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Abstract 
Phragmites australis, Potamogeton pectinatus, Potamogeton perfoliatus and Ceratophyllum demer- 
sum were selected to study concentrations of PAHs in lotic ecosystems. Six sampling sites were 
selected along Al-Hilla River and sampling was conducted in 2010 and 2011. Sixteen PAHs listed as 
priority pollutants were detected in the samples collected, including Naphthalene (Nap), Acenaph- 
thylene (Acpy), Acenaphthene (Acp), Fluorene (Flu), Phenanthrene (Phen), Anthracene (Ant), Flu-
oranthene (Flur), Pyrene (Py), Benzo (a) Anthracene (B(a)A), Chrysene (Chry), Benzo (b) Fluo-
ranthene (B(b)F), Benzo (k) Fluoranthene (B(k)F), Benzo (a) Pyrene (B(a)P), Dibenzo (a, h) Anth-
racene (D(b)A), Benzo (ghi) Perylene (B(ghi)P) and Indeno (1,2,3-cd) Pyrene (Ind). The results of 
the study illustrate that the PAH concentration in macrophytes varies among their species. These 
variances were as follows: P. australis 0.425 to 299.424 µg/g dry weight (Dw) for B(ghi)P and 
B(b)F, respectively; P. perfoliatus 0.354 to 235.84 µg/g Dw for B(b)F and B(ghi)P, respectively; C. 
demersum 0.996 to 162.942 µg/g Dw for Ant and B(ghi)P, respectively; and P. pectinatus 0.383 to 
99.87 µg/g Dw for Ant and Nap, respectively. The accumulation potential of PAHs was also inves-
tigated by calculating the Bioconcentration Factor (BCF) and Bio-sediment Accumulation Factor 
(BSAF). The ranges of BCF ratios were 0.05 to 5334.5, 0.08 to 1602.5, 0.01 to 536.6, 0.16 to 1882 in 
P. australis, P. perfoliatus, P. pectinatus and C. demersum, respectively. The range of BSAF ratios 
were 3.14 to 1041.6 and 1.5 to 2920.8 in P. australis and P. perfoliatus, respectively. 
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1. Introduction 
The race to build factories in different countries of the world increases environmental degradation caused by 
various pollutants and one of these pollutants is polycyclic aromatic hydrocarbons (PAHs). PAHs are a class of 
organic compounds consisting of two or more aromatic rings [1]. Based on their formation, PAHs can be pyro-
genic, petrogenic, diagenic or biogenic [2] [3]. Pyrogenic PAHs are derived from the incomplete combustion of 
various fuels, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat [4]. 

PAHs exist in the environment and are distributed in both aquatic and terrestrial environments. Due to their 
properties such as low aqueous solubility and hydrophobic nature, PAHs are most likely found bound in soils 
and sediments, and accumulated in the food chain, due to affinity to fatty tissues of organisms [5]. PAHs consti-
tuents of non-aqueous phase liquids, make them largely unavailable to microorganisms [6]. Of particular interest 
in the environment is the acute lethal and sub-lethal toxic effect in freshwater organisms at very low aqueous 
concentrations [7]. 

The uptake of large molecules by plant cells is difficult depending on the structure of the cell wall system, es-
pecially when they are lipophilic [8]. 

Prasad et al. [9] revealed that aquatic plants have the ability to uptake bioavailable compounds through their 
thin cuticle. Rooted aquatic plants have a bioavailabitiy role [10] [11]. 

Most plant species are sensitive to PAHs to some degree since PAHs can limit primary productivity and con-
strain total biological activity in an ecosystem [10]. Accumulation of PAHs by plants represents an entry point 
of hazardous compounds into the food web, initiating a biomagnification process [12] [13]. Plants can be used as 
a guard species for PAH contamination detection in the environment [14]. Further, a rapid assessment of nega-
tive impacts of PAHs can be detected by using plants as a bioindicator [15] [16]. As an added benefit, bioindica-
tors reveal a great deal about the underlying mechanisms of toxicity [17] [18]. Plants that can tolerate contami-
nated sites can generate a large biomass to remediate PAHs [8] [19]. 

In aquatic systems, assimilation of contaminants by plants is rapid and efficient, even from sediment, and be-
cause of higher affinity of organics to plant tissues than the aqueous phase, the BCFs can be very high [20]. 
Plants can also assimilate organics following aerial deposition on the leaves [21], thus the contaminants received 
in this manner can be highly toxic, and represent an important entry point of organic compounds into the food 
chain. Plants grown in areas with high PAH loads in the soil or air have high bioconcentrations of PAHs [12], 
because PAHs are lipophilic and tend to accumulate in plants, especially in membrane bilayers [20] [21]. 

The present study dealt with the fate of PAHs in some macrophytes, in addition to their concentrations and 
origin of some PAHs in macrophytes. 

2. Material and Methods 
2.1. Study Area 
Six sites were selected along Al-Hilla River (Figure 1) as described in Hassan et al. [22] and Salman et al. [5]. 
Table 1 illustrates global positioning system (GPS) locations. 

The studied macrophytes (Phragmites australis, Potamogeton pectinatus, Potamogeton perfoliatus and Cera-
tophyllum demersum) were observed at all sites. Samples were collected between March 2010 and February 
2011. 
 

