Dosimetric Improvements Utilising Intensity Modulated Radiation Therapy for Patients with Glioblastoma Multiforme

Michael Back1,2*, Shaun Clifford1, Helen Wheeler1,2, Thomas Eade1,2

1Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; 2Northern Clinical School, University of Sydney, Sydney, Australia.

Received September 29th, 2013; revised October 26th, 2013; accepted November 4th, 2013

ABSTRACT

Aims: The EORTC-NCI study investigating the addition of temozolomide trial to standard radiation therapy has demonstrated improved duration of survival in patients with Glioblastoma multiforme (GBM). With longer survival duration, there is the potential for latent RT morbidity, not previously seen in historical patients. This study evaluates the potential dosimetric advantages of utilising IMRT over 3D-conformal RT in such patients. Methods: 10 consecutive patients with GBM formally screened for a clinical study over a two-month period were planned and treated with IMRT utilising daily on-board imaging (OBI). The EORTC protocol dosimetric criteria and constraints were used in target delineation and planning. For each patient, a 3DCRT plan was also produced. Endpoints for dosimetric evaluation analysed related to tumour dose: mean PTV60 dose (mPTV60Dose), Conformity Index (CI); and normal tissue dose: mean normal brain dose (mBrainDose) and V40 Brain (Brainv40). IGRT endpoints were the median isocentre shifts required in 3 axes measured in one direction. The variation between the IMRT and 3DCRT dosimetric endpoints was examined using Wilcoxon analysis. Results: The 10 patients had tumours located in temporal (3), parietal (3), occipital (2) and callosal (2) regions. The median PTV and normal brain volumes were 308.1 cm3 and 1077.5 cm3 respectively. The IMRT dosimetry was significantly improved in all endpoints specifically CI (p = 0.002), mPTV60Dose (p = 0.004), mBrainDose (p = 0.002) and Brainv40 (p = 0.019). OBI directed isocentre measurements in the patient group were available for 230 treatments. The median shifts (and 95% C.I.s) were 0.1 cm vertical (0.1 - 0.2), 0.1 cm longitudinal (0.1 - 0.2) and 0.2 cm lateral (0.2 - 0.2). At a minimum follow-up of 2 years’ post diagnosis, the median survival of the group is 18.0 months (95% CI: 13.4 - 22.6 months). Conclusion: IMRT for GBM produces significant dosimetric advantages in relation to planning target volume and normal tissue dose compared with 3D conformal plans. The data also confirm the accuracy of IMRT technique for CNS with IGRT delivery utilising OBI demonstrating minimal deviation from planned to treated isocentre.

Keywords: Intensity Modulated Radiation Therapy; Glioblastoma; Dosimetry

1. Introduction

The addition of temozolomide to radiation therapy in the adjuvant therapy of glioblastoma multiforme (GBM) has resulted in an era in which the median survival of patients has doubled, and a small proportion of patients are alive at 5 years’ post diagnosis [1]. The EORTC-NCI Protocol demonstrated a 5-year survival of 9.8% with a good prognostic subgroup of patients having a 5-year survival of 28% [2].

The impact of intensified therapy and presence of longer term survival increases the emphasis on treatment techniques to optimise outcome by consolidating the tumour control and minimise potential late morbidity [2,3]. Specifically for radiation therapy this would involve techniques that produce adequate target coverage with reduction of normal tissue dose. Concurrent improvements in RT techniques utilizing intensity modulated radiation therapy (IMRT) and image guided radiation therapy (IGRT) have been shown to demonstrate improved targeting and reduced morbidity in tumour sites such as
This study aims to demonstrate the potential dosimetric benefits of utilizing IMRT in management of GBM over the standard 3DCRT as used in the EORTC-NCI Protocol.

