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Abstract 
A simple equation for heat spreading angle is derived which is useful for cases with a single layer 
thermal spreader. The derivation starts with Fourier’s heat transfer law. Heat spreading in two 
dimensions is then introduced which results in a quadratic equation relative to spreading angle. 
The result is a closed form equation for heat spreading angle. Calculations using the equation are 
compared to 3D finite element simulations which show agreement acceptable for most practical 
applications and over a wide range of physical dimensions and thermal conductivities. A norma- 
lized dimensional parameter is defined which is used to generate a curve fit equation of the 
spreading angle. A three step procedure is then presented which allows the calculation of the 
spreading angle and temperature rise in the thermal spreader. The result has application for ini-
tial calculations of temperature rise in microwave hybrid modules and electronic packages such 
as heat sinks for high power amplifiers. This is because it is common for these types of modules 
and packages to use a single layer heat spreader in copper-tungsten (CuW) or copper-molybde- 
num (CuMo) connected to a cold plate. An important benefit of this method is that it allows mi-
crowave hybrid designers and high power amplifier packaging engineers a method to quickly 
perform trade studies to determine the maximum mounting temperature for integrated circuits. 
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1. Introduction 
Heat transfer analysis and design is an important step in the development of a product or system that contains 
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electronics. This is due to the fact that long term reliability of semiconductor electronics depends, in part, on the 
temperature of the electronic device. Prior to detailed thermal analysis using 3D numerical methods, such as fi-
nite element or finite difference methods, it is common for engineers to perform trade studies using simplified 
closed form equations for quick estimations of thermal resistances and temperature rises. Trade studies allow 
rapid assessment of the impact of changes to packaging materials and operating conditions of the electronics so 
that the detailed numerical simulation effort can have a reasonable design starting point. The desire for rapid 
analysis has motivated numerous researchers to develop closed form approximations for heat transfer. 

For instance, a constant spreading angle method was used to generate a closed form equation for heat spread-
ing assuming there was a spreading section and non-spreading section [1] in the heat spreader. Another team 
developed a set of equations for heat transfer in integrated circuits [2]. Some have performed thermal modeling 
with the assumption that the spreading angle is 45 degrees [3]. Others have rejected the 45 degree spreading an-
gle assumption all together [4] [5], and some have used other spreading angles of 32.5 degrees [6] or 26.6 de-
grees [7] claiming that they are a more accurate approximation. The point is that multiple efforts have been 
made to develop methods for simplified and rapid estimation of heat transfer and thermal resistance using the 
concept of heat spreading and spreading angle with varying degrees of accuracy. More complex methods have 
been developed too with good summaries in [8]-[12]. 

This work continues the effort to develop a closed form equation for rapid estimation of thermal resistance to 
model the case of a rectangular heat source attached to a single layer heat spreader over a heat sink. As will be 
seen, the main benefit of our approach is the extreme simplicity of the resulting closed form equation for calcu-
lating heat spreading angle. It can be easily implemented in a spread sheet for quick trade study analysis. 

A cross-section of the configuration being considered here is illustrated in Figure 1. The method developed 
maintains a tight connection to the physical structure so that valid insights into heat spreading can be achieved. 
A definition of the variable used is given in Table 1. 

 

 
(a)                                         (b) 

Figure 1. Illustration showing (a) cross-section of a heat source over a large heat spreader connected to an isothermal heat 
sink, and (b) the equivalent circuit.                                                                               

 
Table 1. Definition of variablesi.                                                                             

Symbol Quantity SI Units 

k Thermal conductivity W/mK 
X Size of the heat source in the x-direction m 

Y Size of the heat source in the y-direction m 
L Thickness of the heat spreader m 
α Heat spreading angle degrees (or radians) 
Q Heat source W 

