
Journal of Computer and Communications, 2017, 5, 129-139
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.59009 July 28, 2017

Programming System PARCS

A. V. Anisimov, A. V. Derevianchenko, P. P. Kuliabko, O. M. Fedorus

Computer Science and Cybernetics Faculty, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Abstract
PARCS (Parallel Asynchronous Recursive Control System) programming
tools that allow unified add-on parallel extensions over traditional program-
ming languages are described. The PARCS model is based on the conception
of a control space, which is used to describe parallel interacting processes.
Structurally, the control space consists of addressable “points” and “channels”.
Executing modules are assigned to points and communicate through channels
connecting points. Recursive embeddings of processes are allowed. The effec-
tive implementation of PARCS on cloud platforms Microsoft AZURE and
Amazon EC2 is also presented.

Keywords
Parallel Computing, Programming Language, Control Space,
Cloud Computing

1. Introduction

Traditional sequential programming languages, operating systems, and comput-
er architectures are mainly conformed to each other. Therefore, the majority of
programs get the mobility property. As far as parallel computations are con-
cerned, positive solutions for conformity could be achieved only for a limited
number of local areas. In parallel programming, for the same task an algorithm
could be effective in one parallel environment and completely inefficient in
another one. Meanwhile, the rapid advance of information technologies de-
mands the need to create convenient tools for parallel programming and related
technologies. The terms “parallel” and “concurrent” are increasingly used in re-
lation to architecture of computing systems, operating systems, algorithms, pro-
gramming languages, data structures, and databases. Against this background,
the development of descriptive tools well-suited for logical level of algorithmic
concurrency is of great importance.

There are two ways for introducing parallelism into programming languages.

How to cite this paper: Anisimov, A.V.,
Derevianchenko, A.V., Kuliabko, P.P. and
Fedorus, O.M. (2017) Programming System
PARCS. Journal of Computer and Commu-
nications, 5, 129-139.
https://doi.org/10.4236/jcc.2017.59009

Received: April 19, 2017
Accepted: July 25, 2017
Published: July 28, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.59009
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.59009
http://creativecommons.org/licenses/by/4.0/

A. V. Anisimov et al.

130

The first one is to build-in basic parallel programming features like in languages
C++, Java, C#, Python. The second approach relates to constructing special add-
ons over standard procedural languages: MPI, OpenMP, Cuda, OpenCL, JavaCL.
We propose PARCS (Parallel Asynchronous Recursive Control System) as a
universal add-on extension to the base programming languages.

Traditional sequential programming languages, operating systems, and com-
puter architectures are mainly conformed to each other. Therefore, the majority
of programs get the mobility property. As far as parallel computations are con-
cerned, positive solutions for conformity could be achieved only for a limited
number of local areas. In parallel programming, for the same task an algorithm
could be effective in one parallel environment and completely inefficient in
another one. Meanwhile, the rapid advance of information technologies de-
mands the need to create convenient tools for parallel programming and related
technologies. The terms “parallel” and “concurrent” are increasingly used in re-
lation to architecture of computing systems, operating systems, algorithms, pro-
gramming languages, data structures, and databases. Against this background,
the development of descriptive tools well-suited for logical level of algorithmic
concurrency is of great importance.

There are two ways for introducing parallelism into programming languages.
The first one is to build-in basic parallel programming features into a base lan-
guage like in languages C++, Java, C#, Python. The second approach relates to
constructing special add-ons over standard procedural languages: MPI,
OpenMP, Cuda, OpenCL, JavaCL. We propose PARCS (Parallel Asynchronous
Recursive Control System) as a universal add-on extension to the base pro-
gramming languages.

2. General Introduction to PARCS

The PARCS-conception appeared in early 80-s of the last century as an attempt
to create programming tools for computers of non von-Neumann architectures
[1]. The key idea behind PARCS is the representation of a complex parallel
process as executional activities developing and communicating in some logical-
ly connected space. Current activities of a process are assigned to some space
coordinates that define communication addresses. We call such a communica-
tion structure a Control Space (CS). Structurally CS consists of addressable
points and channels. Both points and channels could be constants or variables.
Ends of a channel are points, and points are connected by channels. Transmit-
ting data or another information should be done only through channels.

Another conceptual feature of PARCS is an Algorithmic Module (AM), which
is a program (procedure) in a base language extended by special commands for
interacting with CS. Thus, CS can be viewed as a skeleton of a parallel process
carrying executional AMs.

In our constructions of PARCS, we tried to maximally separate commands for
CS from specific peculiarities of a basic procedural language. This allows us to
create tools to describe universal parallel extensions of programming languages.