Table 1. Coordinates for studied sites.                                                      

Site Longitude (East) Latitude (North) 

1 44˚18'16.62" 32˚40'52.32" 

2 44˚16'40.33" 32˚46'26.40" 

3 44˚23'19.92" 32˚33'13.57" 

4 44˚26'22.85" 32˚28'59.81" 

5 44˚29'16.15" 32˚25'18.51" 

6 44˚39'10.41" 32˚22'17.77" 
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Figure 1. Map of the study area.                                                                                                                            

 
Data pertaining to the physicochemical characterization and PAH concentrations in water and sediment of Al-

Hilla River was taken from Hassan et al. [22]. 

2.2. Macrophytes Sampling 
Macrophyte samples were sequentially washed with river water, tap water, and distilled water, dried at 15˚C and 
wrapped in aluminum. Fresh samples were also wrapped, labeled and frozen at −20˚C for subsequent lipid con-
tent determination [23]. 

2.3. Extraction of PAHs 
Dried specimens were sieved (63 mesh sieve) and 10 g of plant material were well mixed in a metal blender 
with 50 ml acetone for 5 minutes. The solution was left overnight in a dark and cold location. After shaking for 
one hour, the solution was separated and the extract placed in dark glass containers. This step was repeated three 
times [24]. The solution was centrifuged at 2500 RPM for 5 minutes. Then the supernatant solution was trans-
ferred to a flask with 50 ml Hexan and 100 ml deionized water. Upon separation, the upper layer was collected 
and 50 ml KOH (20 ml aqueous solution in ethanol) was added. The solution was reduced to 10 ml by rotary 
evaporator and transferred to a cleanup process [25]. 

2.4. Clean-Up Process 
Because the extract contains complex components, the clean-up procedure was undertaken by column chroma-
tography using 25 cm of deactivated silica gel (60 - 120 mesh) packed in a glass column (250 mm × 15 mm in-
ternal diameter) and Tetrachloromethane for six hours, followed by heat activation at 250˚C for 12 hours and 
then cooled and deactivated with water (10%). After deactivation, the solution was stored in an air—tight dark 
glass and used within 72 hours. The column was pre-eluted with 10 ml Hexane and the extract was passed 
through the column and eluted with 50 ml Benzene to separate all PAH compounds [23] [26]. 
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2.5. Lipid Determination 
In a pre-weighted round flask, add 10 g wet homogenate tissue and 50 g anhydrous sodium to 250 ml of acetone. 
Allow to evaporate to dryness and re-weigh. The difference between these weights of flask referrers to lipid con-
tent [24]. 

2.6. Blank 
Laboratory reagents and glassware were analyzed with each sample to check if any interference that may have 
been introduced during the extraction and analytical procedure [27] [28]. 

2.7. Analysis of PAHs 
Both hexane and benzene were evaporated to dryness by rotary evaporator and the residue was dissolved with 1 
ml (90:10) Acetonitrile:Methanol. The extract was stored at −20˚C until analysis by high performance liquid 
chromatography. 

2.8. Standard Solution 
A standard solution of sixteen US EPA priority PAHs was obtained from Sigma-Aldrich Corporation in order to 
compare the retention times and spectra of compounds in the standard with those in the sample. The standard ca-
libration contains the following compounds: 

Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene [PHE], Anthracene [ANT], Fluoran-
thene, Pyrene, Benzo(a) anthracene [B (a)A], Chrysene [Chry], Benzo(b)Fluoranthene [B(b)F], Benzo(k) Fluo-
ranthene [B(k) F], Benzo(a) pyrene [B(a) P], Dibenzo (a,h) anthracene [D(a,b) A], Benzo (ghi) Perylene [B(ghi) 
P] and Indeno(1,2,3-cd) pyrene [Ind]. 

2.9. Bioconcentration Factor (BCF) and Biosediment Accumulation Factor (BSAF) 
BCF(l/g) = PAH concentration in specimen/PAH concentration in water. 

BSAF = PAH concentration in specimen (µg/g)/PAH concentration in sediment (µg/g) × Total Organic Car-
bon (µg/g)/Lipid content (µg/g). 

2.10. Toxicity of Carcinogenic PAHs 
Seven carcinogenic PAHs (c-PAHs) were selected according to EPA (1993): B (a) P, B (a) A, B (b) F, B (k)F, 
Chry, DbA and Ind (Table 2). The toxicity equivalency factor (TEF) was calculated (see below) to assess the 
risks of a mixture with a related compound Method B cleanup level (EPA, 1993) relative to B (a) P). 

TEF = Concentration of c-PAH × equivalent related compound. 
Total Toxicity Equivalence Concentration (TTEC) = ΣTEF. 
It must not exceed the method by cleanup level for B (a) P (0.137 µg/g) [29] [30]. 
The average concentration for each PAH compound and maximum mean for it were compared with standard 

criteria in Table 2. 
 

Table 2. Standard criteria for Equivalent c-PAHs [31].                    

Compounds Equivalent 

B (a) P 1 

B (a) A 0.1 

B (b) F 0.1 

B (k) F 0.1 

Chry 0.01 

DbA 0.1 

IND 0.1 
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2.11. PAH Origin 
The PAH origin was assessed according to ratios (Phe/Ant, Chry/BaA, Flu/Pyr, Flu/(Flu + Pyr) and low mole-
cular weight/high molecular weight [32] [33]. 

2.12. Statistical Analysis 
The results were analyzed statistically by SPSS (ANOVA, Mean and Standard Deviation) and Canoco for Win-
dows 4.5 (CCA) for the relationships among all tests in the current study. 