T Temperature at the heat source ˚C or Kelvin 

TA Ambient temperature = isothermal heat sink temperature  
= 0˚C for all cases considered ˚C 

a Area of heat source m2 
im = meter, W = Watt, K = Kelvin, ˚C = degree Celsius. 
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Section 2 presents the motivation for the present investigation which is to develop a simplified analysis me-
thod for spreading angle for single layer heat spreaders connected to a cold plate. This is a common configura-
tion of microwave hybrid modules. Section 3 shows the derivation of the temperature rise equation using me-
thods developed in [7] [13]-[14]. In Section 4, finite element method (FEM) heat spreading simulation results 
are examined. The spreading angle introduced in the previous section can be found by performing an error mi-
nimization routine to achieve agreement to within 10−5 percent error. In Section 5, the equation of spreading an-
gle is derived which avoids the need for the error minimization method. This is accomplished by recognizing 
that the spreading angle equation is quadratic which leads to a closed form solution. The spreading angle is de-
rived as a function of the physical features, materials, and temperature rise. In Section 6, the spreading angle 
equation is simplified for the special case of a square heat source. We take this step because it leads to a com-
pact equation of heat spreading that more easily provides insight into heat spreading. Once this is completed, 
Section 6 discusses the valid ranges for the derived equations. Section 7 provides an explanation of why the 
spreading angle is not a function of thermal conductivity once the physical dimensions are set. Section 8 gives a 
curve fit equation for spreading angle that is only a function of the physical dimensions of the heat source and 
heat spreader thickness. A step by step procedure is presented for using this method and illustrates it with five 
different simulation cases. Section 9 is the conclusion with a summary and assessment.  

2. Motivation from Microwave Hybrids 
It is common practice for GaAs and GaN integrated circuits used in microwave hybrid modules to be mounted 
to a heat spreader which is mounted to a cold plate. This case is illustrated in Figure 1. In these cases, engineers 
normally make two simplifying assumptions in their initial thermal analysis prior to 3D numerical simulations. 
The assumptions are: 

1) The heat generated by the semiconductor integrated circuit is uniform at the point it contacts the heat 
spreader.  

2) The heat is spread at an assumed angle within the heat spreader. Some engineers prefer to be conservative 
and assume zero heat spreading angle. Others will assume a more optimistic 45 degree spreading angle. 

These assumptions permit the microwave hybrid module designer to perform quick trade studies to determine 
if the material chosen and physical configurations have a chance of providing the thermal performance that is 
required. Once a material set is chosen the module designer passes the information off to the thermal analyst 
who performs the 3D numerical simulations. 

The motivation for this work is to provide the practicing microwave module hybrid designer with a simple 
closed form equation that can be used to estimate heat spreading angle. This will allow for more accurate initial 
trade studies prior to detailed thermal simulations. 

Since the motivation for this solution is a microwave hybrid module we make the simplifying assumption of 
only conduction and neglect any convection that may be occurring in the module. However, since most micro-
wave hybrid modules are hermetically sealed, this assumption will not significantly limit the usefulness of the 
results of this work. 

3. Temperature Rise in a Single Layer 
We know from Fourier’s Heat Transfer Law that the heat flow, Q, normal to a heat transfer area, A, can be found 
from the thermal conductivity, k, multiplied by the derivative of the temperature with respect to the direction of 
heat flow. This situation is illustrated in Figure 2. Fourier’s equation can be written as 

 

 
Figure 2. Illustration showing that there is a temperature rise of ΔT = T2 − T1 in the direction of heat flow.                   
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TQ kA
Z

∆
= −

∆
                                        (1) 

which can be re-arranged to solve for the temperature rise from T1 to T2 to obtain 

2 1 .Q ZT T T
kA
∆

∆ = − =                                    (2) 

where ∆Z describes the distance between two nodes (T2 and T1) with a thermal profile, and A = X·Y which is the 
area of the heat source. This means that (2) can be re-written as 

2 1 ( )
Q ZT T T

k X Y
∆

−∆ = =
⋅

                                  (3) 

Returning our attention to Figure 1, we realize that in any practical instance of a heat source over a heat 
spreader, the area of the heat source will have finite extent in both the x and y-directions. This is illustrated in 
Figure 3 and shows that as the heat is transferred from the source to the bottom of the heat spreader (in the z- 
direction), dimension X extends to become 2 tanX X L α′ = + ⋅  and Y extends to become 2 tanY Y L α′ = + ⋅ . 
This means the effective area of the heat source increases at the bottom of the heat spreader to 

