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Abstract 
At present, the feature extraction of protein sequences is the most basic issue to pre-
dict protein structural classes and is also the key problem to decide the quality of 
prediction. In order to predict protein structural classes accurately, we construct a 
14-dimensional feature vector based on protein secondary and super-secondary 
structure information to reflect the content and spatial ordering of the given protein 
sequences. Among the vector, seven features about α -helix bundle, hairpin β  
motifs, Rossman folds, αβ -plaits and other super-secondary structure information 
are first proposed in our paper. Experiments show that our method improves overall 
accuracy of lower similarity datasets 1189 and 640 by 0.9% - 3.8% and 0.5% - 4.2% 
respectively compared with other methods and has a competitive advantage for pre-
dicting proteins in /α β  and α β+  classes. 
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1. Introduction 

Modern molecular biological studies indicate that the function of a protein is deter-
mined by its spatial structure. Therefore, it’s very important to predict the structural 
classes of the newly discovered protein accurately [1]. The types and order of 20 kinds 
of amino acids are the basic information in a protein sequence, then a large number of 
initial prediction methods use features based on amino acid composition (AAC) and 
the position information, which are the easiest and most intuitive methods [2] [3] [4] 
[5]. However, these methods have advantage to predict protein sequences with high 
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degree of similarity and have disadvantage to predict protein sequences with similarity 
less than 40%. Due to the low-similarity protein sequences always have high-similarity 
secondary structural contents and spatial arrangements, so a large number of research-
ers tried to extract features from the secondary structure of proteins predicted by 
PSI-PRED[6].Under the guidance of this idea, SPRED model [2] and MODAS model [7] 
were constructed. Currently novel computational prediction methods [8] [9] build fea-
ture vectors by using the protein secondary structure information and protein se-
quences are predicted into four classes (All-α , All- β , /α β , α β+ ) using SVM 
(support vector machine) classifier. Overall prediction accuracy on several datasets of 
these methods reach to 80% - 90%, but the prediction of /α β  and α β+  classes is 
not ideal, especially for α β+  class with accuracy just about 70%. 

In order to improve the prediction accuracy of /α β  and α β+  classes, we will 
extract seven different features reflecting general contents and spatial arrangements of 
the secondary structural elements from super-secondary structure of a given protein 
sequence. We use SVM to predict protein structural classes after features are extracted. 
Finally, our paper evaluated our model objectively.  

2. Materials and Methods 
2.1. Materials  

Currently proposed methods widely use low-similarity benchmark datasets named 1189, 
FC699, 640 and 25PDB.The sequence similarity of 25PDB [10], 1189 [11], FC699 [1] 
and 640[12] are lower than 25%, 40%, 40% and 25% respectively. In order to compare 
with other methods, we choose 25PDB dataset as training set for SVM classifier, while 
the other datasets 1189, FC699 and 640 are test sets. 

2.2. Feature Vector 

Nowadays, a lot of methods are used to predict amino acids sequences into secondary 
structural sequences (SSS) constructed by three secondary structural elements, α -helix 
(H), β -strand (E), and random coil(C). Firstly, we obtain corresponding secondary 
structural sequences by PSI-PRED (version 2.6) [6]. It’s difficult to distinguish /α β  
and α β+  classes for both of them contain α -helices and β -strands. α -helices 
and β -strands are usually separated in /α β  class, while they are usually inters-
persed in α β+  class. In order to better represent the distribution of α -helices and 
β -strands, every segment H, E and C  in secondary structure sequence(SSS) is re-
placed by α , β  and ς  respectively, the new sequence is secondary structure seg-
ment sequence(SS), all element ς  are removed from SS to form a new sequence 
represented by SSW[13].  