3. Results and Discussion 
Many studies have considered lower and higher plants as bioindicators and biomonitors [34] [35], and also the 
usage of aquatic plants in wastewater treatment, detoxification and phytoremediation [36]-[38]. 

The results of quality and quantity of PAH compounds in selected aquatic plants are shown in Tables 3-6. 
The characteristic values of selected molecular ratios for pyrogenic and petrogenic origins of PAHs in the stu-
died plants are Tables 7-10. 

The mean range of PAHs in macrophytes were as follows: P. australis 0.425 - 299.424 µg/g DW, P. perfo-
liatus 0.354 - 235.84 µg/g DW, C. demersum 0.996 - 162.942 µg/g DW, and P. Pectinatus 0.383 - 99.87 µg/g 
DW (Figure 2). The variation between aquatic plants may be due to the ability of P. australis to absorb the pol-
lutants from sediment and water [39] [40], and its high growth rate and luxury accumulation of major nutrients 
in stems, roots, and rhizomes [41]-[43]. Other studied macrophytes exhibit lower values because these plants are 
non-rooted submerged macrophytes, which depend on compound availability in the water column [44] [45]. 
 

    
 

    
Figure 2. PAHs concentrations in the studied sites for P. perfoliatus, P. australis, 
C. demersum and P. pectinatus.                                                     
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Table 3. Values of PAHs compounds in P. pectinatus during March 2010-February 2011 (S = Speing, S = Summer, A = 
Autumn, W = Winter).                                                                                      

Station Season 
PAHs Compounds (µg/g) 

Nap Acpy Acp Flu Phen Ant Flur PY B(a)A Chry B(b)F B(k)F B(a)P D(b)A B(ghi)P IND 

1 

S 73.56 71.26 ND ND 5.06 0.76 ND ND 10.55 7.23 1.76 7.55 3.72 52.91 84.56 2.45 

S 14.75 16.71 1.03 0.00 ND ND 0.58 1.04 1.67 ND ND 1.82 0.16 10.36 22.47 0.96 

A 79.93 78.99 6.07 30.80 ND ND 2.75 ND ND 3.58 3.33 7.90 3.00 50.44 84.03 2.58 

W ND ND ND 1.15 0.98 1.01 7.30 3.98 7.81 7.69 ND 11.31 3.05 ND 82.48 2.39 

Mean 59.95 41.74 3.69 7.99 3.85 0.44 3.61 2.01 5.01 4.62 1.27 7.14 2.48 28.43 68.38 2.09 

±S.D. 30.34 39.72 3.74 15.22 2.91 0.51 2.80 1.80 4.99 3.59 1.60 3.93 1.58 27.19 30.62 0.76 

2 

S 62.83 98.01 5.35 7.45 2.06 ND ND 5.27 13.35 4.32 1.16 ND 3.96 88.13 62.49 1.34 

S 12.55 ND ND ND 0.48 0.00 ND ND 2.01 0.54 ND 0.00 0.48 0.00 25.01 0.55 

A 67.29 97.28 ND ND 2.34 0.97 ND ND 11.97 3.60 ND 4.44 2.00 81.14 84.27 1.55 

W 70.67 91.67 10.11 1.25 ND ND 8.07 ND ND ND 1.31 6.97 ND 84.17 79.66 2.79 

Mean 53.33 80.10 7.73 2.17 1.66 0.38 3.82 2.52 6.83 2.11 0.68 2.85 1.61 63.36 62.86 1.56 

±S.D. 23.37 31.23 5.20 3.56 0.82 0.47 3.70 2.91 6.80 2.16 0.65 3.45 1.78 42.33 26.91 0.92 

3 

S 54.22 59.78 3.33 ND ND 0.93 12.39 7.69 6.34 ND 1.22 3.98 1.89 47.39 81.66 1.03 

S 12.59 ND ND ND 0.46 0.00 0.00 2.89 0.26 0.00 0.64 0.38 ND 0.00 ND 0.73 

A 66.33 ND ND ND 1.38 1.91 13.55 0.00 7.78 7.25 2.97 2.88 ND 47.78 ND 1.24 

W 57.24 ND ND ND 0.11 0.05 10.93 9.11 12.98 15.67 1.62 3.22 ND 45.35 86.59 1.14 

Mean 47.59 46.13 1.70 7.81 0.49 0.72 9.22 4.92 6.84 5.73 1.61 2.62 0.62 35.13 42.06 1.03 

±S.D. 31.45 39.18 1.46 6.82 0.62 0.89 6.23 3.60 4.22 7.45 0.99 1.55 0.89 23.44 48.60 0.22 

4 

S 82.23 36.81 ND ND 0.96 1.05 4.51 ND 9.62 5.61 2.32 4.17 ND 32.41 160.61 ND 

S 23.36 11.42 ND 1.34 0.25 ND 1.59 0.48 ND 0.89 0.14 1.96 0.83 ND 77.34 0.92 

A 44.16 42.82 10.58 8.40 1.77 ND 3.56 5.56 6.64 8.96 ND 2.32 2.34 5.81 105.31 1.06 

W 29.97 77.25 13.92 8.87 1.48 0.62 6.84 5.80 8.40 5.20 1.36 1.71 ND 33.92 ND 1.59 

Mean 44.93 42.07 6.12 4.65 1.11 0.42 4.124 2.96 6.17 5.17 0.96 2.54 0.79 18.03 85.81 0.89 