A. V. Anisimov et al.

131

Of course, any specific implementation of PARCS depends on a chosen pro-
gramming platform.

PARCS-constructions allow unified and parameterized parallel extensions of
traditional programming languages.

Let L be a chosen programming language (PASCAL, C, C++, JAVA, Python,
C#, etc.). Basic data types used in PARCS programming are points and commu-
nication channels, which connect points. An algorithmic module is a program
written in L extended by the following commands: SEND DATA TO
CHANNEL, ACCEPT DATA FROM CHANNEL, CREATE/DELETE POINT,
CREATE/DELETE CHANNEL, ASSIGN AM TO POINT and some others. This
way a communication structure is built over L. Topologically, CS can be viewed
as a dynamically changeable graph. The fulfillment of AM can modify the struc-
ture of CS: attaching or deleting points and channels, blocking some processes,
creating and destroying AM. Independent AMs could be executed in parallel.
Theoretically, CS points can include into itself control subspaces of an arbitrary
depth. AMs located in points can interchange by messages through connecting
channels. We denote such an extension by PARCS-L.

To date, several PARCS products have been developed: PARCS-PASCAL [2],
PARCS-Modula2 [3], PARCS-FORTRAN [4], PARCS-C [4], PARCS-Java [5],
PARCS-Сuda [6], PARCS-Python [7], PARCS-С# [8] [9].

3. PARCS Model

Algorithmic models developed on the basis of the PARCS-technology (and using
the means of a particular PARCS-programming system) are called “PARCS-
models”. The development of PARCS-models is implemented at two interrelated
levels: logical and program. At the logical level PARCS programming tools allow
a user to describe explicitly the resource allocation, all possible commutation
and re-commutation connections (with taking into account the recursive algo-
rithm unfolding) or get implicitly the logical structure of the algorithm, resource
allocation and re-commutation scheme as a result of the PARCS model func-
tioning. Management, data and rules of interaction between the data and man-
agement are described at the program level, with taking into account the cor-
responding logical structure (it looks like as a “filling” of the logical structure).

The PARCS model is defined as follows:
a) A particular set of basic algorithmic modules (AM) is defined;
b) During the model functioning it is permitted: creating (perhaps recursive-

ly) active copies of AM, creating AM with “mutational” changes which are de-
termined by the current situation;

c) The model functioning consists of the creation and destruction of AM ac-
tive copies, their partially-decentralized asynchronous functioning and dynamic
interaction.

Programming PARCS-tools are intended to describe the interaction and re-
cursive-parallel development of the processes which are built on the base of the
basic language. Low level PARCS-tools can be configured for single processor

A. V. Anisimov et al.

132

(for simulation) or multiprocessor computers (computer networks, multi-ma-
chine complexes, cloud computing, etc.), where message exchange is used to
support connections between parallel processes or some other mechanism pro-
viding the process synchronization and communication.

The PARCS-environment is provided by the extension of the basic algorith-
mic language due to the operations with the CS (level of logical structure).

Many well-known abstract models such as Turing machines, recursive func-
tions, program schemes, etc. have been elaborated to deal with sequential algo-
rithms. For parallel programming, algorithmic models strongly depend on a
functioning platform. For instance, the same algorithm could demonstrate com-
pletely different effectiveness on parallel systems of SIMD, MISD or MIMD (in
Flynn’s classification).

A PARCS-model reflects general common features of various PARCS-systems.
PARCS is intended to extend computations prescribed by a program given in a
base language L to parallel execution and interchange. Therefore, a PARCS
model has two interrelated levels: logical and program. The logical part is asso-
ciated with the description of program communicating and bootstrapping facili-
ties. This part strongly relies on CS and its interactions with AMs. At this level,
PARCS tools allow a user to explicitly or implicitly, in the case when recursion is
used, describe resource allocation, all possible commutation or re-commutation
channel connections between algorithmic modules.

The second PARCS level completely depends on a computations model that
the base language L uses. Control, data and the interaction rules between con-
trol, data and a logical structure are specified at this level.

The PARCS functioning is as follows:
a) A specific set of basic starting AMs is defined;
b) A starting configuration of CS with AMs assigned to certain points is set-

tled;
c) During the execution cycle creating, possibly with the use of recursion, new

active copies of AMs can be done;
d) Destruction of AMs can be done;
f) Active AM processes the data according to their control commands speci-

fied in the base language L;
g) AMs communicate through channels of CS transmitting both data and

control.
Points b), c), and d) are specified by commands of the PARCS logical level.
Further, using the PARCS-model, a chosen base algorithmic language, and an

implementation platform the corresponding PARCS-technology could be
created.

