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ABSTRACT 

In this paper, a locally non-orthogonal overlapping Yee (OY) FDTD method is proposed in order to accurately calcu-
lates the optical force on dielectric and dispersive nanoparticles. It extends our previous work to geometries with sharp 
corners and dispersive materials. In addition to consistently achieving the smallest errors in comparison to the standard 
FDTD method, the OY approach is a stable non-orthogonal FDTD method that attains second-order convergence when 
sharp corners are present. 
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1. Introduction 

Recent advances in optical trapping of nanoparticles, ori- 
ginated by Ashkin [1,2], have been successfully applied 
in both physics and biology [3]. Accurate and reliable al- 
gorithms for computation of the optical forces are critical 
in studying optical trapping [4]. It has been pointed out in 
[4] that the methods of using the Lorentz force [5] and 
the Maxwell stress tensor [6] are equivalent theoretically 
but accuracy of their numerical implementation may dif-
fer. Here we use the later approach. In the Maxwell stress 
tensor formulation, the total optical force acting on a par- 
ticle due to a time-harmonic electromagnetic field is gi- 
ven by 

d
S

F T S  ,              (1) 

where T is the stress tensor 
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The ε and μ are the electric permittivity and magnetic 
permeability, respectively. S is a surface that encloses the 
object. The angle brackets indicate time-averaged values. 
A simple choice of the surface S is a cube surrounding 
the object. 

Mie scattering theory gives accurate analytical solu-
tion of Maxwell’s equations but is limited to spherical 
objects. For arbitrary geometries, several methods have 
been used to compute optical forces, such as the coupled 

dipole method [7], the T-matrix method [8] and the fi-
nite-difference time-domain (FDTD) method [9]. 

The FDTD method (Yee’s scheme) [10,11] is a popu- 
lar and very successful method for solving time-domain 
Maxwell’s equations. A major drawback of this method 
is the stair-casing approximation when modeling curved 
geometries that leads to large errors and reduced order of 
accuracy. Many methods have been proposed to elimi- 
nate the stair-casing error. The contour-path and locally 
conformal FDTD methods [12-14] deform the grid only 
locally to accommodate the curved surface. When diele- 
ctric material interfaces are present, the effective permit- 
tivity technique is applied [13-15], but the accuracy is re- 
duced to first-order. The subpixel smoothing technique 
proposed in [16] achieves second-order accuracy by us- 
ing an inverse dielectric tensor, and this method has been 
extended to anisotropic media [17], combined with a re- 
cently proposed stable FDTD scheme in anisotropic me-
dia [18]. However, as it has been pointed out in [16], a 
remaining challenge is to accurately handle objects with 
sharp corners, where the accuracy is still less than sec- 
ond-order. 

In this paper, we show that the non-orthogonal Over- 
lapping Yee (OY) method we developed in [19,20] can 
accurately model the optical force and achieve second 
order convergence. The OY method requires multiple 
Yee grids which lead to more memory and CPU costs. 
To improve the efficiency, we propose a locally non-or- 
thogonal OY technique. In our new method, the com- 
putational cells are non-orthogonal and overlapped only *Corresponding author. 
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in a small region near the curved geometry, and the rest 
of the computational domain is regular Yee grid. The 
interface between regular and overlapping cells is treated 
carefully to avoid instability. Numerical simulations on 
optical force computation confirm that in addition to 
consistently achieving the smallest errors in comparison 
to the standard FDTD method, the new approach is stable 
and attains second-order convergence when sharp cor-
ners are present. 

2. The Locally Non-Orthogonal OY  
Algorithm 
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The OY FDTD method solves the integral form of the 
Maxwell’s Equations (3) and (4), for the magnetic and 
electric fluxes B and D over a non-orthogonal staggered 
grid with overlapping cells. J is the electric current den-
sity. The overlapping cells provide multiple pieces of in- 
formation per computational cell. The components of the 
electric fluxes D are collocated and form a local basis 
that is used to determine the electric field E from the lo-
cal constitutive relation D = ME, where the material ma-
trix M is symmetric and positive definite. The same con-
siderations hold for the magnetic field. The symmetry 
and positive definiteness of the material matrices guar-
antees that the CFL condition [11] is the only stability 
criterion for the OY method. 

The diagonal split-cell model is an alternative way of 
constructing quadrilateral meshes for the OY method that 
avoids the permittivity averaging. The diagonal split-cell 
model has been discussed in Taflove’s book [11] for or-
thogonal Cartesian grid. We have extended this model to 
non-orthogonal grids. As shown in Figure 1, the quadri-
lateral mesh is constructed in such a way that the mate-
rial interface does not go along cell edges but passes th- 
rough the diagonal vertices of the cells using a smooth 
circle mapping method similar to the method proposed in 
[21]. Besides the simple test cases (e.g., cylinders and 
rectangles), our method can be applied to more compli-
cated geometries, such as a triangular wedge as shown in 
Figure 2. By placing the magnetic fields at the cell cen-
ters and the electric fields along cell edges, this approach 
guarantees that no line integral of the electric field cro- 
sses the material interface so that the permittivity aver-
aging is avoided. This approach is identified as the Split- 
Cell Overlapping Yee (SC-OY) method. The split-cell 
mesh construction and some preliminary result of com-
puting force on cylindrical particle were presented in 
[20]. 