( ) ( )2 tan 2 tanA X Y X L Y Lα α′ ′ ′= ⋅ = + ⋅ + ⋅                         (4) 

This area, A', is the same area A from (2). Substituting (4) into (3) and recognizing that ΔZ = L, we obtain: 

( ) ( )2 tan 2 tan
QL QLT
kA k X L Y Lα α

∆ = =
+ +

                         (5) 

4. Comparison of Closed Form Equation to Finite Element Simulation Results 
As a method of verifying the accuracy of (5), a series of simulations were conducted using the FEM. To simplify 
the analysis, we made the assumption that the heat source is a square (i.e. X = Y) of fixed dimension and that the 
heat spreader extended in the x and y-directions at least 10 times the thickness so that the finite extent of the heat 
spreader would have negligible effect on the simulations. We used a varying material thermal conductivity, k, of 
0.1 to 2000 W/mK and varying thickness, L, of 0.127mm to 20.32mm. The solution for the temperature rise in 
the heat spreader, ΔT, was recorded for each simulation assuming a mounting temperature, TA, of 0˚C. Addition-
ally, convection is neglected when simulating due to the minimal effects it has on ΔT. The values of thermal 
conductivity and thickness were chosen to encompass a wide range of materials encountered in the manufactur-
ing of electronic packaging. There were 207 FEM simulations performed and they are summarized in the Ap-
pendix as Table 5. 

 

 
Figure 3. Sketch of a heat source over a single layer heat spreader with a spreading angle (α = spreading angle, L = thickness 
of the heat spreader, X·Y = Area of the heat source, Q = dissipated heat in Watts).                                     
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The values of ΔT from FEM analysis and (5) were compared to check for accuracy. Of course, the challenge 
is to know the value of the spreading angle, α, with a provided L that gives the best agreement. We employed a 
type of error function and minimized the error to obtain α. If the values of ΔT from (5) are referred to as ΔT(5), 
and if the values of ΔT from FEM are referred to as ΔTFEM, and if we sum the squares of the error as a function 
of the thermal conductivity, then the error function will be 

( ) ( ) ( ) ( )( )2

5error .= ∆ −∆∑ FEMk T k T k                           (6) 

This procedure was followed for the case of a square heat source with X = Y = 2.54 mm and L = 2.54 mm, Q 
= 10 W, and TA = 0˚C and the results are summarized in Table 2. It is important to note that the spreading angle, 
α, is constant as a function of thermal conductivity, k. As can be seen, the error between the FEM predicted val-
ues of ΔT and those predicted by (5) agree within about 5 significant digits or better over the range of thermal 
conductivity from 0.1 to 2000 W/mK. 

When the minimization of (6) was applied to all the other values of ΔTFEM in Table 5, similar levels of 
agreement were achieved except for thin heat spreader layers less than equal to approximately 0.0127 mm. The 
best agreement is for heat spreader greater than 0.330 mm thick. The reader is encouraged to notice that the 
spreading angle used in Table 2 is the same for all values of thermal conductivity. 

5. Spreading Angle Derivation for Rectangular Heat Source 
Most GaAs and GaN devices are rectangular. Therefore, our analysis in this section assumes the heat source is 
rectangular. Not only is this appropriate since it matches the actual configuration of the integrated circuits, set-
ting the heat source as rectangular is convenient for analysis reasons. A rectangular heat source assumption sim-
plifies the equation for heat spreading. 

The goal of this section is to derive an equation for the spreading angle. This will allow for direct calculation 
of the spreading angle. We start by rearranging (5) to obtain 

 
Table 2. Comparison of FEM Results and Predictions Using (5).                                                  

k (W/mK) ΔTFEM ΔT(5)
i (ΔTFEM(k) − ΔT(5)(k))2 

0.1 17,860.408 17,860.406 0.25 × 10−5 

0.5 3572.082 3572.081 <10−5 

1 1786.027 1786.041 18.6 × 10−5 

5 357.206 357.208 0.45 × 10−5 

10 178.603 178.604 0.11 × 10−5 

20 89.301 89.302 0.11 × 10−5 

40 44.651 44.651 <10−5 

80 22.325 22.326 <10−5 

120 14.884 14.884 <10−5 

240 7.442 7.442 <10−5 

320 5.581 5.581 <10−5 

500 3.572 3.572 <10−5 

750 2.381 2.381 <10−5 

1000 1.786 1.786 <10−5 

1500 1.191 1.191 <10−5 

2000 0.893 0.893 <10−5 
iUsing α = 13.62 degrees obtained from minimization of (6). 
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( )( ) ( )( )
1