±S.D. 26.33 27.11 7.20 4.63 0.66 0.51 2.17 3.14 4.28 3.31 1.09 1.11 1.10 17.64 66.85 0.66 

5 

S 147.48 86.69 ND 2.78 3.59 ND 8.50 4.08 ND 6.20 11.32 10.81 0.00 ND 170.38 9.45 

S 32.13 21.57 ND 0.59 0.97 ND 1.26 0.20 ND 1.33 0.01 0.76 1.88 ND 33.48 0.25 

A 121.01 98.25 7.45 3.58 1.13 1.59 9.48 ND 13.36 4.25 10.06 12.15 9.48 ND 87.71 9.11 

W 98.90 90.97 ND 4.73 0.07 0.07 8.39 5.10 15.83 4.37 24.32 12.85 ND 83.58 88.53 ND 

Mean 99.88 74.37 1.86 2.92 1.44 0.42 6.91 2.34 10.68 4.03 11.43 9.14 2.83 37.03 95.02 4.70 

±SD 49.34 35.52 1.74 2.07 1.50 0.78 3.79 2.62 7.20 2.01 9.97 5.65 4.51 43.46 56.45 5.28 

6 

S 39.10 75.35 5.43 12.23 ND 2.36 6.62 6.54 4.45 4.91 1.04 ND ND 25.08 184.78 0.33 

S 12.37 18.55 3.48 2.26 0.42 ND ND 1.25 ND 1.32 ND 1.25 0.78 ND 22.98 ND 

A 28.71 57.60 ND 13.56 1.28 2.66 4.57 ND 5.55 3.78 ND 4.77 0.99 19.59 108.70 ND 

W 11.63 39.99 8.18 18.46 2.99 1.20 6.76 6.80 5.13 4.93 0.77 7.57 ND 63.63 ND 1.15 

Mean 22.95 47.87 4.27 11.63 1.17 1.55 4.49 3.65 3.78 3.73 0.45 3.40 0.44 27.07 79.11 0.36 

±S.D. 13.34 24.30 3.43 6.79 1.32 1.21 3.15 3.52 2.56 1.69 0.53 3.43 0.51 26.63 84.55 0.54 
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Table 4. Values of PAHs compounds in P. australis during March 2010-February 2011 (S = Spring, S = Summer, A = Au-
tumn., W = Winter).                                                                                         

Station Season 
PAHs Compounds (µg/g) 

Nap Acpy Acp Flu Phen Ant Flur PY B(a)A Chry B(b)F B(k)F B(a)P DbA B(ghi)P IND 

1 

S 108.53 107.13 36.19 ND 2.26 1.56 ND 13.23 33.51 23.26 ND ND 13.06 ND 469.30 11.34 

S 42.54 97.45 ND ND 6.01 1.37 7.50 ND 3.27 9.52 1.64 2.34 10.24 41.51 154.29 0.44 

A 240.34 123.52 15.13 ND 1.33 1.51 13.98 10.71 3.18 ND 1.75 6.70 16.85 73.59 186.82 21.99 

W 46.52 82.51 1.92 13.93 0.95 ND 16.73 9.70 13.65 9.03 ND 4.70 2.52 88.71 267.85 14.42 

Mean 109.48 102.65 13.31 3.48 2.64 1.11 9.55 8.40 13.40 10.45 0.85 3.44 10.67 50.95 269.56 12.05 

±S.D. 29.32 17.20 16.67 8.04 2.31 0.74 7.45 5.79 14.27 9.59 0.98 2.90 6.06 39.25 141.45 8.93 

2 

S ND 144.17 ND 1.11 0.25 0.26 0.62 0.66 0.75 0.11 1.45 4.49 2.80 1.95 105.83 ND 

S 22.58 45.02 ND ND 4.15 0.92 3.84 ND 3.43 10.35 1.70 2.37 10.58 43.97 121.09 0.37 

A 200.42 71.09 13.95 ND 1.14 1.37 10.33 6.30 4.00 ND 1.60 6.13 14.82 71.12 178.52 22.70 

W 45.93 81.46 13.71 13.02 0.49 ND 10.38 14.11 12.02 8.53 ND 4.70 1.16 65.72 251.25 14.28 

Mean 67.23 85.43 6.92 3.53 1.51 0.64 6.29 5.27 5.05 4.75 1.18 4.42 7.34 45.69 164.17 9.34 

±S.D. 90.75 42.04 7.98 6.34 1.79 0.62 4.87 6.54 4.85 5.47 0.79 1.55 6.46 31.43 65.94 11.11 

3 

S 95.38 187.16 0.30 0.70 0.06 ND 10.43 0.17 12.30 1.42 ND 0.12 ND 35.25 262.65 1.11 

S 42.54 42.40 ND 17.68 4.05 0.91 3.66 13.40 4.25 11.18 ND 2.39 ND 44.79 204.09 0.44 

A 242.34 97.30 ND ND 2.08 5.89 10.69 6.74 12.13 10.68 1.70 6.70 21.60 79.33 203.42 21.99 

W 56.50 90.37 13.71 15.23 1.05 ND 17.09 5.28 15.27 10.70 0.00 4.70 9.31 47.66 101.85 19.38 

Mean 109.19 104.31 3.50 8.40 1.81 1.70 10.47 6.40 10.90 8.50 0.43 3.48 7.73 51.76 193.00 10.73 