Our novel method mapped each protein sequence into a 14-dimentional vector that 
can be defined as  

1 2 3 4 5 6 7 8 9 10 11 12 13 14{ , , , , , , , , , , , , , }TP ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ=            (1) 

where T is a transpose symbol, iϕ  ( 1, 2, ,14i =  ) is one of the features in feature 
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vector P. The elements { }1 2 3 4 5 9 10, , , , , ,ϕ ϕ ϕ ϕ ϕ ϕ ϕ  of Equation (1) are based on super- 
secondary structure information and are first proposed in this paper. What’s more, 

3 5ϕ −  are proposed specially to make a distinction between /α β  and α β+  classes. 
A number of secondary structure elements interact with each other and form a regular 
combination of secondary structure, which acts as a structural member of tertiary 
structure in much protein and is known as super-secondary structure (motif). Some 
super-secondary structures are related to specific functions and there are three basic 
forms of combination: αα , βαβ  and ββ . In order to tap the structural characteris-
tics of each class, we extract several typical features of folds and combinations. 

1) The easiest ββ  structure is hairpin β  motif which is connected by a short loop. 
Multiple hairpin β  motifs together will form a stable and widespread β -turns, so 
extracting the number of hairpin β  motifs (defined as Conβςβ ) are very meaningful. 
Super-secondary structure αα  is a α  helix bundle and is often formed by two in-
tertwined spiral parallel or ant parallel α –helices. Structure βαβαβ  named Rossman 
folds is one of the most special structures of /α β  class. So we extract the number of 
super-secondary structure αα  ( Conαα ) and βαβαβ  ( Conβαβαβ ) as features. Then 
the corresponding features can be defined as 1 2/Con Nβςβϕ = , 2 3/Con Nααϕ = , 

3 3/Con Nβαβαβϕ = . 
2) In proteins of /α β  class, -strands and α -helices are parallel, α -helix and β - 

sheets appear alternatively, such as α β α β α− − − − 
. Proteins of /α β  class are 

two types. Such as “αβ -plaits” in which α -helices and β -strands appear alternative-
ly, this characteristic is same to proteins in /α β  class. In αβ -plaits, the alternative 
form of α -helices and β -strands is α β β α β− − − − 

 or  
α β β β β α β β− − − − − − − 

. In another type α -helices and β -strands are se-
parated. Therefore the number of occurrences of α  segments ( segα ) and β  ( segβ ) 
segments is an obvious characteristic to distinguish proteins in /α β  and α β+  
classes. 

Features mentioned above can be represented as:  

4 3/Maxseg Nαϕ = , 5 3/Maxseg Nβϕ =  

where Maxsegα  and Maxsegβ  are the maximal lengths of α  segments and β  
segments in SSW. 

3) In proteins of the /α β  class, α -helices and β -strands alternate more fre-
quently than in proteins of the α β+  class. Based on this characteristic, we can design 
a feature 6 1/Altn Nϕ = , where Altn  is the alternating frequency of α -helices and 
β -strands in SSS. 

4) Because the length of the secondary structural segments will affect the assignment 
of the structural class, we define new features  

7 1/HMaxseg Nϕ =  and 8 1/EMaxseg Nϕ =  

where HMaxseg  and EMaxseg  are the maximal lengths of α -helix and β -strand 
segments in SSS. 
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5) Position information of SS is also the deciding factor. Herein, the position of a 
segment is defined as a starting position of the segment. The corresponding features 
can be defined as 

9 1
1

/
seg H

H

Con

i seg
i

P Nϕ
=

= ∑ , 10 1
1

/
seg H

E

Con

i seg
i

P Nϕ
=

= ∑  

where 
Hi segP  (

Ei segP ) is the starting order of the α -helix ( β -strand) segment in SSS, 

seg H
Con  and seg E

Con  are the occurrences of α -helix and β -strand segments in SSS. 
6) To reflect the position information of protein secondary structure, two features 

11 12,ϕ ϕ  can be defined as  

11 1 1 12 1 1
1 1

/ ( ( 1)), / ( ( 1))
ConH ConE

Hj Ej
j j

P N N P N Nϕ ϕ
= =

= − = −∑ ∑  

where HjP  and EjP  are the j-th order of H and E in SSS, ConH  and ConE  are the 
number of H and E in protein secondary structure sequence (SSS). 

