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Abstract 
Diagnosis of soil salinity and characterizing its spatial variability both vertically and horizontally 
are needed to establish control measures in irrigated agriculture. In this regard, it is essential that 
salinity development in varying soil depths be known temporally and spatially. Apparent soil 
electrical conductivity, measured by electromagnetic induction instruments, has been widely used 
as an auxiliary variable to estimate spatial distribution of field soil salinity. The main objectives of 
this paper were adopted a mobile electromagnetic induction (EMI) system to perform field elec-
tromagnetic (EM) survey in different soil layers, to evaluate the uncertainty through Inverse Dis-
tance Weighted (IDW) and Ordinary Kriging (OK) methods, and to determine which algorithm is 
more reliable for the local and spatial uncertainty assessment. Results showed that EM38 data 
from apparent soil electrical conductivity are highly correlated with salinity, more accurate for 
estimating salinity from multiple linear regression models, which the correlation coefficient of 0 - 
20, 20 - 40, 40 - 60 and 60 - 80 cm were 0.9090, 0.9228, 0.896 and 0.9085 respectively. The com-
parison showed that the prediction accuracy of two methods also displays good performance for 
soil salinity, the estimation precision of IDW method (with E = 0.8873, 0.9075, 0.8483 and 0.901, 
RPD = 9.64, 8.01, 8.17 and 11.23 in 0 - 20, 20 - 40. 40 - 60 and 60 - 80 cm soil layers, respectively) 
was superior to that of OK (with E = 0.8857, 0.872, 0.8744 and 0.8822, RPD = 9.44, 7.83, 8.52 and 
10.88, respectively), but differences of two methods in predictions are not significant. The ob-
tained salinity map was helpful to display the spatial patterns of soil salinity and monitor and 
evaluate the management of salinity. 
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1. Introduction 
Soil salinity is not only the most serious environmental issue, but also the most frequently cited soil and agri-
cultural utilization problem for farmers in the arid or semi-arid regions, especially the newly-reclaimed deserti-
fication lands in China [1]. Salinization of irrigated lands is a common phenomenon wherever irrigation is prac-
ticed under arid or semi-arid conditions. Salinization is accelerated when the field is underlain with a shallow, 
semi-confined aquifer exerting upward hydraulic pressure, thereby impeding drainage of the overlying soil lay-
ers [2]-[4]. 

To prevent further soil degradation, soil salinity monitoring is essential so that proper and timely decisions 
regarding soil management can be made. For this purpose, precision agriculture can be used. The EM38 ground 
conductivity meter (Geonics Ltd, Canada) is considered one of the best tools for the appraisal of soil salinity in a 
geospatial context [5] [6]. The EM38 offer the potential to measure numerous soils attributes without the need 
for destructive sampling. 

Over the last 30 years the application of electromagnetic (EM) induction instruments for natural resource 
management has increased. For example, the root-zone sensing EM38 has been used to map soil management 
zones [7] and discern the spatial distribution of average soil moisture [8] [9], soil salinity [10]-[12], clay content 
[13] [14], and canon exchange capacity [15]. This is because the EM38 measures the apparent soil electrical 
conductivity, which is a function of these soil properties. As a consequence, related soil management issues such 
deep drainage risk [16] and depth to a water table [17] have also been mapped using digital soil mapping methods. 

Geostatistical methods find wide applications, for example in geology, meteorology, hydrology and ecology, 
such as kriging, have been introduced into soil science to provide estimation at unsampled locations [18]-[21]. 
With the application of geostatistical methods, Huang et al. [22] mapped spatial patterns of soil salinity on the 
field scale from aboveground electromagnetic induction (EM) readings by substantially reducing the number of 
soil samples. Barbiéro et al. [23] studied the salt distribution in middle Senegal valley to understand its variabil-
ity, and to describe its structure and spatial arrangement using a portable EM38. Tripathi et al. [24] delineated 
the spatial distribution of ECato assess cause and management of soil salinization in an irrigated cotton-growing 
field using a mobile electromagnetic sensing system. In a more rigorous analysis, Triantafilis et al. [25] com-
pared several geostatistical models in order to determine an optimal approach for accurately predicting soil sa-
linity from EM38 field survey data within the Namoi valley in Australia. Similarly, Yang and Yao [26] applied 
several geostatistical approaches and studied the spatial similarity of EM38 data of various sample quantities to 
determine the optimal prediction method. 