±S.D. 91.53 60.38 6.80 9.35 1.70 2.82 5.48 5.45 4.72 4.72 0.85 2.84 10.23 19.13 66.81 11.54 

4 

S 115.34 29.87 0.27 2.00 0.62 ND 0.80 0.61 10.43 9.75 ND 0.70 ND 43.46 179.65 8.19 

S 46.53 94.83 ND 43.68 7.78 4.06 25.57 17.81 12.38 10.35 ND 2.68 ND 47.26 170.89 0.51 

A 222.38 97.04 ND ND 1.14 6.11 7.04 6.65 20.26 10.68 1.75 3.83 20.92 71.12 120.42 21.28 

W 117.78 133.89 16.07 32.52 4.77 ND 10.75 15.00 20.15 16.86 2.11 10.45 7.95 72.29 334.25 ND 

Mean 125.51 88.91 4.08 19.55 3.58 2.54 11.04 10.02 15.81 11.91 0.97 4.42 7.22 58.53 201.30 7.50 

±S.D. 72.53 43.24 7.99 21.91 3.35 3.05 10.52 7.86 5.14 3.32 1.12 4.22 9.87 15.29 92.39 9.92 

5 

S 155.26 213.37 7.77 15.01 2.48 ND 11.76 18.27 18.57 18.07 ND 0.73 ND 59.87 262.65 29.42 

S 86.45 147.26 ND 46.28 8.06 4.38 8.13 3.90 13.19 11.18 ND 2.39 ND 48.08 253.89 1.22 

A 103.98 145.60 1.35 ND 1.69 0.51 17.55 13.71 1.39 ND 1.16 0.86 6.13 42.26 223.15 11.61 

W 285.43 160.10 27.87 71.53 8.50 ND 14.40 13.24 28.28 18.52 2.32 11.02 13.38 80.50 367.45 ND 

Mean 157.778 166.58 9.25 33.20 5.18 1.22 12.96 12.28 15.36 11.94 0.87 3.75 4.88 57.68 276.78 10.56 

±SD 89.96 31.85 12.86 32.00 3.59 2.11 3.99 6.02 11.21 8.64 1.10 4.90 6.36 16.88 62.77 13.60 

6 

S 170.17 144.44 ND 10.74 3.96 4.16 23.06 ND 22.22 6.00 ND 4.08 ND 27.74 364.64 0.47 

S 88.45 149.88 ND 44.98 7.87 4.11 6.67 8.26 9.94 12.02 ND 2.71 ND 56.29 212.39 1.93 

A 142.54 123.26 ND ND 0.03 10.62 23.39 12.24 24.00 4.02 0.70 15.32 18.89 62.91 286.42 37.91 

W 245.51 157.48 24.33 67.62 8.40 ND 24.03 28.68 ND 16.86 2.16 9.30 12.02 78.86 334.25 25.33 

Mean 161.67 143.77 6.08 30.84 5.06 4.72 19.29 12.29 14.04 9.72 0.72 7.87 7.73 56.45 299.42 16.410 

±S.D. 65.39 14.68 12.16 35.86 3.89 4.38 8.42 13.61 11.25 5.84 1.01 5.73 9.35 21.35 66.35 18.30 
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Table 5. Values of PAHs compounds in C. demersum during March 2010-February 2011 (S = spring, S = summer, A = au-
tumn, W = winter).                                                                                             

Station Season 
PAHs Compounds (µg/g) 

Nap Acpy Acp Flu Phen Ant Flur PY B(a)A Chry B(b)F B(k)F B(a)P D(b)A B(ghi)P IND 

1 

S 66.11 ND ND ND 2.14 ND ND 13.28 10.27 6.87 0.81 0.35 5.38 24.04 157.07 1.34 

S 21.89 ND ND 27.83 4.21 ND ND 0.83 7.91 10.18 0.14 1.20 ND 12.37 78.16 0.43 

A 62.60 26.78 83.55 15.69 ND ND 19.08 9.38 ND ND ND 3.93 9.68 15.17 113.16 7.81 

W 54.27 28.61 ND ND 5.57 1.30 19.57 8.31 11.99 13.69 5.03 5.12 ND 19.84 113.42 4.65 

Mean 51.22 16.16 614.94 10.88 5.55 1.53 9.66 7.95 11.82 7.69 1.49 2.65 3.76 17.85 115.45 3.56 

±S.D. 20.17 13.86 41.31 13.50 3.44 1.56 11.15 5.20 3.90 5.83 2.38 2.24 4.68 5.14 32.31 3.36 

2 

S 62.12 ND 64.24 ND 1.96 0.51 ND 4.45 2.14 7.71 0.76 0.06 4.70 15.83 130.60 15.83 

S 17.90 6.28 ND 26.53 3.28 3.63 ND 0.28 7.66 11.01 0.13 1.23 ND 12.45 67.67 1.14 

A 70.61 24.42 90.35 13.09 9.33 ND 11.35 4.94 16.29 ND ND 3.35 9.00 8.60 110.54 7.10 

W 52.27 8.26 88.47 ND 4.62 0.85 15.92 7.89 8.74 12.03 5.13 5.70 ND 20.66 105.56 4.44 

Mean 50.72 9.74 60.77 9.90 4.80 1.25 6.82 4.39 8.71 7.69 1.51 2.59 3.42 14.38 103.59 7.13 