2 tan 2 tan
T

QL k X L Y Lα α
∆

=
+ +

                           (7) 

where ΔT = T − TA. This can be simplified and multiplied through to obtain 

( )( ) ( )( )
( ) ( ) ( )2 2

2 tan 2 tan

2 tan 2 tan 4 tan

QL X L Y L
Tk
XY X L Y L L

α α

α α α

= + +
∆
= + + +

                        (8) 

As can be seen, (8) is a second order equation with respect to tan(α). If it is rearranged appropriately, the qua-
dratic equation can be used to solve for tan(α) which will yield the angle α. Rearranging (8) we obtain 

( ) ( ) ( )21 tan 2 tan
2

QL XY X Y L
Tk L

α α  − = + +  ∆  
                       (9) 

Which can be rearranged into a quadratic form as 

( ) ( ) ( )2 10 2 tan tan .
2

QLL X Y XY
Tk L

α α   = + + − −  ∆  
                    (10) 

It should be immediately recognized that (10) is in the familiar form of a quadratic equation which can be 
solved using the quadratic formula. This immediately leads to a solution for tan(α), and we obtain 

( )
( ) ( )2 4

tan .
4

Q LX Y X Y XY
Tk

L
α

∗ − + ± + + − ∆ =                      (11) 

When using the quadratic formula, two roots, or two angles are calculated. We have found the correct solution 
is obtained when using the positive value of the rooted discriminant which leads to the solution for the spreading 
angle 

( ) ( )2

,

4

arctan
4

j j
j rect

Q LX Y X Y XY
T k

L
α

  ∗ − + + + + −   ∆  =
 
 
 
 

                  (12) 

which is used when the dimensions of the heat source are rectangular where X ≠ Y. In the next section we will 
simplify (12) for the case of a square heat source since it can provide some insight into the physics of heat 
spreading. 

6. Special Case: Spreading Angle for Square Heat Source 
The equation for spreading angle for the case of a square heat source can be obtained by using (11) and setting 
X=Y. If this is done, and if the positive value of the rooted discriminant is taken, then (12) becomes  

,square arctan .
2

α

 
− + 

∆ =  
 
 
 

j j
j

QLX
T k

L
                             (13) 

As a verification of the validity of (13), it was used to calculate the spreading angle for the case shown in Ta-
ble 2. The spreading angle was calculated for every case of thermal conductivity shown in the table. If N 
represents the number of thermal conductivity values used, and 1 2 1, , , ,j N Nα α α α α−= �  are each of the 
spreading angles calculated, then the average spreading angle is found using 

( )
1 .

N

j
j

k

N

α
α ==

∑
                                     (14) 
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where the αj(k) are the values of α obtained for each of the thermal conductivity values over the range of interest 
using (13). The results are shown in Table 3 which shows that the average value for spreading angle is 13.623 
which is the same value that was used in Table 2 and obtained from the minimization of (6). 

It should be kept in mind that the spreading angle of 13.62 degrees is only applicable to this specific case and 
is not meant to be universally applied spreading angle. The challenge of determining the spreading angle without 
needing the value of ΔT is examined in Section 8 where a curve fit equation is provided that only depends on the 
physical dimensions of the heat source and spreader. It is also important to note that the standard deviation in α 
using (13) and (14) is only 0.00145 which shows that there is an extremely weak dependence of spreading angle 
upon thermal conductivity (within calculation error) for a fixed value of physical dimensions of the heat source 
and heat spreader. 

The comparisons with 3D FEM analysis has shown that (5), (12), and (13) are accurate for thicknesses of heat 
spreaders that are greater than about 0.330 mm for most practical values of thermal conductivity (0.1 to 2000 
W/mK). However, for small values of thermal conductivity (less than approximately 10 W/mK) we found (5), 
(12) and (13) still supplied trustworthy results. 

