). Components of runoff class, slope steepness 
and hydrologic soil group, had explanatory power of 19.1% and 3.6% respec-
tively, in the raw component analysis. Fertilizer application method provided the 
6th highest explanatory power (2.2%) in the sub-value analysis. Similarly, in the 
raw component analysis the components of fertilizer application method field 
cover and fertilizer incorporation/timing had explanatory powers of 0.1% and 
2.4%. Considering the abundance of work [39]-[47] showing the relationship 
between fertilizer/manure application method and runoff P risk, this result 
shows this P Index parameter may considerably under-weighted.  

The third investigation evaluates the potential impact of each parameter on 
the range of P Index score are illustrated as a tornado plot (Figure 4) following 
Brandt and Elliot [18]. The results show the potential point range in P Index 
score movement (Figure 4) for each parameter: connectivity to water (12), STP 
(10), fertilizer application amount (9), soil erosion (8), runoff class (7), fertilizer 
application method (6) and filter strip (2). 

While results from the two types of sensitivity analysis may appear to be in-
consistent, they are actually providing different pieces of information. The first 
two analyses, focusing on explanatory power, give insight into which inputs are 
actually strongly associated with final P Index scores across the range of field 
conditions and CMSs. In contrast, the third analysis, focusing on potential in-
fluence of each input on the range of final P Index score, gives the hypothetical 
influence of each input across its observed range. In cases where the actual dis-
tribution of an input was highly skewed, it often had explanatory power lower 
than would be suggested by its potential influence. As an example, the parameter 
for fertilizer application amount has approximately one third the explanatory 
power of soil test phosphorus, but its range of impact is comparable to that of 
soil test phosphorus (Table 3 and Figure 4). When the range of each of these  

 

 
Figure 4. Range in potential Ohio P Index score movement by varying a single parame-
ter. 
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two variables is multiplied by the weights (to obtain potential influence), the 
values are approximately the same. However, the highly skewed distribution of 
scores for fertilizer application amount means that it is not highly correlated 
with final P Index score. As a result, its explanatory power is low despite its large 
potential for influencing the final P Index score. For example fields that have ap-
plied fertilizer can have their P Index score impacted highly. However, 32.2% of 
fields receive a score of zero for both fertilizer application amount and method 
due to STP > 40 mg·kg−1 and therefore their P Index score is highly impacted. 
Taking into account these differences should assist with appropriate re-weight- 
ing of Ohio P Index parameters. 

Soil test P accounted for a high degree of explanatory power on the final P In-
dex score (31.9%), however, following the Tri-State Fertility Guidelines fertilizer 
application amount only accounted for 11.3% of explanatory power. Based on 
the agronomic approach used 32.2% percent of point locations allowed for no P 
applications, however, in the current P Index, there is no actual prohibition 
against additional P application until a very high (>45 points) score is reached. 
This illustrates that, currently, for Ohio, the P Index approach could be per-
ceived as less restrictive with regards to P application than an agronomic ap-
proach [8] [9]. For example under the current Ohio P Index weighting a Bray-P1 
STP of 150 mg·kg−1 would result in only 10.5 points. Because that level of STP 
would require no further P additions, resulting in a sub-value score of zero for 
both fertilizer placement amount and method, it is not unlikely that this field 
could fall in the low risk category. Ongoing field P loss studies in Ohio will pro-
vide information to evaluate STP levels and P Index weightings as related to P 
runoff [48]-[52].  

Slope steepness, an integral part of connectivity to water, soil erosion and ru-
noff class which ranked 2nd, 3rd and 5th in the sub-value sensitivity analysis, 
had the 3rd highest explanatory power (19.1%) in the raw components analysis 
and was responsible for the 2nd highest potential range of P Index score move-
ment. Even though soil erosion had the 3rd highest explanatory power in the 
sub-value analysis, crop management, which is an integral part of soil erosion, 
had very little explanatory power in the raw component analysis. In fact, slope 
steepness seems to have had a greater contribution to soil erosion. For example 
(Figure 4) shows there are large differences in erosion within CMSs while Table 
3 shows slope steepness having greater explanatory power than CMS. Hence the 
impact of crop management and slope steepness on soil erosion and subsequent 
P Index score needs to be carefully considered for P Index revisions, especially 
since farmers cannot control slope steepness. Soil erosion and runoff class sub- 
values increase with increasing slope steepness. However connectivity to water 
sub-values increase at both, high or low slope steepness due to the presumption 
of concentrated flow of runoff water leaving the field. Perhaps evaluating 
changes in RUSLE2 erosion results across not only changes in CMS, but also 
across slope steepness would be useful. While connectivity to water and STP 
ranked highest in the second sensitivity analysis, fertilizer application amount 
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and soil erosion also played important roles. 

4. Summary and Conclusions 

The current analysis cannot provide insight into whether the P Index, as cur-
rently defined, is a useful measure of phosphorus runoff risk. Field scale studies 
are currently underway to assess the level of association between the P Index and 
measured runoff values. However, the sensitivity analysis does provide insight 
into the ways in which farmers are currently credited or penalized.  

Given Ohio water quality issues, perhaps the P Index should be stricter. Even 
across a broad range of CMSs and STP levels very few P Index scores were in the 
high or very high categories. Additionally, the current interpretation of P Index 
score is heavily focused on manure/biosolids applications. A revised P Index 
needs to be more broadly useful by providing information regarding field-scale 
P runoff risk to all Ohio farmers not only those applying manure/biosolids. As P 
indices are increasingly being used to judge farmer performance [7] [8] [9] [10] 
it is imperative to evaluate weighting/scoring of all components carefully so far-
mers will be credited for management practices that reduce runoff risk and not 
unduly penalized for things they cannot control or are not demonstrably related 
to runoff risk. Refinements in the current approach are not only helpful with an 
evaluation of the current Ohio P Index but will assist with revision decisions by 
spatially illustrating the impact of potential changes regionally and state-wide. 
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