7) The probability of content C can be ignored due to the sum of the three probabili-
ties of H, E and C is 1 [1]. Hence, the two features are expressed as  

13 14( ), ( )P H P Eϕ ϕ= =  

where 1( ) /P H ConH N= , 1( ) /P E ConE N= . 

2.3. Classification Algorithm Construction 

Protein secondary structure prediction is a multiclass classification problem. With high 
prediction accuracy, support vector machine (SVM) has been widely used for protein 
secondary structure classification [4] [5]. Here we use of the "one to one" multiclass 
classification method that construct a multiclass classifier by combining six binary clas-
sifiers. We choose Gaussian radial basis function (RBF) as the kernel function for SVM 
[14]. Using a grid search on the training set (25PDB) by tenfold cross-validation, we 
can find out the penalty parameter C  and kernel parameter γ , the final parameters 
are 80C = , 0.8γ = . 

2.4. Performance Measures 

In this paper, we use an independent testing dataset cross-validation. There are many 
indicators to evaluate model’s performance, sensitivity (Sens), specificity (Spec), Mat-
thew’s correlation coefficient (MCC) and overall accuracy (OA) are widely used in pro-
tein structure prediction [15]. The total number of proteins, classes and proteins in k-th  

class are denoted by N, k and kN  respectively, so 
1

k
k

N N
µ

=

= ∑ . Usually, four parame-

ters are used by studies for examining a predictor’s effectiveness: 
The number of proteins which is correctly predicted as kth class and non-kth class 

are denoted by kTP  and kTN . The number of proteins which is incorrectly predicted 
as kth class and non-kth class are denoted by kFP  and kFN . Where k k kTP FN N+ = , 

k k kTN FP N N+ = − . Using these parameters, we can obtain Equation (2): 
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1

/ ( )
/ ( )

( ) / ( )( )( )( )

/

k k k k

k k k k

k k k k k k k k k k k k k

k
k

Sens TP TP FN
Spec TN TN FP

MCC TP TN FP FN TP FP TP FN TN FP TN FN

OA TP N
µ

=

= +
 = +

= × − × + + + +

 =

∑

 

(2) 

3. Results and Discussion 
3.1. Structural Class Prediction Accuracies  

In our experiment, we use 25PDB dataset as a training set and other three datasets as 
testing sets. We not only report the values of Sens, Spec, MCC and overall accuracy 
(OA) of every structural class of testing set, but also report the average of Sens, Spec, 
MCC and overall accuracy (OA). The detail results can be seen in Table 1. The overall 
accuracy is more than 84% for each test set and it reaches 90% for FC699 dataset. 
What’s more, the average overall accuracy of 3 test sets is up to 86.6%. The Sens and  
 
Table 1. The prediction quality of our method on test datasets. 

Dataset Class Sens (%) Spec (%) MCC (%) 

FC699 All-α  96.9 98.9 94.6 

 All- β  89.2 98.3 89.4 

 /α β  89.4 98.8 89.3 

 α β+  89.0 92.5 66.7 

 OA 90.4 - - 

1189 All-α  91.9 96.9 87.5 

 All- β  87.8 96.9 85.7 

 /α β  80.2 95.9 78.7 

 α β+  79.3 89.8 65.7 

 OA 84.4 - - 

640 All-α  92.0 98.2 90.7 

 All- β  86.4 95.7 82.0 

 /α β  88.1 95.0 82.9 

 α β+  74.9 90.8 65.7 

 OA 85.0 - - 

Average All-α  93.6 98.0 91.0 

 All- β  87.8 97.0 85.7 

 /α β  85.9 96.6 83.6 

 α β+  81.0 91.0 66.0 

 OA 86.6 - - 
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MCC values of α β+  class are the lowest. This is not strange because α β+  class is 
complicated and it not only contains α  and β  classes but also contains αβ -plaits 
structure, so the prediction accuracy of α β+  class is lower. 