For thin heat spreaders (less than 0.381 mm) and higher thermal conductivity (>10 W/mK), the error mani-
fests as what appears to be nonphysical variations in predicted spreading angle using (12) or (13). 

7. Explanation of Spreading Angle as a Function of Thermal Conductivity 
One of the interesting results of FEM modeling and predicted α using (12) and (13) is that for a fixed set of 
physical dimensions, the spreading angle is constant as a function of thermal conductivity for the single layer 
case being considered in this work. Table 2 shows this result since the calculated ΔT(5) uses the same angle for 
all values in the table. This is also shown more explicitly in Table 3 which shows all the αj(k)(13) are essentially 
the same (to within 4 significant digits) as thermal conductivity varies from 0.1 to 2000 W/mK. Note that 
αj(k)(13) are the αj(k) calculated using (13) and α(14) is the average value calculated using (14). 

 
Table 3. Example calculation of average α using (14).                                                            

j K (W/mK) ΔTFEM αj(k)(13) 

1 0.1 17,860.408 13.623 

2 0.5 3572.082 13.623 

3 1 1786.027 13.623 

4 5 357.206 13.623 

5 10 178.603 13.623 

6 20 89.301 13.623 

7 40 44.651 13.623 

8 80 22.325 13.623 

9 120 14.884 13.623 

10 240 7.442 13.623 

11 320 5.581 13.623 

12 500 3.572 13.623 

13 750 2.381 13.622 

14 1000 1.786 13.622 

15 1500 1.191 13.622 

16 2000 0.893 13.624 

  α(14) = 13.623 

For X = Y = 2.54 mm, L = 2.54 mm, Q = 10 W. 
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However, upon initial inspection of (12) and (13), it is immediately evident that the spreading angle, α, is 
proportional to the square root of thermal conductivity. There seems to be some contradiction between those two 
equations and the tables which show a very weak, or zero, dependence of ΔT as a function of k. Resolution of 
the contradiction is evident upon closer inspection. Consider (14) and the variables under the square root. Since 
ΔT is inversely proportional to thermal conductivity, k, the product of ΔT and k cancels its’ contribution to the 
spreading angle. For this reason, the spreading angle is independent of thermal conductivity of the spreader. 

8. Curve Fit Equation for Heat Spreading and 3-Step Procedure 
The analysis has shown that (5), (12), and (13) are accurate when compared to FEM simulations. However, the 
obvious difficulty in using (12) or (13) is that they require knowledge of the temperature rise in order to calcu-
late the spreading angle. However, that is rarely known initially. Therefore, a method of calculating an approx-
imated spreading angle would be useful. Therefore, we have developed a curve fit equation based on TFEM data 
for the special case of X = Y = 2.54 mm. It was found that a good curve fit equation is the exponential function 

( )0.33exp 2.98 0.468 ln .P
P

α  = − − ⋅ 
 

                           (15) 

where P is the Normalized Dimension Parameter and is given by P = L/(X + Y). The error in using (15) for cal-
culating the spreading angle was found to be less than 4.5% over the range of L/(X + Y) of 0.0725 to 4.0. The 
plot of the spreading angle and the curve fit are shown in Figure 4. Using (15) to calculate spreading angle per-
mits the use of (5) to determine the temperature rise in the heat spreader. 

The method presented here can be used in a systematic way to predict the heat transfer in single layer heat 
spreading. The step by step procedure is: 

Step 1: Calculate the Normalized Dimension Parameter, P, from the physical dimensions of the heat source 
and the thickness of the heat spreader, X, Y, and L. 

Step 2: Using P and (15) calculate the spreading angle, α. 
Step 3: Using the spreading angle, α, and (5), calculate the temperature rise in the heat spreader, ΔT.  
This procedure was used in five cases with a rectangular heat source to check for accuracy. The results are 

shown in Table 4. Note that error in this procedure is less than about 8% which will improve with a more accu-
rate curve fit (15). 