±S.D. 23.13 10.40 42.21 12.68 3.21 1.62 8.08 3.13 5.82 5.44 2.44 2.48 4.32 5.12 26.27 6.29 

3 

S 67.31 11.70 97.44 ND 2.21 1.12 14.61 7.49 ND 7.04 0.81 0.64 ND 32.25 156.81 3.46 

S ND ND ND 30.43 4.30 3.77 ND 0.28 7.10 11.85 0.19 1.29 ND 13.19 130.59 1.14 

A ND ND 113.35 13.22 9.61 ND 10.98 9.20 16.37 ND 2.66 3.93 10.36 9.42 136.75 7.17 

W 77.55 26.87 121.70 26.03 0.88 0.70 15.00 10.42 6.92 7.97 0.73 9.14 ND ND 227.62 8.63 

Mean 59.82 9.64 83.12 17.42 4.25 1.40 10.15 6.85 7.60 6.71 1.10 3.75 2.59 13.71 162.94 5.10 

±S.D. 24.33 12.74 56.32 13.71 3.83 1.64 7.00 4.54 6.71 4.93 1.07 3.86 5.18 13.54 44.54 3.41 

4 

S 100.88 ND ND 43.32 ND ND ND 11.78 3.82 5.30 0.46 ND ND ND 151.95 1.41 

S 51.93 ND ND 4.83 3.28 ND ND 3.01 7.42 8.52 0.19 ND ND 14.01 51.95 0.51 

A ND ND 119.95 15.82 ND ND 22.44 10.53 ND ND 2.82 9.67 17.15 50.46 139.37 7.17 

W 117.51 24.51 130.00 13.03 0.87 0.61 24.27 9.54 6.11 8.05 0.79 ND ND ND 253.84 10.04 

Mean 95.19 12.91 85.41 19.25 3.67 0.95 11.68 8.71 8.55 5.47 1.06 6.13 4.29 16.12 149.27 4.78 

±S.D. 29.63 11.49 59.20 16.71 4.78 1.27 13.50 3.34 5.73 3.91 1.19 3.76 8.57 23.82 82.68 4.58 

5 

S ND ND ND ND ND ND 21.45 24.36 15.88 16.26 1.79 ND ND ND 172.30 3.43 

S ND ND 33.57 ND ND ND ND 10.33 8.07 13.51 0.87 4.16 5.23 46.02 78.16 ND 

A ND ND 131.45 17.12 11.47 0.98 33.54 ND ND ND 3.08 9.67 10.29 52.10 179.86 9.29 

W 155.88 ND ND 52.06 ND ND 36.65 19.39 17.51 10.73 0.83 ND ND 121.18 172.13 15.13 

Mean 38.97 14.23 74.38 25.23 4.37 1.24 22.91 19.09 10.37 10.12 1.64 5.29 3.88 54.83 150.61 6.96 

±SD 82.58 28.46 67.90 22.09 5.02 1.88 16.61 6.18 8.04 7.11 1.05 3.71 4.93 49.97 48.43 6.66 

6 

S ND ND 99.04 31.17 2.46 1.10 17.67 1.94 9.29 8.13 ND ND 11.40 5.90 143.80 3.30 

S 25.65 0.91 ND ND 4.26 ND ND 16.12 9.89 4.69 2.03 ND ND ND 39.09 0.73 

A ND ND 98.25 14.52 9.61 0.94 211.35 ND ND ND 2.71 9.10 10.36 51.28 144.61 7.88 

W 185.92 ND ND 4.47 ND ND 22.63 0.56 1.25 2.40 0.31 ND ND 129.39 139.51 8.06 

Mean 132.94 11.51 58.90 12.54 4.27 1.00 15.41 7.06 5.11 3.80 1.42 5.65 5.44 46.64 116.75 4.99 

±S.D. 93.51 22.42 48.48 13.82 3.83 0.79 10.48 7.24 5.20 3.45 1.13 4.69 6.29 59.73 51.82 3.59 
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Table 6. Values of PAHs compounds in P. perfoliatus during March 2010-February 2011 (S = spring, S = summer, A = au-
tumn, W = winter).                                                                                          

Station Season 
PAHs Compounds (µg/g) 

Nap Acpy Acp Flu Phen Ant Flur PY B(a)A Chry B(b)F B(k)F B(a)P D(b)A B(ghi)P IND 

1 

S 50.42 ND 109.02 18.21 0.10 0.14 18.91 ND 2.67 2.66 0.24 8.32 ND 43.37 267.84 7.21 

S 37.88 12.02 27.85 27.41 ND ND ND 3.05 17.17 6.21 ND 27.27 6.21 67.31 44.91 4.16 

A 57.84 27.65 101.05 33.91 4.50 2.24 ND 14.70 23.67 5.38 ND 2.86 6.61 73.05 45.43 9.83 

W 109.68 ND 113.52 58.98 1.52 1.11 17.06 16.82 10.04 ND 1.18 3.93 ND 26.93 168.53 5.81 

Mean 63.96 9.92 87.86 34.63 1.53 0.87 8.99 8.64 13.39 3.56 0.35 10.59 3.21 52.66 131.68 6.75 