The huge variety of specific programming languages predetermines a diversity
of PARCS-implementations.

4. Control Space Conception

CS is a conception that intends to describe the logical structure of a parallel al-

A. V. Anisimov et al.

133

gorithm (system) and to represent its dynamic changes. CS consists of points
and channels that connect points. It may have the hierarchical structure. A new
CS, according to CS structural recursion, can be generated from a CS point.
Points and channels simulate logical processors (resources) and communication
channels for information exchange respectively.

Due to the geometrical structure and communication meaning, CS physical
implementation can be used to create specialized parallel processors.

From the object-oriented programming point of view the functioning of CS is
performed by objects and operations. In this paper, we use definitions at the lev-
el of specifications for abstract data types. The levels of representation and im-
plementation of these data types depend on specific implementations of PARCS
programming systems.

Objects such as points and channels are determined by the set of operations
presented in Table 1.

CS is a finite (but dynamically extending) graph representing the architecture
of parallel computation.

We demonstrate two examples of CS structures (“Radian circle” and “Cube”)
in terms of PARCS-Java (Figure 1 and Figure 2).

Figure 1. CS-“Radian circle”.

Figure 2. CS-“Cube”.

A. V. Anisimov et al.

134

Table 1. Operations on points and channels.

No. Function Description

1. NewPoint() Creating a new point; returns an identifier of a new point.

2. NewChannel() Creating a new channel; returns an identifier of a new channel.

3. Linkp(p,q,c) Linking the 2 points p and q with the channel c.

4. DelPoint(p) Deleting the point p.

5. DelChannel(c) Deleting the channel c.

6. UnLinkp(c)
Unlinking points which were linked with the channel c; the channel c

becomes free.

7. Howp(p, ar-p[])
Returns the number of points which were linked by channels with the

point p; the second parameter is used to return these points.

8. MyPoint Returns the point identifier, where this function was called from.

// representation of the CS model “RADIAN CIRCLE” Figure 1.
// create Points and Channels-basic elements of the CS.
point[] p = new point[n];
channel[] c = new channel[n];
for (int i=0; i<n; i++) p[i] = curtask.createPoint();
for (int i=0; i<n-1; i++) c[i] = createChannel(p[i], p[i+1]);
c[n-1] = createChannel(p[n-1], p[0]);
// launching relevant AMs;
for (int i=0; i<n; i++) p[i].execute(“TASK_AM”+i);

// representation of the CS model “CUBE” Figure 2.
// create Points and Channels-basic elements of the CS.
point[][][] p = new point[2][2][2];
channel[][] c = new channel[8][8];
for (int i=0; i<2; i++);
for (int j=0; j<2; j++);
for (int k=0; k<2; k++);
p[i][j][k] = curtask.createPoint();
for (int i=0; i<2; i++);
for (int j=0; j<2; j++);
for (int k=0; k<2; k++){;
int pi = i*4+j*2+k;
int pj = ((i+1)%2)*4+j*2+k;
if (c[pi][pj] == null);
c[pi][pj] = c[pj][pi] = createChannel(p[i][j][k], p[(i+1)%2][j][k]);
pj= i*4+((j+1)%2)*2+k;
if (c[pi][pj] == null);
c[pi][pj] = c[pj][pi] = createChannel(p[i][j][k], p[i] [(j+1)%2][k]);
pj= i*4+j*2+(k+1)%2;
if (c[pi][pj] == null);
c[pi][pj] = c[pj][pi] = createChannel(p[i][j][k], p[i][j][(k+1)%2]); };

A. V. Anisimov et al.

135

// launching the relevant AMs;
for (int i=0; i<2; i++);
for (int j=0; j<2; j++);
for (int k=0; k<2; k++);
p[i] [j] [k].execute(“TASK_AM”+i+j+k);

Using PARCS system we can simulate real computation tasks by constructing
different dynamic or static CS configurations (tree, circle, cube etc.).

In parallel computations, one of the most difficult problems is the problem of
optimal managing parallel processes. The effectiveness of PARCS systems de-
pends not only on its specific structure but also on its implementation on a spe-
cific platform, and on many other external factors such as network or hardware
peculiarities.

5. Algorithmic Module (АМ)

Another important part of the PARCS-conception is the notion of an algorith-
mic module. A program in PARCS consists of a sequence of processes. Each
process is controlled by a system of AMs assigned to some abstract points of CS.
AM sets up a sequential algorithm, either its control or data. Points can be con-
nected by channels, which transmit information. The system of points and
channels forms CS of the process and specifies its structural organization. Points
and channels are defined as built-in data types. CS can dynamically change its
configuration while an algorithm is running. Recursive calls of processes are
permitted. Such calls could be initialized by any AM localized inside the calling
process.