3.2. Feature Vector Analysis 

To better verify the effect of the new proposed seven features, we do the following ex-
periment with FC699, 1189 and 640 datasets. The comparison of obtained accuracies 
between our method including 14 features and our method including 7 features can be 
seen in Table 2. After added new features, the average overall accuracy increases by 
2.6% up to 86.6%. For FC699 dataset, the overall accuracy and accuracies of All-α , All-
β  and /α β  classes are improved by 2.7%, 1.5%, 4.4% and 2.7% respectively. For 
1189 and 640 datasets, the overall accuracy increases by 2.6% and 2.3%, respectively. 
However, the results of /α β  and α β+  classes are not obvious because of the in-
terference of other classes [13]. 

To further validate effect of super-secondary structure features, we do experiment 
just on proteins in /α β  and α β+  classes with a 14-dimensional feature vectors. 
The 25PDBS, FC699S, 1189S and 640S sets are the subsets formed by removing all the 
proteins in the All-α  and All- β  classes from 25PDB, FC699, 1189 and 640 datasets 
respectively. Hence, we use the 25PDBS to train SVM classifier and other subsets to 
test. The parameters C  and γ  ( 60C = , 0.9γ = ) are selected by tenfold 
cross-validation on 25PDBS with a grid search method. The corresponding experimen-
tal results are shown in Table 3. In Table 3, the overall accuracies of all datasets pre-
dicted by our method are higher than 80%. The overall accuracies and accuracies of 
α β+  class predicted by our method are the highest compared with other competitive 
methods. The prediction accuracies of all structural classes are higher than 90% on 
FC699S subset. The accuracies of α β+  class and the overall accuracy are increased 
by 9.2% - 27.4% and 2.4% - 7.3% on 1189S respectively. For 640S, the accuracies of 
α β+  class and the overall accuracy are improved by 2.9% - 11.7% and 0.6% - 5.2%  
 
Table 2. Comparison of the accuracies between the method including 14 features and one in-
cluding only 7 features. 

Dataset Features 
Accuracy (%) 

All-α  All- β  /α β  α β+  Overall 

FC699 
All features included 96.9 89.2 89.4 89.0 90.4 

Novel features excluded 95.4 84.8 86.7 89.0 87.7 

1189 
All features included 91.9 87.8 80.2 79.3 84.4 

Novel features excluded 91.0 85.7 77.5 74.3 81.8 

640 
All features included 92.0 86.4 88.1 74.9 85.0 

Novel features excluded 89.1 84.4 84.8 73.7 82.7 

Average 
All features included 93.6 87.8 85.9 81.0 86.6 

Novel features excluded 91.9 85.0 83.0 79.0 84.0 
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Table 3. The accuracy of differentiating between the /α β  and α β+  class. 

Dataset Method Reference 
Accuracy (%) 

/α β  α β+  Overall 

FC699S 
Kong et al. Kong et al.(2013) 98.4 79.3 90.5 

Our method This paper 90.7 96.3 91.7 

1189S 

SCPRED Kurgan et al.(2008b) 88.6 63.1 77.9 

PKS-PPSC Yang et al.(2010) 83.8 81.3 82.8 

Ding et al. Ding et al.(2012) 85.9 73.9 80.9 

Kong et al. Kong et al.(2013) 84.7 77.2 81.6 

Our method This paper 81.4 90.5 85.2 

640S 

SCPRED Kurgan et al.(2008b) 89.3 77.2 83.3 

PKS-PPSC Yang et al.(2010) 88.1 83.6 85.9 

Ding et al. Ding et al.(2012) 89.3 83.6 86.5 

Kong et al. Kong et al.(2013) 89.8 86.0 87.9 

Our method This paper 88.1 88.9 88.5 

 
respectively, however, the accuracy of /α β  class is consistent with the result pro-
duced by PKS-PPSC model. Experimental results show that our method for predicting 
proteins in /α β  and α β+  classes is very effective. 

