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Abstract 
In this paper, a new method of combination single layer wavelet transform and com- 
pressive sensing is proposed for image fusion. In which only measured the high-pass 
wavelet coefficients of the image but preserved the low-pass wavelet coefficient. 
Then, fuse the low-pass wavelet coefficients and the measurements of high-pass 
wavelet coefficient with different schemes. For the reconstruction, by using the mi-
nimization of total variation algorithm (TV), high-pass wavelet coefficients could be 
recovered by the fused measurements. Finally, the fused image could be recon-
structed by the inverse wavelet transform. The experiments show the proposed me-
thod provides promising fusion performance with a low computational complexity. 
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1. Introduction 

Image fusion is the technique that integrates complementary and redundant informa-
tion of multiple images to obtain a composite one, which contains more comprehensive 
description than any of the individual image. As a result of the processing, the fused 
image is more useful for human and machine perception or further image processing 
tasks such as object detection and recognition. By now, many well-known fusion algo-
rithms have been proposed [1]. And the most popular technique up to now is multi- 
resolution decomposition methods, such as pyramid-based methods [2], discrete wave-
let transform (DWT)-based methods [3] etc. But most of them need the whole acquisi-
tion of the source images, which means that the large of storage burden must be han-
dled especially due to the growing sensor data volumes. 
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In recent years, a new technique for simultaneous data sampling and compression 
known as compressive sensing (CS) [4] [5] [6] [7] has been developed. It builds upon 
the ground breaking work by Donoho [7] and Candes et al. [8], who showed that under 
certain conditions, a signal can be precisely recovered from only a small set of mea-
surements. The CS principle provides the potential of dramatic reduction of sampling 
rates, power consumption and computation complexity in digital data acquisitions. 
Due to its great practical potentials, it has caused great interest both in academia and 
industries in the past few years [9] [10]. However, most of existing works in CS remain 
at the theoretical research. 

For image fusion in CS, one natural way is to perform traditional fusion among the 
reconstructed multiple images after separate recover of each image from the measure-
ments. However, in order to save storage space and reduce the computational complex-
ity, a better method is to directly perform fusion on the measurements, and then to re-
construct the fused image from the fused measurements. Recently, several different fu-
sion strategy based on CS which have been proposed, e.g., a simple maximum selection 
rule [11] or a self adaptive weighted average fusion scheme based on standard deviation 
of measurements [12]. 

In this paper, we proposed an image fusion scheme in a general CS framework. Spe-
cifically, we just take single layer wavelet decomposition for image and only measured 
the high-pass wavelet coefficients of the image with Fast Walsh Hadamard Transform 
[13], then, fused the low-pass wavelet coefficients and the measurements of high-pass 
wavelet coefficients with different schemes. The composite coefficients of the fused im-
age are subsequently recovered via the total variation optimization (TV) algorithm [14] 
and inverse wavelet transform.  

This paper is organized as follows. In Section 1, we provide a brief review of CS. The 
proposed fusion scheme based on CS is described in Section 3. Some experimental re-
sults and a discussion are given in Section 4. Finally, Section 5 ends this paper with a 
conclusion. 

2. Overview of Compressive Sensing 

Consider a real-valued, finite-length, one-dimensional, discrete-time signal Nx R∈ ,  
with elements [ ]; 1, 2 .x n n N=   We say that the signal x is K sparse if it can be 
represented as： 

x Dα=                               (1) 

where D  is an N N×  basis matrix and α  is an 1N ×  vector containing only K 
nonzero coefficients. Clearly, x and α  are equivalent representations of the signal, 
with x in the time or space domain and α  in the D  domain. If K N<< , the signal 
x is compressible. 

In CS, we can not measure or encode α  directly, rather, we take the compressive 
measurements: 

y Ax=                               (2) 
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where My R∈  and A  is an M N×  measurement matrix representing the mea-
surement process. Since M N<< , the reconstruction of x from y is generally ill-posed. 
However, the CS theory is based on the fact that x has a sparse representation in a 
known transform domain D  (e.g., the DCT and the wavelet). In other words, the 
transform domain signal α  can be recovered perfectly using an optimisation process 
if A  satisfies the restricted isometry property (RIP) [8]. Under some fixed sparsifying 
basis D , such as Gaussian or Bernoulli i.i.d matrices offer universality and optimal 
performance as measurement matrices [7] [8], but with a high computational complex-
ity. A new sampling operator called Fast Walsh Hadamard Transform [14] is also quite 
universal but with a lower complexity.   