The call execution launches the process of creating a subspace of CS subordi-
nated to the point, where the call occurs. The corresponding starting AMs are
assigned to the points of this subspace.

Inter-module communication operators specify information transmission.
As seen, the PARCS-conception generalizes the conception of communicating

sequential processes considered by E. Dijkstra [10] and developed by C.A.R.
Hoare [11], P. Brinch Hansen [12].

Conceptually, data transmission over the channels is described by the follow-
ing set of functions given in Table 2.

Table 2. Communication functions of PARCS.

No. Function Description

1. Sendp(c,ms) Send the message ms to the channel c; returns the success or error code.

2. Getp(c,ms) Get the message ms from the channel c; returns the success or error code.

3. Waitp(L,r)
Wait for the arriving message to the one of the channels from the list L;

returns the identifier of the channel. If r = 0 then the message will be
deleted else it will be kept.

4. Delayp(t) Delay the AM running on time t.

5. Finish Finish the AM running.

A. V. Anisimov et al.

136

6. Control Transfer by CS Channels

A control transfer by CS channels is an important and original feature of the CS-
conception and associated with it recursive-parallel programming technology.
The main purpose of the control transfer is to modify the control part of an ac-
tive AM-copy as a result of interaction with other active AM-copies. In particu-
lar, AM could be assigned to an “empty” point.

In programming languages, such operations have great practical importance
for solving a wide class of problems. For example, it is convenient to run the
base text of a program as well as several other programs that differ from the ba-
sic program in minor modifications.

In traditional programming languages, there exist a number of tools which are
particular cases of the control transfer:
• The procedure independent compilation and the transfer of procedure names

as an actual parameter;
• Macro processors or preprocessors;
• The text generation of a program and its interpretation in the same program

or in another subprogram (such an opportunity is provided, for example, in
LISP and in some other interpretative languages). PARCS-commands for the
control transfer are given in Table 3.

7. PARCS-System Implementation in Cloud Computing

We have developed and tested procedures of the PARCS deployment on the
Amazon EC2 and Microsoft Azure platforms [11] [12]. Herein, we briefly de-
scribe the procedure of the PARCS deployment on the Microsoft Azure plat-
form.

We created the project RestApi which allows us to obtain information about
the current system state and to fulfill operations such as starting a new AM or
task cancellation. The project was developed using the ASP. NET Web API tech-
nology.

It consists of four controllers:
ParcsController calls methods HostServer API.
ModuleController—starts a new module with given parameters.
LogController—returns the log-file of the systems work.
AccountController—is responsible for the user authentication.
The main difficulty was to get the remote connection to the first machine and

to start deployment of the site RestApi on it. To solve this problem, we used the

Table 3. PARCS-commands for the control transfer.

setp(p,AM,pr) Assign the AM to the point p with priority pr.

setc(c,F)
Send function/procedure F to the channel c; the receiver

AM should use function getc(c,F).

setcm(c,ms)
Send text block ms to the channel c; the receiver

AM should use function getcm(c,ms).

A. V. Anisimov et al.

137

technique of virtual machines and the Web Deploy technology. The last one al-
lows us to download executable files RestApi and deploy the site with these files
on the web server IIS.

Thus, to deploy the site on a virtual machine the following steps should be
done:
1. Create a virtual network.
2. Create a virtual machine in the virtual network.
3. Add IIS Role in the virtual machine.
4. Install Web Deploy in the virtual machine.
5. Set permissions for Web Deploy on IIS.
6. Post project RestApi on the virtual machine by Web Deploy using the devel-

opment environment by Visual Studio.
7. Launch HostServer.

Afterwards, other virtual machines should be created, the program Daemon
should be run on them, and all IP-addresses should be registered in the configu-
ration file HostServer. While creating virtual machines, it is important to join
them to a single virtual network that allows them to communicate with each
other. Also, while creating a machine, one should configure the endpoints that
are ports to access the machine.

Another important feature of this system is its ability to simultaneously per-
form multiple tasks by different users. If there is no enough capacity the system
will wait until processors become free and only then it will run new tasks.

After performing the above action was possible deployment PARCS C# in the
cloud Microsoft Azure. We deployed web service system that used a web-inter-
face. As shown in Figure 3, the interface displays the current hosts involved in
the calculations and tasks performed. Also present functions add and cancel
tasks.