2. Methods

Consecutive adult patients diagnosed with GBM and referred to The Department of Radiation Oncology at the Northern Sydney Cancer Centre are entered into a prospective database, approved by Institutional Ethics Review Board. 10 consecutive patients with GBM formally screened for a clinical study investigating an anti-angiogenesis agent over a two month period from February 2009 to March 2009 were included in this dosimetric study. These patients were part of a cohort of 100 consecutive patients with glioblastoma multiforme formally managed with adjuvant radiation therapy between 1st July 2007 and 31st December 2011 under the dosimetric criteria and constraints specified as per the standard EORTC-NCI Protocol [1,6]. Patients proceeded to be managed with IMRT and IGRT utilising daily on-board imaging (OBI). For these 10 patients at an additional plan was produced using an optimal 3D conformal RT technique. The IMRT and 3DCRT plans were then utilised for formal comparison.

2.1. Radiation Therapy Planning

The patients had CT simulation with immobilization by an individual Perspex mask system. Pre and post operative MRI scans were fused with the non-contrast CT scan and entered into the Varian Eclipse Planning system. A single clinician and dosimetrist were used for the planning process.

Target volume segmentation was undertaken using the EORTC-NCIC Protocol with Clinical Target Volume being based on the enhancing tissue on postoperative imaging and an expansion of 1.5 cm to anatomical boundaries. The CTV was expanded uniformly by 5 mm to create the Planning Target Volume or PTV. The dose prescription was 60 Gy in 30 fractions as a single-phase treatment. Normal tissue dose constraints were specified as optic chiasm and brainstem to receive less than 55 Gy, and lens less than 6 Gy.

An IMRT plan was created with inverse planning limited by a maximum of 6 fields and dose constraints with highest priority on PTV, optic chiasm and brainstem. At sites where PTV involved a dose limiting structure, a separate high priority PTV was created for the overlap region and optimisations performed to control the dose at that region. Fluence painting was undertaken on each field to remove areas of high dose gradient. This plan was used for treatment delivery.

A second plan was subsequently produced by the same dosimetrist using a forward planned four to five field 3DCRT beam arrangement. Non-coplanar beams were utilised as required to optimize the dose distribution.

2.2. Radiation Therapy Delivery

Treatment was delivered with IMRT using 6 MV photons on a Varian Trilogy Linear Accelerator. Daily IGRT was performed with the on-board imager (OBI) verifying position based on middle cranial fossa and orbital bone landmarks.

2.3. Systemic Therapy Management

Concurrent and adjuvant temozolomide was used as per the EORTC-NCIC Protocol. Of the ten patients screened for the prospective clinical study, three were eligible for randomisation and one allocated the study drug in addition to temozolomide. Thus the remaining nine patients were managed under the standard protocol.

2.4. Dosimetric Endpoints

The volumes that formed the basis of the analysis, PTV (measured in cm3) and Brain (defined as Whole brain minus PTV) were calculated for each patient.

The study related dosimetric endpoints evaluated were calculated from the Eclipse Planning System. These were related to Tumour Dose (mean PTV dose and Conformity Index); and Normal Tissue Dose (mean Brain dose, percentage volume of brain receiving 40 Gy and volume of Brain receiving 20 Gy). The conformity index (CI) was defined as the volume of tissue encompassed by the 95% isodose as a proportion of the volume of the PTV ($CI = V_{95\%} / V_{PTV}$).

2.5. IGRT Delivery Endpoint

The discrepancy between clinical positioning of the patient in the immobilization mask and the subsequent radiological verification of position using the OBI was calculated each day. This provided a bidirectional measurement in 3 axes: medial, lateral and vertical. For analysis this daily isocentre shift was calculated as one direction and the median shift calculated for each patient.

2.6. Clinical Endpoints

All patients were followed clinically until death or the censure date of the study on August 1st 2013. The duration of survival from date of diagnosis was calculated for the 10 patients. The site of relapse was recorded as in-field (within 95% isodose or high dose RT); marginal (within 20 mm from 95% isodose) or distant (>20 mm...
2.6. Statistical Considerations

All patients had clinical and dosimetric data entered on an Excel database at Northern Sydney Cancer Centre and updated for outcome events.

The variation between the IMRT and 3DCRT dosimetric endpoints was examined using Wilcoxon analysis. The median survival of the patient group was calculated using the Kaplan-Meier method.

3. Results

The 10 patients were managed with radiation therapy and completed the planned treatment course. One patient had an interruption to therapy delivery of 2 days due to admission with febrile neutropenia secondary to marrow suppression from temozolomide. All patients were available for follow-up.