To solve the inverse transform from Equation (2), some non-linear recovery algo-
rithms for such ill-posed problems have been developed [4] [5]-[10]. Unfortunately, 
most of them require fairly heavy computations in practice. In this paper ,we use a new 
efficient TV minimization scheme based on augmented Lagrangian and alternating di-
rection algorithms, short for “TVAL3 scheme” to solve the problem[14]. It is presented 
for solving the compressive sensing problem with total variation regularization:  

, .                 ymin i
x i

x s t AxD =∑                   (3) 

where x is an 1N ×  vector, 2
iD x R∈  is the discrete gradient of x at pixel i, A  is an 

M N×  (M < N) measurement matrix, and measurements y are the linear projection of 
x. ⋅  is 1-norm(corresponding to the anisotropic TV). 

3. The Proposed Scheme 
3.1. Sampling 

In order to obtain the measurements of the original images, a type of structured mea-
surement matrices called Fast Walsh Hadamard Transform matrices will be used [14]. 
The measurement matrices are able to handle the fast computation of matrix-vector 
multiplication. It is constructed by the Hadamard Matrix. The Hadamard matrix of 
dimension 2k  for k are given by the recursive formula: 

[ ]0 1H =  

1

1 11
1 12

H  
=  − 

 

And in general 

1 1

1 1

1
2

K K
K

K K

H H
H

H H
− −

− −

 
=  − 

                      (4) 

This is also known as the Hadamard-ordered Walsh Hadamard matrix. Other orders, 
such as sequency order, dyadic order, and so on can be obtained by reordering the rows 
of the Hadamard matrix. Walsh Hadamard matrices 'in various orders have recently 
received growing concern due to the extensive application in engineering field. 

To achieve the Fast Walsh Hadamard transform matrix, it is necessary to understand 
the “so-called Kronecker product”. 
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For any two matrices ij p q
A a

×
 =    and ij r l

B b
×

 =   , the Kronecker Product of two 
matrices is defined as: 

11 12 1

21 22 2

1 2 3 4

q

q

p p p p

a B a B a B
a B a B a B

A B

a B a B a B a B

 
 
 ⊗ =
 
 
  





   

                  (5) 

In order to better understand the meaning of the Kronecker product, we define two 
new operators vec and mtx. The vec operator is to make all the columns of a matrix in-
to a vector, and mtx is the inverse operator of vec that separates the vector into several 
equal-length vectors and forms a matrix. 

According to “Kronecker product” theorem, Matrix m nA R ×∈  can constructed by 
the Kronecker product formula: 

1 2( )A A A= ⊗                           (6) 

where ( / ) ( / )
1

m p n qA R ×∈  and 2
p qA R ×∈ , m and n are chosen to satisfy that m and n are 

divisible by p and q, respectively. Then matrix-vector multiplication can be computed 
by: 

1 2

2 1

( ( )

( ( ) )

T

T T

Ax vec A mtx x A

A y vec A mtx y A

=

=
                      (7) 

Detailed derivation process in [14]. Using the Kronecker product, the Formula (4) 
can rewritten as： 

1 1K KH H H −= ⊗                          (8) 

For any two vector x with the length of 2k , denote 1 2  T Tx x x =   , where 1x  and 

2x  are the same size. The Hadamard-ordered Walsh Hadamard transform ( hWHT ) 
can be expressed as: 

1 1( )K KH x H H x−= ⊗                        (9) 

Due to the Basic KP theorem, it follows 

[ ]
[ ]

[

[ ]
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1 1 2 1

1 2 2 2 1
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1 1 1 2K K

x
H x H x− −

 
 − 

          (10) 

A implementation of the fast hWHT  according to recursive Formula (10) would on-
ly have a computational complexity of ( log )O N N , but it is 2( )O N  of a general 

hWHT . We can see that only additions and subtractions are involved while implement-
ing the fast hWHT . 

Let ix  represent the vectorized signal of the i-th wavelet sub-band. The corres-
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ponding measurement output vector can be written as: 
,    1, 2,3i iy Ax i= =                         (11) 

In each wavelet sub-band, we set the same sampling rate, so the number of mea-
surements for each sub-band are the same. 

3.2. Fusion 

Multi-resolution wavelet decomposition has a noticeable advantage in the representa-
tion of a signal. In our fusion scheme, we take a single-level CDF-97 wavelet transform 
to decompose the original image into approximation coefficients and the detail coeffi-
cients. High frequency sub-band include the main energy of the original image and can 
considered to be sparse, but the scale coefficients low frequency sub-band is not consi-
dered to be sparse. So the low-frequency and high frequency coefficients multiplied 
with measurement matrix A together will destroyed the correlation between low-fre- 
quency approximate weight coefficient and the detail coefficients and lead to a poor 
reconstruction results. Hence, we preserving the low-pass wavelet coefficients and only 
measured the high-pass wavelet coefficients of the image. Then we fuse them with dif-
ferent fusion rules. 