In this paper, we describe an approach to determine optimal operation modes for the establishment of multiple 
linear regression models to estimate salinity from apparent soil electrical conductivity measured by EM38. It al-
so provides a basis for the selection of optimized operation modes of EM38 infield survey. Secondly, we applied 
IDW and OK methods to determine the spatial variability and patterns of soil salinity over the study area, com-
paring and validating the accuracy of the spatial estimation of soil salinity based on a series of realization. Fi-
nally, determining which method is more reliable for the study scale and spatial uncertainty assessment, illu-
strating trend maps of soil salinity distribution for study area.  

2. Materials and Methods 
2.1. Study Area 
This study was conducted on Beiwucha Farm located in the Manasi River Basin, the north of Tianshan Moun-
tains, Xinjiang Uygur autonomous region, in northwestern China (Figure 1). It was reclaimed in 2011 and cul-
tivated cotton in 2012-2014. The research field covers 0.385 km2 (550 × 70 m) with a 0.2% - 0.4% slope north-
west to southeast; the area is 380 m above sea level and experience an arid climate with mean annual tempera-
ture, precipitation, evaporation and frost-free period of 7.6˚C, 148.5 mm, 1972 mm and 187 d over a 20-year  
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Figure 1. Distribution map of in situ soil cores and EM survey. 

 
period, respectively. 

The farmland for the present study was reclaimed in 2011 and cotton was planted in 2011-2014. Soil salinity 
is known as a most significant problem in this farm and large areas of salt-affected land was observed due to a 
very saline shallow water table (average mineralization of 35.0 g∙L−1and water table of 0.5 to 2.5 m). 

2.2. EM Survey and Soil Sampling 
Initially, observation soil sites were arranged on a grid in the study plot, with an average interval of 10 m from 
northeast to southeast (X) and 10 m from southeast to northwest (Y) (Figure 1), and a total of 250 soil sites 
were selected. At each site, an electromagnetic induction (type EM38) was placed on the ground surface and 
measurements in both the vertical (EMv) and horizontal (EMh) modes of operation were made. Later 70 sites 
which covered a wide range of soil salinity were randomly chosen from the total 250 soil sites for soil sampling. 
We were focused on 0 - 80 cm arable layer for cotton root growth regions because of using drip irrigation under 
mulch in study area; soil samples were obtained by hand augering at 0 - 20, 20 - 40. 40 - 60 and 60 - 80 cm soil 
layers intervals to a depth of 0.8 m for the laboratory analyses of electrical conductivity (EC). In all, EM mea-
surements (EMh and EMv) of 250 sites and soil samples of 70 in situ cores (280 soil samples) were collected. 
Soil sampling and EM gauging was carried out from March 25th to April 5th 2013 when soil moisture conditions 
were relatively uniform across the plot. 

2.3. Laboratory Analysis 
All soil samples were air-dried, crushed, and passed through a 2-mm sieve. The 1:5 soils: water suspensions 
were prepared by weighing 12 g of soil into a pop-top tube, adding 60 ml of deionized water, and shaking for 30 
min on an end-over-end shaker. After being left for 30 min, the EC1:5 of the supernatant were measured with a 
conductivity meter directly (Miller et al. 2006). In addition, 200 soil samples of 50 profiles that varied greatly in 
soil salinity were chosen and prepared for analysis of total dissolved salts (TDS).The TDS of soil samples was 
determined by summing up the dominant cations (Ca2+, Mg2+, Na+, K+) and anions ( 2

3CO − , 3HCO− , Cl−, 2
4SO − ) 

of 1:5 soil water extracts. A comparison between EC1:5 and the TDS showed a strong positive linear relationship, 
and the equation of the fitted line relating the TDS (g∙kg−1) to EC1:5 (dS∙m−1) values were given by: 

1:5TDS 3.5127EC 0.3816, 200n= + =                            (1) 

The TDS values of the rest 80 soil samples (20 profiles) whose TDS values were not measured were esti-
mated from EC1:5 on the basis of this relationship (r2 = 0.9517). The TDS value was used as a surrogate for the 
widely used ECe to determine soil salinity in our study. 