3.1. Target Volume Parameters

The 10 tumours were located in parietal (3), temporal (2), occipital (2), splenium (1), frontal/callosal (1) and cerebellar (1) regions of the brain. The median PTV was 308.1 cm³ with a range of 216 cm³ to 516 cm³. The median normal brain volumes were 1077.5 cm³ with a range of 930 cm³ to 1348 cm³.

3.2. Radiation Planning

The IMRT plans all reached the dosimetric requirement of the EORTC-NCIC Protocol in regard to PTV coverage and normal tissue avoidance. The beam arrangement for IMRT involved either 4, 5 or 6 beams treated with a dynamic MLC.

The 3DCRT plans were of high conformal design with 8 patients receiving a non-coplanar beam procedure; and patients receiving either a 4 portal (5 patients) or 5 portal (5 patients) field arrangement.

3.3. Dosimetric Endpoints

The dosimetric endpoints were significantly improved for all categories with the IMRT plans compared with the 3D CRT plans. The results are summarized in Table 1.

The IMRT Plans were able to deliver more dose to the tumour target as reflected by the Conformity Index being lower in all 10 patients for IMRT; and the mean PTV dose being higher in 9 patients (Figures 1 and 2). The site of the tumour reflected the extent to which the mean PTV dose varied from the 3DCRT, as demonstrated by the inferior frontal lobe (Patient 6) and temporal lobe IMRT plans (Patients 2,3,4) showing up to 7% higher dose delivered to the PTV.

The normal brain dose was reduced or equivalent in all patients at the 20 Gy and 40 Gy dose levels. The difference varied between patients and target volume size, but the volume of normal brain receiving 20 Gy was reduced by 15% - 20% in 4 patients (Figures 3 and 4). An example of the reduced brain dose at the 20 Gy isodose level is demonstrated in Figure 5.

3.4. IGRT Delivery

OBI directed isocentre measurements in the patient group were available for 230 treatments. The accuracy of treatment delivery was confirmed with median shifts (and 95% C.I.s) of 0.1 cm vertical (0.1 - 0.2), 0.1 cm longitudinal (0.1 - 0.2) and 0.2 cm lateral (0.2 - 0.2).

3.5. Clinical Outcome

A minimum of 50 months follow-up from diagnosis was available for the 10 patients included in survival duration analysis. All patients are deceased from relapse of glioblastoma. The relapse occurred in-field in 7, marginal alone in no patients and distant (>2 cm from 95% isodose).

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>IMRT (mean score and range)</th>
<th>3D Conformal (mean score and range)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean dose to PTV</td>
<td>61.4 Gy (60.4 - 62.5)</td>
<td>60.0 Gy (58.8 - 61.9)</td>
<td>0.004</td>
</tr>
<tr>
<td>Conformity index</td>
<td>1.14 (1.05 - 1.27)</td>
<td>1.31 (1.15 - 1.47)</td>
<td>0.002</td>
</tr>
<tr>
<td>V40 (volume of brain receiving 40 Gy)</td>
<td>14.8% (7.4% - 28.3%)</td>
<td>17.9% (10.9% - 27.1%)</td>
<td>0.019</td>
</tr>
<tr>
<td>V20 (volume of brain receiving 20 Gy)</td>
<td>47.4% (31.3% - 70.2%)</td>
<td>55.3% (39.6% - 75.9%)</td>
<td>0.015</td>
</tr>
<tr>
<td>Mean dose to brain</td>
<td>22.3 Gy (16.3 - 29.9)</td>
<td>24.5 Gy (19.3 - 30.9)</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Dosimetric Improvements Utilising Intensity Modulated Radiation Therapy for Patients with Glioblastoma Multiforme

4. Discussion

This study confirms that the use of IMRT as a radiation technique for adjuvant therapy of GBM results in improved dose distribution compared with standard 3DCRT. Dose to the tumour target can be increased with less dose delivered to surrounding normal brain tissue. This improvement is significant with potential increases of tumour dose by 5% - 7% and reductions in volumes of normal brain dose receiving 20 Gy by 15% - 20%.