8. Conclusions

The proposed PARCS-system and corresponding PARCS-technologies allow ef-

Figure 3. User interface of the PARCS C# system.

A. V. Anisimov et al.

138

fective organization parallel computation processes on different programming
platforms. PARCS-tools provide a user with the following possibilities:
• To assist complex computing tasks that require powerful computing and pa-

rallel data processing;
• To control information flows in parallel processing systems;
• To accumulate parallel programming algorithms (collecting algorithmic

modules) for their further subsequent use.
In the PARCS-technology we mark the following results:

• Efficient tools to control parallel computing processes have been created.
• Practical applications of the PARCS-technology for parallel data processing

on computer networks, graphics cards, clusters, and cloud computing have
been developed and tested. The PARCS-architectures for cloud computing
on Amazon EC2 and Microsoft Azure platform have been developed.

• PARCS-extensions of a number of basic programming languages have been
implemented. Corresponding softwares PARCS-PASCAL, PARCS-Modula2,
PARCS-FORTRAN, PARCS-C, PARCS-Java, PARCS-Cuda, PARCS-Python,
PARCS-C# have been created. They can perform real computing tasks on
computer networks, clusters, graphics cards, and cloud technologies.

The effectiveness of algorithms in building different CS models and appropri-
ate parallel programs was experimentally tested.

References
[1] Glushkov, V.M. and Anisimov, A.V. (1980) Controlling Spaces in Asynchronous

Parallel Computations. Cybernetics and Systems Analysis, 16, 633-641.

[2] Anisimov, A.V. and Kuliabko, P.P. (1984) Programming of Parallel Processors in
Control Spaces. Cybernetics, 20, 404-418. https://doi.org/10.1007/BF01068474

[3] Anisimov, A.V. and Kuliabko, P.P. (1997) Modeling the Petri Nets with PARCS-
Tools. Problems of Programming, 2, 45-56. (In Russian)

[4] Anisimov, A.V., Boreisha, U.E. and Kuliabko, P.P. (1991) Programming System
PARCS. Programming, 6, 91-102. (In Russian)

[5] Anisimov, A.V. and Derevianchenko, A.V. (2005) The System PARCS-JAVA for
Parallel Computations on Computer Networks. Cybernetics and Systems Analysis,
41, 17-26. https://doi.org/10.1007/s10559-005-0037-4

[6] Derevianchenko, A.V. (2011) Application of CUDA in Parallel Computing System
PARCS-Java. Proceedings of the International Conference on Artificial Intelligence,
Intelligent Systems AI-2011, Vol. 1, 62-68. (In Russian)

[7] Anisimov, A.V., Hodovaniuk, M.I. and Kuliabko, P.P. (2016) Parallel Programming
in Computer Networks on the Base of PARCS-Technology (Basic Language Is Py-
thon). Bulletin of Taras Shevchenko National University of Kyiv Series Physics &
Mathematics, 3, 51-54.

[8] Derevianchenko, A.V. and Havro, A.U. (2015) The Use of PARCS.NET and Ama-
zon EC2 for Cloud Computing. Bulletin of Taras Shevchenko National University
of Kyiv Series Physics & Mathematics, 4, 111-118.

[9] Derevianchenko, A.V. and Havro, A.U. (2016) Developing Web Service for
PARCS.NET and Deploying It in the Cloud Microsoft AZURE. Proceedings of the
13th International Conference on Theoretical and Applied Aspects of Program Sys-

https://doi.org/10.1007/BF01068474
https://doi.org/10.1007/s10559-005-0037-4

A. V. Anisimov et al.

139

tems Development, Kyiv, 81-86.

[10] Dijkstra, E.W. (1968) Cooperating Sequential Processes. In: Hansen, P.B., Ed., The
Origin of Concurrent Programming, Springer, New York, 65-138.
https://doi.org/10.1007/978-1-4757-3472-0_2

[11] Hoare, C.A.R. (1978) Communicating Sequential Processes. Communications of the
ACM, 21, 666-677. https://doi.org/10.1145/359576.359585

[12] Brinch Hansen, P. (1978) Distributed Processes: A Concurrent Programming Con-
cept. Communications of the ACM, 11, 934-941.
https://doi.org/10.1145/359642.359651

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://doi.org/10.1007/978-1-4757-3472-0_2
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359642.359651
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Programming System PARCS
	Abstract
	Keywords
	1. Introduction
	2. General Introduction to PARCS
	3. PARCS Model
	4. Control Space Conception
	5. Algorithmic Module (АМ)
	6. Control Transfer by CS Channels
	7. PARCS-System Implementation in Cloud Computing
	8. Conclusions
	References