2.4. Spatial Estimation Methods 
2.4.1. Inverse Distance Weighted (IDW) 
IDW is arguably the most commonly used method in GIS among the moving window average type approaches 
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[27] [28]. It is a local and exact method that predicts an unknown spatial value at a target location using the ob-
served values at the nearest sample locations in straight-line distance and assigns a weight that is inversely pro-
portional to the straight-line distance from the respective sample location. 

2.4.2. Ordinary Kriging (OK) 
Kriging is a spatial interpolation method that builds on the geostatistical principle of regionalized variables [29]. 
It predicts an unknown value of a target location using a linear combination of observed values at the nearby 
sample locations whose weights are determined by a stochastic model of the spatial dependence quantified by 
the semivariogram. Among the many variants of kriging, we will adopt ordinary kriging [30], which is the most 
widely used form of spatial interpolation method among the family of kriging methods [28] [31]. It is also a 
suitable candidate for making a direct comparison with IDW, as both methods use the same set of sample loca-
tions and assume that the sum of the weights between the sample locations to be 1. This means that the compo-
sition of the weights assigned by each method determines the level of accuracy of the prediction. 

2.5. Evaluation Criteria 
We used cross-validation to validate the accuracy of interpolation algorithms and examine the difference be-
tween the measured values and the predicted values using mean absolute errors (MAE) or relative MAE 
(MAE %) (Equation (2)), root-mean-square error (RMSE) or relative RMSE (RMSE %) (Equation (3)), ratio of 
prediction to deviation (RPD) (Equation (4)) and model efficiency factor (E) (Equation (5)). The RPD indicates 
strength of statistical correlation between measured and predicted values. MAE, RMSE and E values indicate 
degree of agreement between measured and predicted values. Detailed descriptions and definitions of these 
model performance parameters are given by [32] [33]. 
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where ( )iZ x  is the observed (measured) value of Z at locations ix , ( )iZ x∗  is the predicted value at the 
same locations, ( )iZ x , ( )iZ x∗  is the average measured and predicted value, respectively. N is the number of 
values in the dataset.  

Conventional statistical analyses were conducted using the software package SPSS 17.0 for Windows (SPSS 
Inc., Mat Lab, USA). Geostatistical analyses and mapping were performed by using Arc GIS 10.0 software 
package (Environmental Systems Research Institute, Redlands, CA). 

3. Results and Discussion 
3.1. Calibration of EM Measurements 
Fifty sites out of the 70 in situ sampling sites were selected for the spatial simulation of soil salinity, and the rest 
20 sites were used for validation of IDW, OK algorithms. In the calibration procedure, the TDS data was selected 
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as the dependent variable and apparent soil electrical conductivity (EMh and EMv) made by the EM38 as the in-
dependent variable. The linear regression model was then fitted the data from the selected 50 sampling sites. 
This yielded of predictive equations across the whole soil profile (Table 1). Readers are referred [34]-[36] for 
similar approaches with variations. 

Both EMh and EMv measurements showed significant linearity with the TDS at each soil layer. Multiple li-
near regression using EMh and EMv as independent variables gained higher regression coefficients than those 
fitted by linear regression (Table 1), the correlation coefficient of 0 - 20, 20 - 40, 40 - 60 and 60 - 80 cm were 
0.9090, 0.9228, 0.896 and 0.9085 respectively. The multiple linear predictive equations were then used to re-
construct the salinity profiles at the 180 soil sites where EM measurements were made. 