A) Fusion rule I 
Let KA  and KB  be the k-th (K = 1, 2, 3) low-frequency sub-images of image A and 

image B respectively. The fused approximation coefficient of the k-th low-frequency 
sub-images KF  can be formulated as: 

2

K K
K K K A BF A B +

= + −                        (12) 

where KA  and KB  are the mean value of KA  and KB . This strategy can keep the 
low-frequency better compare with general average weighted fusion strategy. 

B) Fusion rule I 
Image structural similarity (SSIM) [15] is a kind of effective image quality evaluation 

index based on the hypothesis that the human visual perception is highly adapted for 
extracting structural information from a scene. Inspired by this, we use SSIM to extract 
the structure relation between two high-frequency sub-images measurement. 

The structural similarity (SSIM) is designed by modeling any image distortion as the 
combination of structure comparison function ( , )s x y , luminance comparison func-
tion ( , )l x y , contrast comparison function ( , )c x y . SSIM is defined as: 

2 2

1 1

1 ( ( , ) )
1

M N

x x
i j

x i j
MN

σ µ
= =

= −
− ∑∑                    (13) 

2
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1
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= =
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− ∑∑                (14) 
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3

3
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σ σ
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1 2
2 2 2 2

1 2

(2 )(2 )
( , )

( )( )

( , ) ( , ) ( , )

x y xy

x y x y

C C
SSIM x y

C C

l x y c x y s x y

µ µ σ
µ µ σ σ

+ +
=

+ + + +

=

              (18) 

where xµ  and yµ  are the mean, xσ , yσ  and xyσ  are the standard deviation and 
covariance, respectively. All of these is computed on the high-frequency sub-images 
measurement between image x and y. constant 1C , 2C , 3C  are included to avoid in-
stability when denominator is very close to zero. Specifically, 2

1 1( )C K L= , 
2

2 2( )C K L=  where L is the dynamic range of the high-frequency sub-images mea-
surement(maximum for two corresponding high frequency sub-band image measure-
ment), and 1 1K << , 2 1K <<  is a small constant, in our experiments we set the para-
meter at 0.05,the other parameters of SSIM are all in accordance with Ref. [15]. 

For image fusion, it is useful to apply the SSIM locally rather than globally. In our 
experiments xµ , xσ  and xyσ  are computed within a local 2 2×  square window, 
which moves pixel-by-pixel over the entire image. At each step, the local statistics and 
SSIM are calculated within the local window. 

At last, the mean SSIM (MSSIM) index to measure the similarity of two images de-
fined as follows: 

1

1( , ) ( , )
M

j j
j

MSSIM x y SSIM x y
M =

= ∑                     (19) 

where jx  and jy  are the image information at the j-th local window, and M is the 
number of local windows of the image. 

For the detail coefficients fusion, we let KGA  and KGB  be the measurement of the 
k-th (K = 1, 2, 3) high-frequency sub-images of image x and image y respectively. Then 
the fused high-frequency sub-image measurement KGF  can be written as: 

( , )( ) / 2K K K K KGF GA GB MSSIM x y GA GB= + − +            (20) 

where ( , )MSSIM x y  is the mean structural similarity index between two correspond-
ing high frequency sub-band image measurement. 

Consequently the fused high-frequency coefficient can be obtained through the TV 
minimization scheme based on augmented Lagrangian and alternating direction algo-
rithms (TVAL3), see [14]. The specific steps of proposed method are summarized in 
Algorithm 1. 
 
Algorithm 1. Image fusion in compressed sensing. 

1. Perform single layer wavelet transform for input Images; 

2. Fuse the low-frequency wavelet coefficient by fusion rules I and measured each high-pass wavelet 
sub-band coefficients with measurement matrix hWHT ; 

3. Fuse each high-pass measurement by fusion rules II; 

4. Reconstruct fused high-pass wavelet coefficient via the TVAL3 algorithm; 

5. Recover the fused image via inverse wavelet transform. 
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C) Algorithm 
We recover the fused high-frequency coefficient from the fused high-frequency 

measurement using the TVAL3 algorithm [14]. 

4. Experimental Results and Performance Evaluation 

In this section, three groups of test images are employed for the performance evalua-
tion to illustrate the effectiveness of the proposed approach. Three pairs of source im-
ages including computed tomography (CT) and magnetic resonance imaging (MRI) 
images shown in Figure 1(a) and Figure 1(b), infrared and visual images, see Figure 
2(a) and Figure 2(b), and optical multi-focus images, shown in Figure 3(a) and Figure 
3(b). For more information about the images, refer to [16]. The high-frequency sam-
pling rate is set at 0.2, and the total number of recover data is 40% of all the data. The 
sampling rate of other two methods is also set to 0.4 All experiments are implemented 
on an Intel Core(TM)2 Duo 2.33 GHz computer, and the simulation software is 
MATLAB 7.0.1.  