Whilst an aim of radiation therapy is to deliver an optimal dose distribution it is uncertain whether these dosimetric improvements translate to clinical advantage. In this study the use of IMRT was not planned to have a major direct effect on tumour control because the treatment prescription is kept unaltered without any dose escalation or treatment acceleration. However at certain neuroanatomical sites adjacent to dose limiting structures such as tumours based in medial temporal lobe, there may be an impact on tumour control because of an improved dose to PTV. Similarly the clinical impact of reduction in normal brain dose is uncertain as the association between brain dose and risk of neurocognitive effect is not well defined [7].

In this small cohort of patients the median survival was 18 months with three patients surviving into the fourth year after diagnosis. This is consistent with the survival from recently reported clinical trials [8-10], and our report of 100 patients consecutively managed with IMRT [5]. Optimising radiation therapy dosimetry
Dosimetric Improvements Utilising Intensity Modulated Radiation Therapy for Patients with Glioblastoma Multiforme

Figure 3. Brain v40 (%brain receiving >40 Gy): Comparison of IMRT and 3D CRT plans for each patient.

Figure 4. Brain v20 (%brain receiving >20 Gy): Comparison of IMRT and 3D CRT plans for each patient.

should not be neglected as the effect of enhancing both surgery and systemic therapies may result in a potential exacerbation of RT morbidity. More aggressive neurosurgical debulking into eloquent areas of brain may result in small vessel effects which could subsequently increase the risk of later ischaemic events from radiation therapy. Similarly the addition of further agents to temozolomide with either cytotoxic or molecular agents may accentuate a risk of delayed leukoencephalopathy. Waiting for clinical evidence to provide a reason to implement an improved radiation therapy technique may not be warranted in this era of managing a cancer in which the median survival has doubled.

The improvements in conformity index have increased the potential for dose escalation or treatment acceleration to be considered as a technique to improve outcome [11]. Previous attempts at dose escalation have been unsuccessful, though most were involved with the addition of dose at the completion of standard therapy, either with an external beam boost, stereotactic boost or brachytherapy [12-14]. All these prior studies were performed in the era before temozolomide. Combined with the improvements in tumour delineation with MRI and PET imaging, IMRT now allows the potential for alteration to standard dose fractionation regimens with smaller better defined target volumes. This principally allows the dose escalation to be delivered via an integrated boost technique without extending the radiation treatment duration [11,15,16]; or via hypofractionation with a high dose of RT to a smaller target over shorter treatment duration [17,18]. Both of these approaches have potential radiobiological advantages, especially in tumours with a high proliferative rate.

An IMRT integrated boost approach allows a limited volume target to be treated to a higher dose whilst main-
Dosimetric Improvements Utilising Intensity Modulated Radiation Therapy for Patients with Glioblastoma Multiforme

5. Conclusion

IMRT for glioblastoma multiforme can achieve significant dosimetric improvements over 3D CRT. The potential for clinical benefit with standard therapy remains uncertain and the impact of novel techniques of integrated boost dose escalation is yet to be explored. However, optimisation of radiation technique using IMRT will allow for a minimisation of future late tissue morbidity whilst other modalities of surgery and systemic therapy are enhanced.

REFERENCES
Dosimetric Improvements Utilising Intensity Modulated Radiation Therapy for Patients with Glioblastoma Multiforme

http://dx.doi.org/10.1056/NEJMoa043330

http://dx.doi.org/10.1016/S1470-2045(09)70025-7

http://dx.doi.org/10.1227/01.NEU.0000170562.25335.C7

http://dx.doi.org/10.1016/j.ijrobp.2005.03.057

http://dx.doi.org/10.1007/s00345-003-0356-x

http://dx.doi.org/10.1016/S0140-6736(02)11398-5

http://dx.doi.org/10.1200/JCO.2009.26.6650

http://dx.doi.org/10.1016/j.radonc.2010.08.018

http://dx.doi.org/10.1016/j.ijrobp.2006.02.042

http://dx.doi.org/10.1016/S0360-3016(98)00159-X

http://dx.doi.org/10.1007/s00066-011-0660-5

http://dx.doi.org/10.1016/j.ijrobp.2012.01.035

http://dx.doi.org/10.1016/j.ijrobp.2010.09.020