3.2. Descriptive Statistics 
Summary statistics and normal test of soil salinity from multiple linear regression datasets was performed in 
different soil layers, and the results, present in Table 2, indicated that the average soil salinity value was com-
paratively high with regard to the generally accepted limit for most agricultural crops. The minimum and maxi-
mum of soil salinity were 9.56 g/kg in 20 - 40 cm soil layer and 40.06 g/kg in 0 - 20 cm soil layer, respectively, 
the means were greater than 24.0 g/kg in different soil layers. As it resulted also from the parameters of one- 
sample Kolmogorov-Smirnov (K-S) normality test (p < 0.05, two-tailed), skewness and kurtosis, the data of all 
variables did follow normal distributions. 

3.3. Semivariogram Analysis 
The experimental semivariogram γ(h) measuring the spatial autocorrelation between data pairs as a function of 
the displacement between the pairs was calculated and the scatter plot of γ(h) vs. h (lag distance) was gained. 
Then different theoretical semivariance models were used to fit the calculated values, and the model with the 
best fitting value and the smallest nugget value was selected [37]. The fitted parameters of the semivariograms 
and cross-semivariograms at both orientations were summarized in Table 3. These semivariogram parameters 
include the nugget value C0, partial sill (C), sill (C0 + C), range value a and nugget-sill-ratio ( ( )0 0C C C+ ). Va-
lidation information used to determine the goodness of fit includes determination coefficient (r2), residual sum 
of squares (RSS) and significance level of F test. 

More often than not, positive nuggets were observed during surveys of most soil properties [38]. In this study, 
namely nugget-to-sill ( )0 0C C C+  slightly positive nuggets of 5.58%, 0.97%, 0.62% and 0.34% were ob-
served for soil salinity in different soil layers (Table 3), respectively. Cambardella et al. [39] defined nugget- 
sill-ratio of <25%, 25% - 75%, and >75% as categories of strong, moderate, and weak spatial dependence, re-
spectively. In this study, indicating the spatial variance caused by structural factors (such as climate, matrix and 
topography) is much higher than that caused by stochastic factors (such as tillage, irrigation, fertilizer applica-
tion, etc.) at whole study scale; the reclaimed farmland is also one of reasons for few human agricultural prac-
tices, perhaps. The goodness of fitting was determined by determination coefficient (R2), residual sum of squares 
(RSS) and significance level of F test. The results, also shown in Table 3, were quite satisfactory for all va-
riables at different soil layers, because the statistics used, i.e. residual sum of squares was close to 0 and F test 
was significant at level of p < 0.05. 

3.4. Spatial Distribution of Soil Salinity 
Ordinary kriging and IDW methods were applied to estimate the soil salinity of EM38 data at unsampled locations 

 
Table 1. Regression relationships between apparent soil electrical conductivity and salinity (n = 50). 

Soil layer (cm) 
hTDS EMa b= + ∗  vTDS EMA B= + ∗  h vTDS EM EMα β γ= + ∗ + ∗  RMSE 

a b R RMSE A B R RMSE α β γ R 

0 - 20 1.4058 0.0482 0.9021 0.5988 2.3954 0.0377 0.8155 2.0413 −1.1047 0.0041 0.0096 0.9091 0.5781 

20 - 40 4.0902 0.0324 0.8761 0.822 6.7537 0.0486 0.8358 1.2254 −6.7860 0.0047 0.0126 0.9228 0.5211 

40 - 60 3.206 0.0445 0.8541 1.021 2.334 0.0355 0.8622 0.9015 1.4620 0.0012 0.0360 0.896 0.6107 

60 - 80 2.3134 0.0342 0.8279 1.7429 4.4915 0.03715 0.8992 0.6014 −1.1620 0.0135 0.0432 0.9085 0.5622 
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Table 2. Summary statistics of soil salinity. 

Soil layer (cm) Min. g/kg Max. g/kg Mean. g/kg s.d. Skewness Kurtosis CV K-Sp 

0 - 20 17.78 40.06 27.88 5.09 0.0800 2.5900 0.1826 0.5600 

20 - 40 9.56 36.81 25.33 5.09 −0.0200 2.3400 0.2009 0.6610 

40 - 60 17.06 31.88 24.67 3.38 −0.1600 2.3900 0.1370 0.5750 

60 - 80 17.25 35.75 26.57 4.22 −0.1100 2.3700 0.1588 0.6030 

 
Table 3. Fitted parameters of experimental semivariogram of TDS, where C0 is nugget, C is partial sill, C0 + C is sill, 

( )0 0C C C+  is nugget-to-sill ratio, α is range, R2 is determination coefficient and RSS is residual sum of squares. 