±S.D. 31.57 13.11 40.33 17.46 2.09 1.03 10.41 8.35 9.06 2.81 0.56 11.36 3.70 21.43 107.80 2.39 

2 

S 50.30 ND 97.36 1.83 0.01 0.01 11.01 ND 1.04 1.83 0.23 8.12 ND 42.55 262.60 7.28 

S 51.85 11.22 21.25 28.71 3.01 0.97 ND 3.22 8.22 ND ND 2.31 4.10 37.76 34.94 7.09 

A 53.85 24.12 96.15 32.61 4.22 1.87 ND 9.05 15.54 1.21 ND 2.80 5.46 70.59 40.19 12.75 

W 69.77 ND 90.52 71.98 0.59 0.21 12.76 5.40 0.28 ND 0.03 1.06 ND 2.31 89.88 12.89 

Mean 56.44 9.11 76.32 33.78 1.96 0.77 5.94 4.42 6.27 0.76 0.06 3.57 2.39 38.30 106.90 10.00 

±S.D. 9.00 11.56 36.83 28.91 1.99 0.84 6.89 3.80 7.14 0.91 0.10 3.11 2.81 28.02 106.70 3.25 

3 

S 54.29 ND 116.36 3.13 0.11 0.03 14.81 ND 2.67 2.66 0.44 13.86 ND 34.34 393.67 8.70 

S 53.85 13.50 39.52 30.01 3.03 0.93 ND 2.78 8.39 ND ND 2.63 4.78 54.17 40.19 7.30 

A 63.68 25.29 117.55 56.02 6.75 4.09 ND 6.02 10.83 10.07 ND 2.72 6.14 78.80 66.40 8.72 

W 79.93 ND 120.33 55.50 ND 6.98 14.30 4.33 15.07 11.26 5.15 11.29 ND 63.50 262.33 11.58 

Mean 63.94 9.70 98.44 36.16 2.47 3.00 7.28 3.28 9.24 6.00 1.40 7.62 2.73 57.70 190.65 9.07 

±S.D. 70.48 12.19 39.31 25.14 3.17 3.16 8.40 2.55 5.18 5.51 2.51 5.81 3.20 18.59 167.76 1.79 

4 

S 58.28 ND 127.19 3.26 0.22 0.07 23.00 ND 3.48 2.83 0.50 11.08 ND 35.98 396.29 10.82 

S 73.81 12.32 54.25 18.31 4.05 1.42 ND 6.98 3.51 2.57 ND 1.65 3.56 48.43 40.19 ND 

A 173.60 24.01 157.25 57.32 6.84 4.13 ND 16.46 11.64 10.90 ND 2.80 6.27 81.26 92.62 8.64 

W 269.35 ND 116.52 65.48 0.59 9.68 21.71 14.48 17.36 ND 5.23 12.55 ND 67.98 273.38 12.89 

Mean 143.76 9.08 113.80 36.09 2.92 3.83 11.18 9.48 9.00 4.08 1.43 7.02 2.46 58.41 200.62 8.09 

±S.D. 98.08 11.52 43.28 30.04 3.13 4.25 12.91 7.52 6.76 4.72 2.54 5.59 3.04 20.13 164.30 5.66 

5 

S 72.94 ND 167.33 ND 1.83 9.05 29.48 2.19 9.27 7.96 9.92 ND 1.26 52.86 395.65 1.66 

S 77.80 ND 32.55 23.51 4.14 0.97 0.00 9.53 3.59 ND 1.06 1.68 ND 47.61 45.43 ND 

A 189.61 ND 148.55 66.51 7.87 10.00 0.00 21.61 12.53 ND 11.59 17.42 ND 90.44 202.72 ND 

W 189.31 ND 108.22 66.78 7.52 10.14 30.28 20.24 18.17 ND 10.48 14.56 ND 86.18 299.60 19.96 

Mean 132.42 14.44 114.16 39.20 5.34 7.54 14.94 13.39 10.89 7.07 8.26 8.42 0.41 69.27 235.85 5.41 

±SD 65.90 18.37 59.73 33.11 2.87 4.40 17.25 9.21 6.10 7.78 4.84 8.85 0.59 22.15 149.39 9.73 

6 

S 64.28 ND 177.16 1.50 0.06 0.03 ND 10.91 6.11 3.07 7.66 10.91 ND 35.61 218.09 ND 

S 29.90 ND 32.55 10.51 0.42 0.07 ND 0.70 4.40 0.99 0.01 1.68 ND 39.40 97.86 ND 

A 33.89 23.11 174.25 11.94 0.51 0.08 21.94 7.26 ND ND 9.02 11.97 14.29 31.19 103.10 16.70 

W 96.42 50.91 140.55 0.57 0.41 ND 20.98 3.08 ND ND 8.64 12.44 ND 60.93 258.70 40.19 

Mean 56.12 18.51 131.13 6.13 0.35 0.04 10.73 5.49 2.63 1.02 6.33 9.25 3.57 41.78 169.44 14.22 

±S.D. 30.90 24.19 67.78 5.92 0.19 0.03 12.39 4.52 3.11 1.44 4.25 5.08 7.14 13.19 81.30 19.01 
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Table 7. Characteristic values of selected molecular ratios of Pyrogenic and Petrogenic origins of PAHs in P. australis dur-
ing the study period.                                                                                            