3.3. Comparison with Other Prediction Method 

It’s known to all, SCPRED [2] and MODAS [7] are famous in predicting protein sec-
ondary structure and are often used as baseline for comparison. From Table 4 we can 
see, our method improves the overall accuracies by 0.9% - 3.8% and 0.5% - 4.2% on 
1189 and 640 datasets compared with other competing prediction methods including 
SCPRED and MODAS. And only for FC699 dataset, the overall accuracy is lower than 
Kong et al. and is not the highest, but it is increased by 0.8% - 2.9% compared with the 
rest methods. Compared with model SCPRED and the method of Liu and Jia, the over-
all accuracy predicted by our method is improved by 2.9% and 0.8% on FC699 dataset, 
respectively, besides the accuracy of α β+  class is increased by 4.8% and 19.5%. Our 
method obtains the highest accuracies for the All- β  and α β+  classes which reach 
to 87.8% and 79.3% on 1189 dataset and the overall accuracy is the highest than other 
exiting methods. For 640 dataset, the overall accuracy and the accuracy of All- β  class 
are the highest. 

Therefore our method extracting features based on super-secondary structure has the 
ability to reflect the realistic characteristics of proteins more accurately. Specially, our 
method improved the accuracies of /α β  and α β+  classes greatly. According Ta-
ble 4, we find our method is not always the best. The reason is that some methods not 
only extract features based on protein secondary structure but also combine other in-
formation. In contrast, our method is aimed to predict secondary structural classes by 
extracting features more effectively just on the basis of secondary structure. 



L. L. Liu et al. 
 

61 

Table 4. Performance comparison of difference methods on 3 test datasets. 

Dataset Method Reference 
Accuracy (%) 

All-α  All- β  /α β  α β+  Overall 

FC699 SCPRED Kurgan et al. (2008b) - - - - 87.5 

 Liu and Jia Liu and Jia(2010) 97.7 88.0 89.1 84.2 89.6 

 Kong et al. Kong et al.(2013) 96.2 90.7 96.3 69.5 92.0 

 Our method This paper 96.9 89.2 89.4 89.0 90.4 

1189 SCPRED Kurgan et al. (2008b) 89.1 86.7 89.6 53.8 80.6 

 MODAS Mizianty et al. (2009) 92.3 87.1 87.9 65.4 83.5 

 RKS-PPSC Yang et al. (2010) 89.2 86.7 82.6 65.6 81.3 

 Zhang et al. Zhang et al. (2011) 92.4 87.4 82.0 71.0 83.2 

 Ding et al. Ding et al. (2012) 93.7 84.0 83.5 66.4 82.0 

 Kong et al. Kong et al. (2013) 91.9 84.4 85.3 72.2 83.5 

 Our method This paper 91.9 87.8 80.2 79.3 84.4 

640 SCPRED Kurgan et al. (2008b) 90.6 81.8 85.9 66.7 80.8 

 RKS-PPSC Yang et al. (2010) 89.1 85.1 88.1 71.4 83.1 

 Ding et al. Ding et al. (2012) 94.9 76.6 89.3 74.3 83.4 

 Kong et al. Kong et al. (2013) 94.2 80.5 87.6 77.2 84.5 

 Our method This paper 92.0 86.4 88.1 74.9 85.0 

4. Conclusion 

In this paper, a novel method is proposed based on protein super-secondary structure 
information. Seven new features related to α -helix bundle, hairpin β  motifs, Ross-
man folds, αβ -plaits and other information are very useful to predict protein second-
ary structural classes. We adopt advanced SVM classifier which use little computational 
time and space, is accurate and is very suitable for large-scale protein sequence data-
bases. Finally, experimental results show that this new prediction method not only im-
prove the overall prediction accuracy but also improve the accuracies of all structural 
classes, especially, the accuracies of /α β  and α β+  classes are improved greatly. 
Hence, the new extracted features can reflect the characteristics of different structural 
classes more accurately and our method is more effective than previous methods. 
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