Soil layer (cm) C0 C C0 +C ( )0 0C C C+
 

a(m) R2 RSS F Model 

0 - 20 1.21 20.49 21.7 0.0558 30.13 0.906 0.89 ** Gaussian 

20 - 40 0.21 21.45 21.66 0.0097 25.28 0.829 1.73 * Gaussian 

40 - 60 0.06 9.57 9.63 0.0062 25.66 0.841 1.11 * Gaussian 
60 - 80 0.05 14.85 14.9 0.0034 25.46 0.837 1.05 * Gaussian 

 
using semivariogram models in Table 3. Considering the whole application, including trend analysis, semivari-
ogram calculation and interpolation was applied to generate the spatial distribution map. Raster maps (2 m × 2 m) 
of soil salinity across the study area were presented in Figure 2. 

A jack-knifing procedure of cross-validation was employed to statistically evaluate the performance of the 
spatial prediction of TDS data. The results showed that root mean square error (RMSE) of ordinary kriging for 0 
- 20, 20 - 40, 40 - 60 and 60 - 80 cm prediction was 0.8852, 0.9 077, 0.8926 and 0.9143, respectively, while it 
was 0.9177, 0.9524, 0.9376 and 0.9408 for IDW, respectively, which indicates high prediction precision and re-
liability of IDW method to the interpolation plots of soil salinity (Figure 2). 

Figure 2 shows the local and regional variation information of soil salinity at each of layers in 0 - 0.8 m soil 
solum. Soil salinity exhibited strip and block patterns, and similar spatial patterns can be observed from maps of 
all soil layers. As was plainly illustrated that, for both OK and IDW, the grids of TDS < 15.0 g/kg almost no po-
sition, the grids of 15.0 < TDS < 20.0 g/kg generally concentrated in the east-central positions, the grids of 20.0 
< TDS < 25.0 g/kg mostly occurred in east-central and south-east portions of the study domain, the grids of 25.0 
< TDS < 30.0 g/kg considered as the predominant soil salinization type, spread throughout the whole study plot, 
the grids of TDS > 30 g/kg were mainly situated in the northwest and southwest sporadically. It was also appar-
ent that the northwest and southeast region of the study area were most salinized compared with other regions, 
especially at soil layers of 0 - 20 and 60 - 80 cm. This phenomenon can be explained by many reasons. For one 
thing, this highly salinized position is situated in low-lying area, more influences from the shallow water table 
and high groundwater mineralization to 60 - 80 cm layer. For another, intense evaporation and scarce precipita-
tion in the study area have induced soluble salt to transport upward to 0 - 20 cm layer. 

3.5. Spatial Estimation and Its Performance 
With the 20 observation soil sites (80 soil samples) randomly selected as external dataset to estimate the predic-
tion yields of IDW and OK methods. Figure 3 shows good performance of TDS by both methods, comparing to 
coefficient of determination (R2), R2 between predictions and observations ranges from 0.6074 to 0.5918 for 
IDW method and from 0.6219 to 0.5088 for OK method. This result reveals that IDW prediction value has better 
performance than OK in different soil layers, except 40 - 60 cm.  

Based on the statistical parameters as discussed, both IDW and OK model are validated using the model effi-
ciency factor E and RPD of predicted values. The E and RPD between reference measurements, i.e. accurate or 
good prediction if RPD and E values are higher than 2.5 and 0.80 respectively by Farifteh et al. (2007), suggest 
an accurate to good prediction. It is observed from Table 4 that IDW method (with E = 0.8873, 0.9075, 0.8483 
and 0.901, RPD = 9.64, 8.01, 8.17 and 10.83 in 0 - 20, 20 - 40, 40 - 60 and 60 - 80 cm soil layer, respectively) 
predicts an accurate TDS slightly better than OK methods. In addition to MAE% and RMSE%, it is considered 
that IDW performs slightly better, differences between IDW and OK methods in predictions are significant for 
both variables based on the analysis of covariance (ANOVA) test (P < 0.05). 
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4. Conclusions 
With the application of soil sampling and site-specific measure of electromagnetic induction instruments (EM38), 
relationships between soil salinity and electromagnetic induction measurement were calibrated. By using GIS 
and geostatistical technique, spatial distribution of soil salinity at the field scale was mapped and quantitatively 
evaluated based on the field survey of mobile EMI system.  