 Phe/Ant Chry/BaA Flur/Py Flur (Flur + Pyr) LMW/HMW 

Pyrogenic origin <10 <1 >1 >0.5 <1 

Petrogenic origin >15 >1 <1 <0.5 >1 

Station Results of of the present study 

1 2.373 0.779 1.135 0.531 0.606 

2 2.362 0.939 1.194 0.544 0.663 

3 1.065 0.773 1.636 0.62 0.757 

4 1.406 0.753 1.101 0.524 0.75 

5 4.236 0.777 1.055 0.513 0.913 

6 1.072 0.692 1.568 0.61 0.793 

 
Table 8. Characteristic values of selected molecular ratios of Pyrogenic and Petrogenic origins of PAHs in P. perfoliatus 
during the study period.                                                                                        

 Phe/Ant Chry/BaA Flur/Py Flur (Flur + Pyr) LMW/HMW 

Pyrogenic origin <10 <1 >1 >0.5 <1 

Petrogenic origin >15 >1 <1 <0.5 >1 

Station Results of of the present study 

1 1.752 0.266 1.071 0.517 0.758 

2 2.5498 0.121 1.345 0.573 0.971 

3 0.822 0.649 2.218 0.689 0.683 

4 0.763 0.453 1.179 0.541 0.973 

5 0.708 0.648 1.115 0.527 0.821 

6 8 0.386 1.954 0.661 0.801 

 
Table 9. Characteristic values of selected molecular ratios of Pyrogenic and Petrogenic origins of PAHs in P. pectinatus 
during the study period.                                                                                          

 Phe/Ant Chry/BaA Flur/Py Flur (Flur + Pyr) LMW/HMW 

Pyrogenic origin <10 <1 >1 >0.5 <1 

Petrogenic origin >15 >1 <1 <0.5 >1 

Station Results of of the present study 

1 8.73 0.923 1.799 0.642 0.998 

2 4.325 0.309 1.518 0.602 0.983 

3 0.673 0.837 1.872 0.651 0.942 

4 2.659 0.837 1.393 0.582 0.779 

5 3.467 0.378 2.946 0.746 0.975 

6 0.754 0.987 1.23 0.551 0.668 
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Table 10. Characteristic values of selected molecular ratios of Pyrogenic and Petrogenic origins of PAHs in C. demersum-
during the study period.                                                                                        

 Phe/Ant Chry/BaA Flur/Py Flur (Flur + Pyr) LMW/HMW 

Pyrogenic origin <10 <1 >1 >0.5 <1 

Petrogenic origin >15 >1 <1 <0.5 >1 

Station Results of the present study 

1 3.628 0.65 1.215 0.548 0.824 

2 3.847 0.882 1.552 0.608 0.873 

3 3.044 0.883 1.482 0.597 0.779 

4 3.88 0.639 1.34 0.572 0.994 

5 3.514 0.976 1.199 0.545 0.951 

6 4.289 0.745 2.181 0.685 0.988 

 
The high PAH concentration in all studied plants, dominated by B(ghi)P indicates the source of PAH pollu-

tion is likely to be municipal and medical/pathological waste incinerators [46] and can also be attributed to high 
levels of automobile emissions (known to contain high levels of it relative to other PAHs) [47] [48]. B(ghi)P is 
strongly adsorbed to sediment organic matter as its high molecular weight (HMW) renders it resistant to micro- 
bial and photo-degradation [49]-[51], so it is expected that greater concentrations of HMW-PAHs are detected 
during the hot season. 

There are significant differences in the concentration of PAHs among studies macrophytes (Figure 2). These 
differences may be related to the nature of the growth substrate for studied macrophytes, tolerance to environ-
mental conditions for each species, lipid components of  plant and surface area that affect the rate of interception 
and accumulation of PAHs [52]-[54]. Elevated temperature and photic levels (such as during summer) contri-
bute to elevated PAH photo-degradation and can affect the uptake of pollutants in plants as a result, higher con-
centrations have been recorded during the cold season than the hot season [55]. 

The PAH origin in the aquatic plants is pyrogenic (Tables 7-10); Al-Hilla River is surrounded by oil fields 
with flared gas, and crude oil residues and automotive exhaust. Petroleum spills were not evident during the 
study period.  In addition to pyrogenic origin, Al-Taee [56] and Hassan et al. [22] identified petrogenic. 

The accumulation of environmental pollution in living organisms is estimated by BCF. The BCF in the aqua-
tic environment is calculated as the ratio of the xenobiotic concentration in the organism to its concentration in 
the medium [57] [58]. BCF depends on the presence of other organisms or pollutants in the medium and on the 
contents of lipids in living cells [59]. A greater content of lipids in the organisms causes an increase of the BCF 
for hydrophobic hydrocarbons and also increases the cytotoxic activity [57]. 

BCF ranged from 0.05 - 5664.5 for Acp and B(a)P at Sites 4 and 1, respectively for P. australis and 0.01 - 
1241 for Acp and B(a)P at Sites 6 and 2 respectively in P. pectinatus. BCF ranges in P. perfoliatus 0.08 - 1602 
for Ant and B(a)P at Sites 6 and 1, respectively. BCF in C. demersum ranged from 0.16 - 1141.3 for B(b)F and 
B(a)P at Sites 5 and 2, respectively. The BSAF ranged from 3.14 - 1041 for Acp and Acpy at Sites 6 and 1, re-
spectively, for P. australis, and in P. pectinatus ranged from 1.51 for Phe at Site 6 and 976.7 for Ind at Site 6. 
The differentiation in results may be due to a combination of plant species, lipid content or surface area in con-
tact with water and sediment [5] [60]. 
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