 

Figure 1. Non-orthogonal quadrilateral meshes near a tilt- 
ed-square. The sides of the square (in red) go through the 
diagonal vertices of the grid cells. 
 

 

Figure 2. A sample non-orthogonal 8 by 8 quadrilateral 
mesh near a triangular wedge using diagonal split-cell mo- 
del. The edges of the triangle (in red) go through the diago-
nal vertices of the grid cell. 
 

In this paper, we focus on the extension of our previ- 
ous work to geometries with sharp corners and dispersive 
materials. The non-orthogonal quadrilateral split-cell mesh 
for structures with sharp corners, such as a titled-square, 
is shown in Figure 1. The SC-OY method has at least 
two advantages: 1) it avoids permittivity averaging, so 
that the implementation is simplified; 2) it avoids tiny 
and near 180 degree angles for structures with large cur-
vature so that the local error is smaller. A limitation of 
the split-cell approach is that it assumes nonmagnetic 
medium (μ is constant throughout the computational do-
main). 
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In general, the 2D OY technique requires two sets of 
Yee grids to be overlapped to each other, so it doubles 
the computational cost. In 3D, it quadruples the cost. To 
improve the efficiency of OY method, we have employed 
a locally non-orthogonal approach. That is, in our im- 
plementation, the computational cells are overlapped and 
non-orthogonal in a small region that near the nano-par- 
ticle. The rest of the computational domain is rectangular. 
A sample mesh is shown in Figure 3. In the non-ortho- 
gonal region, the OY method is applied and the standard 
FDTD method is applied elsewhere. As shown in this 
figure, the non-orthogonal mesh is only about 10% of the 
whole computational domain, so that the overall compu-
tational cost decreases from 200% to 110%. 

In 3D, this locally non-orthogonal technique will fur-
ther improve the performance of numerical simulation. 

An important step in designing the locally non-or- 
thogonal OY algorithm is the treatment of the interface 
between regular rectangular cells and overlapping cells. 
As shown in Figure 4, for 2D TEz mode where only  
 

 
Figure 3. A locally non-orthogonal quadrilateral mesh near 
a tilted-square. 
 

 

Figure 4. Computational cells near the interface of regular 
and overlapping cells. 

, ,z x yH E E  fields are involved, the magnetic field zH  
on primary grid is defined in the cell (at cell center) and 
the zH  on the overlapping cell is defined at the corner 
of the cell. Our algorithm follows the following three 
steps: 

1) Update the solution inside the regular grid (Yee 
mesh) by using the standard FDTD method;  

2) Update the solution inside the OY region using the 
OY FDTD algorithm; 

3) Calculate the magnetic field zH  on the interface 
by averaging the neighbor values on the primary grid. 
The formula is given as 
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Similarly, for TMz mode, in step 3 the magnetic field 

zH  is replaced by the electric field zE  in our algori- 
thm. 

3. Numerical Simulations 

In our numerical examples, we apply the technique we 
proposed to compute the optical force on a tilted-square. 
The side length of the square is 240 nm and it is titled for 
30 degrees. The wavelength of the incident plane wave 
propagating in the x-direction is 600 nm.  The com-
putational domain is surrounded by the uniaxial perfectly 
matched layer (UPML) boundaries in all directions. A 
sample computational mesh is shown in Figure 3. 

Figure 5 shows the relative errors of the computed op-
tical forces on dielectric and metallic particles. The rela-
tive permittivity inside the dielectric particle is 9  . 
The metallic (gold) particle is simulated using the linear 
Drude dispersive model with frequency dependent per-
mittivity: 

 
2

2
1 p

i


 

 
 


, 

where 16 11.367 10 sp    and 13 16.478 10 s   . The 
numerical result at very fine mesh  400   is used 
as the exact solution. As shown in Figure 5, for both 
dielectric and metallic particles, the FDTD method con-
verges linearly, while the OY method is second-order 
accuracy. For grid size 200  , the relative error of 
the OY result is about one order of magnitude smaller 
than the FDTD result. Our numerical results also show 
that the OY solution with 80   and the FDTD so-
lution with 200   have comparable errors (about 
0.5%), but the OY method requires only half in memory 
usage and less than 25% in CPU usage. 
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(a) 

 
(b) 

Figure 5. Relative errors of force versus resolution for tilt- 
ed-square illuminated by TEz plane wave for (a) Dielectric 
medium (ε = 9); (b) Dispersive medium. 

4. Conclusion 

We have implemented local non-orthogonal OY FDTD 
method that was applied to the optical force computation. 
Our numerical simulations showed that in addition to con- 
sistently achieving the smallest errors in comparison to 
the standard FDTD method, the OY approach is a stable 
non-orthogonal FDTD method that attains better effici- 
ency and second-order convergence even when sharp cor- 
ners are present. 
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