Owing to the high-efficient and non-invasive nature of EM measurements, they were selected as the covariate 
of soil salinity. In our study, sampling sites for measurement of salinity using conventional lab techniques and 
via electromagnetic induction instruments were selected. Analysis results indicated that apparent soil electrical 
conductivity measured by EM38 was strongly correlated with soil salinity, the multiple linear combinations of  

 

 
Figure 2. Spatial distribution plots of soil salinity at various soil layers (A by IDW, B by OK method). 
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Figure 3. Plots of the measured versus predicted values and the fitted regression line and equation at 
various soil layers (A by IDW, B by OK method). 
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Table 4. Performance of predicted values using IDW and OK methods. 

Method Soil layer (cm) MAE MAE% RMSE RMSE% E RPD 

IDW 

0 - 20 2.46 9.13 2.92 10.59 0.8873 9.64 

20 - 40 2.23 10.18 2.85 13.00 0.9075 8.01 

40 - 60 1.58 11.11 3.12 12.82 0.8483 8.17 

60 - 80 1.80 7.14 2.40 9.52 0.9010 11.23 

OK 

0 - 20 2.34 8.49 2.99 10.85 0.8857 9.44 

20 - 40 2.47 11.28 2.99 13.66 0.8720 7.83 

40 - 60 1.82 9.97 2.90 11.90 0.8744 8.52 

60 - 80 1.92 7.64 2.41 9.55 0.8822 10.88 

 
EM measurements (EMh and EMv) were established in terms of their response to salinity at different soil layers, 
the correlation coefficient of 0 - 20, 20 - 40, 40 - 60 and 60 - 80 cm were 0.9091, 0.9228, 0.896 and 0.9085 re-
spectively. Descriptive statistics showed, the average soil salinity value was comparatively high (the maximum 
value was 40.06 g/kg) and the data of all variables did follow normal distributions from K-S normality test. 

Ordinary kriging and IDW methods were applied to estimate the soil salinity of EM38 data at unsampled lo-
cations using semivariogram and with the 20 observation soil sites (80 soil samples) randomly selected as ex-
ternal dataset to estimate the prediction yields. The comparison showed that the prediction accuracy of two me-
thods also shows good performance for soil salinity, IDW (with E = 0.8873, 0.9075, 0.8483 and 0.901, RPD = 
9.64, 8.01, 8.17 and 11.23 in 0 - 20, 20 - 40, 40 - 60 and 60 - 80 cm soil layers, respectively) was superior to that 
of OK method (with E = 0.8857, 0.872, 0.8744 and 0.8822, RPD = 9.44, 7.83, 8.52 and 10.88, respectively), in-
dicating IDW method was more suitable for the spatial estimation of the present soil property, distribution type 
and data arrangement in our research scale. In this study, soil profile to depth of 0 - 20 and 60 - 80 cm is our in-
terest for the reason that more soil salinity at these layers, because the soil sampling and EM survey was per-
formed in springtime, just the intense evaporation and scarce precipitation in the study area have induced soluble 
salt to transport upward to surface layer, and shallow water table. 

Considering the soil conditions of high initial salinity, arid climate and the bad conditions of groundwater in 
Xinjiang region, the EM instruments were reliable profile salinity screening tools for salinized soil in our study 
area. Our results show that the decisive factor for soil salinization is capillary rise from the saline shallow water 
table and matrix matrices. Due to the particular soil and climate conditions, high salt-stress tolerance crops such 
as cotton and wheat are probably the pioneer crops that can be grown successfully. Installation of irrigation and 
drainage facilities may in some cases be a necessity because natural salinity levels are such that significant yield 
losses can be expected. 
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