In our experiment, We compare the proposed method with method in [11], which 
uses a “double-star” sampling pattern and a maximum absolute value selection fusion  
 

     
(a)               (b)               (c)               (d)               (e) 

Figure 1. (a)original CT image; (b) original MRI image; (c) fused image by CS-MS; (d) fused 
image by CS-SD; (e) fused images of the proposed method. 
 

     
(a)               (b)               (c)               (d)               (e) 

Figure 2. (a) original visible image; (b) original infrared image; (c) fused image by CS-MS; (d) 
fused image by CS-SD; (e) fused images of the proposed method. 
 

     
(a)                (b)               (c)               (d)               (e) 

Figure 3. (a) original right focus image; (b) original left focus image; (c) fused image by CS-MS; 
(d) fused image by CS-SD; (e) fused images of the proposed method. 
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rule (CS_MS) and [12], which uses a “star-shaped” sampling mode and a weighted av-
erage fusion rule based on Standard deviation (CS-SD). In medical image fusion, It's 
easy to see that the fusion results of the proposed method has a higher contrast and 
contains most of the details of the individual input images than CS_MS and CS-SD. 
Especially, the CS-SD has a low-contrast and contains noise compared with the original 
images. For the IR and visual images fusion, we can see that the results of our method 
also exhibit the best visual quality. Compared with our method, CS_MS scheme is not 
suitable for infrared and visual images fusion due to the distortion of brightness con-
trast and contain much strip noise. For the CS-SD, it losses contrast in the goals. In the 
last groups, our methods in the multifocus images fusion have a equal visual quality 
compared with CS-SD and is better than CS_MS. 

For further comparison, several objective criteria are used to evaluate the fusion re-
sults. The first criterion is the average gradient (AG), which is commonly used to eva-
luate the clarity of image, the greater AG is, the sharper is the image. The next two cri-
terion is the mutual information (MI) and edges keep degrees ( AB

FQ ), MI reflects the 
total amount of information that the fused image contains that of original image and 

AB
FQ  considers the amount of edge information transferred from the input images to 

the fused images. For the two criteria, the larger the value is, the better is the fusion re-
sult. Finally, we give the CPU running time for fusion and CS reconstruction, respec-
tively. 

The performance evaluation of fusion results for three methods is shown in Table 1. 
It is obvious that our proposed method outperforms the other two methods in terms of 
MI and Q, which explain that the fused image of our method contains more detail and 
edge information compare with those of the other methods. It is consistent with the 
visual effect. Though the average gradient (AG) in the med image fusion is a little big-
ger than our method, its visual effect is far worse than ours. At last, it's worth noting 
that the CPU running time of our method for fusion and CS reconstruction is far less 
than the other two methods. In general, from the subjective visual comparison, and the 
objective index comparison, we can come to a conclusion that the proposed method 
gets a better performance than the other two methods. 
 
Table 1. Performance evaluation of fusion results for our proposed method and other schemes. 

Image Method AG MI Q T (s) 

Med 
256 * 256 

CS-MAV 8.67 1.56 0.51 583 

CS-SD 8.06 3.74 0.50 547 

Ours 8.02 3.93 0.77 3 

Military 
256 * 256 

CS-MAV 3.65 2.03 0.39 468 

CS-SD 1.21 3.34 0.26 364 

Ours 4.01 3.42 0.49 3 

Clock 
512 * 512 

CS-MAV 3.57 5.22 0.46 7280 

CS-SD 1.97 6.75 0.52 7269 

Ours 4.35 6.79 0.57 19 
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5. Conclusions 

In the paper, we put forward a kind of effective image fusion scheme based on com-
pressive measurements. Compare with traditional method, we firstly take single layer 
wavelet transform for original image. Then, according to the characteristics of high 
frequency coefficients sparse, we only measured the high-pass wavelet coefficients with 
a low sampling rate. At last, we fuse low-frequency wavelet coefficient and high- 
frequency measurement with different fusion rules and recovery them with a new effi-
cient TV minimization algorithm. Simulation results indicate that proposed scheme 
provides efficiency and promising fusion results. In addition, owing to the proposed 
scheme only needs incomplete measurements rather than acquiring all the samples of 
the whole image, the computational complexity significantly reduces. Moreover, be-
cause of using Fast Walsh Hadamard Transform, the CPU running time of our method 
for fusion and CS reconstruction is far less than other two methods.  

CS image fusion is still in the stage of exploration, many problems remain to solve 
(e.g., the relationship between the original image and measurements and how to design 
the best fusion rule). Therefore the study of new and more advanced fusion rules 
matched with CS principle is another research topic in our future work. 
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