 

 
Figure 4. Spreading angle, a, as a function of L/(X + Y) from (12) (solid line) and curve fit (15) (dashed line).                 
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Table 4. Comparison of FEM results to proposed procedure.                                                      

 L/(X + Y) ΔTFEM (˚C)  α(17) (degrees) ΔT(5) (˚C) ErrorT (%) 

Case 1 0.4 15.202 13.247 16.412 −7.96 

Case 2 1 21.245 14.154 20.803 2.08 

Case 3 1.5 11.628 13.069 10.785 7.25 

Case 4 2.5 25.628 11.237 23.553 8.10 

Case 5 3.5 44.641 9.968 46.647 -4.49 

For Q = 10 W, k = 100 W/mK, ErrorT between ΔTFEM and ΔT(5). 

9. Conclusions 
We have shown that a simplified equation for heat spreading angle can be developed. We also showed that it is 
accurate over a broad range of physical dimensions and thermal conductivity for the heat spreader. This will 
mean that the very simple spreading angle equation can be of practical use to engineers developing microwave 
hybrid modules. 

More work should be conducted on this approach. In particular, additional analysis could be performed to de-
termine the range of accuracy with more precision. This would require a greater number of simulations that 
funding for this project can support. An improvement of (15) for accuracy of predicting the spreading angle, α, 
would improve the accuracy of procedure. 
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Appendix 
Table 5. Finite Element Modeling (FEM) results yielding ΔTFEM with X = Y = 2.54 mm.                              

K 
(W/mK) 

ΔTFEM,  
L = 0.0635 

mm 

ΔTFEM,  
L = 0.127 

mm 

ΔTFEM,  
L = 0.254 

mm 

ΔTFEM,  
L = 0.625 

mm 

ΔTFEM,  
L = 1.27 

mm 

ΔTFEM,  
L = 2.54 

MM 

ΔTFEM,  
L = 5.08 

mm 

ΔTFEM,  
L = 10.16 

mm 

ΔTFEM,  
L = 20.32 

mm 

0.1 987.584 1970.103 3934.665 9206.604 14,201.41 17,860.41 19,937.46 21,187.55 22,797.78 

0.5 197.517 394.021 786.933 1841.321 2840.282 3572.082 3987.492 4237.51 4559.557 

1 98.758 197.01 393.466 920.661 1420.141 1786.027 1993.902 2118.675 2279.721 

2 49.379 98.504 196.734 460.275 710.055 893.014 996.951 1059.337 1139.86 

5 19.752 39.402 78.694 184.11 284.022 357.206 398.78 423.735 455.994 

10 9.876 19.701 39.347 92.055 142.011 178.603 199.39 211.867 227.972 

15 6.584 13.134 26.231 61.37 94.674 119.069 132.927 141.245 151.981 

20 4.938 9.85 19.673 46.027 71.006 89.301 99.695 105.934 113.986 

30 3.292 6.567 13.116 30.685 47.337 59.534 66.463 70.622 75.991 

40 2.469 4.925 9.837 23.014 35.503 44.651 49.848 52.967 56.993 

60 1.646 3.283 6.558 15.342 23.669 29.767 33.232 35.311 37.995 

80 1.234 2.463 4.918 11.507 17.751 22.325 24.924 26.483 28.497 

120 0.823 1.642 3.279 7.671 11.834 14.884 16.616 17.656 18.998 

160 0.617 1.231 2.459 5.753 8.876 11.163 12.462 13.242 14.248 

240 0.411 0.821 1.639 3.836 5.917 7.442 8.308 8.828 9.499 

320 0.309 0.616 1.23 2.877 4.438 5.581 6.231 6.621 7.124 

400 0.247 0.493 0.984 2.301 3.55 4.465 4.985 5.297 5.699 

500 0.198 0.394 0.787 1.841 2.84 3.572 3.988 4.237 4.559 

750 0.132 0.263 0.525 1.227 1.893 2.381 2.659 2.825 3.04 

1000 0.099 0.197 0.393 0.921 1.42 1.786 1.994 2.119 2.28 

1250 0.079 0.158 0.315 0.736 1.136 1.429 1.595 1.695 1.824 

1500 0.066 0.131 0.262 0.614 0.947 1.191 1.329 1.412 1.52 

2000 0.049 0.099 0.197 0.46 0.71 0.893 0.997 1.059 1.14 
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