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Abstract 
The urban transit routing problem (UTRP) involves the construction of route sets on 
existing road networks to cater for the transit demand efficiently. This is an NP-hard 
problem, where the generation of candidate route sets can lead to a number of po-
tential routes being discarded on the grounds of infeasibility. This paper presents a 
new repair mechanism to complement the existing terminal repair and the make- 
small-change operators in dealing with the infeasibility of the candidate route set. 
When solving the UTRP, the general aim is to determine a set of transit route net-
works that achieves a minimum total cost for both the passenger and the operator. 
With this in mind, we propose a differential evolution (DE) algorithm for solving the 
UTRP with a specific objective of minimizing the average travel time of all served 
passengers. Computational experiments are performed on the basis of benchmark 
Mandl’s Swiss network. Computational results from the proposed repair mechanism 
are comparable with the existing repair mechanisms. Furthermore, the combined 
repair mechanisms of all three operators produced very promising results. In addi-
tion, the proposed DE algorithm outperformed most of the published results in the 
literature. 
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1. Introduction 

In recent years, the rapid growth of population and urbanization of large cities with its 
attendant consequences such as increase in travel demand, traffic congestion, energy 
consumption, noise level, and air pollution have been a major source of concern to the 
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urban transportation planners and practitioners, particularly in developing and emerg-
ing countries. A reliable option to handle some of these problems is to make use of the 
public transit systems in the urban areas. The public transit systems which include bus-
es, trams, trains and underground or metro services aim to satisfy the travel demand of 
urban commuters safely, affordably, and efficiently. Although achieving a highly attrac-
tive public transit usage is a very complex issue, however, designing an operationally 
and economically efficient public transit network can be a significant attribute. Fur-
thermore, the urban area’s social, economic, and physical structure can be enhanced 
through the construction of efficient public transit networks. 

In a general sense, designing bus network is commonly characterized by mutually 
conflicting factors across different planning horizons. For instance, higher level of ser-
vice in terms of shorter waiting time, faster travel time, and minimum number of 
transfers is provided to the transit users in the presence of more routes and buses 
needed. In other words, the network topology has a direct impact on the costs of the 
users, benefits of the transit operators, and the relevant social costs. In bus transit sys-
tem, the literature identifies five stages for designing a public transportation system [1]: 
route network design, frequency setting, timetable design, fleet assignment and crew 
assignment. Most previous approaches have attempted to handle these stages sequen-
tially in the real systems, because each stage is NP-hard in its own and this creates sev-
eral sources of complexity. At the same time, these decisions are made for different 
planning horizons, whether the context of the planning is strategic, tactical or opera-
tional.  

The urban transit routing problem (UTRP) which corresponds to the first stage of 
the bus planning process involves the construction of transit routes on an existing road 
network based on the travel demand and corresponding link travel times subject to 
given constraints and requirements such that the routes optimize the desired objec-
tive(s) defined by the stakeholders (including users, operators, and society). It represents 
the single very strategic planning step in the urban bus planning process that seeks to 
balance the competing objectives of minimizing both passenger and operator costs ([1] 
[2]). 

The contributions of this study are in two folds. First, a new repair mechanism called 
sub-route reversal repair mechanism is designed to complement the existing terminal 
repair [3] and the make-small-change operator [4] in dealing with the infeasibility of 
the route sets. The proposed repair mechanism managed to repair some of the candi-
date route sets which are deemed as infeasible by both repair mechanisms. In the 
second contribution, a new algorithm based on differential evolution (DE) has been 
developed to solve the UTRP. To the best of our knowledge, there is no study of DE on 
UTRP. The decision to develop the DE is due to its flexibility, simplicity, robustness 
and its wide applications to many other constrained optimization problems with prom-
ising results ([5] [6]). For a fair comparison with other approaches in the litarature, the 
same performance evaluation parameters adopted in the literature with known bench- 
mark problems are used. 
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The rest of the paper is organized as follows: Section 2 presents a brief literature re-
view of the solution approaches for UTRP. The mathematical formulation of UTRP is 
given in Section 3. The details of the proposed repair mechanism and the DE algorithm 
are described in Section 4 and 5 respectively. Computational results and discussions are 
presented in Section 6. Finally, conclusions and the directions for future research are 
provided in Section 7. 

2. Literature Review 

A search in the literature provides various heuristic and metaheuristic algorithms for 
the optimization of UTRP. A heuristic algorithm to find the optimal route sets is first 
proposed by [7]. The methodology consists of two major stages including the genera-
tion of feasible candidate route sets, and the selection of the optimal route set. The 
Swiss network used in [7] has since become the only publicly available benchmark da-
taset for UTRP. 

Reference [1] introduced a model for tackling the routing and scheduling together. 
The methodology consists of two-level routines for constructing the initial candidate 
route set and testing the candidate route set. The user’s viewpoint is considered at the 
first level, while both users and operators point of view is considered at the second lev-
el. A hybrid solution approach for the network design problem by incorporating the 
knowledge of experts and optimization techniques is presented in [8]. The AI-based 
approach is composed of three main components including route generation algorithm, 
analysis procedure, and route improvement algorithm. Experiments were conducted to 
evaluate the performance of the route generation algorithm. 

Over the past decade, genetic algorithm (GA) has gain significant success in deter-
mining near optimal solutions for the UTRP ([2] [9]-[12]). A GA is proposed by [2] in 
designing efficient and optimal sets of routes from initial candidate route sets based on 
a given road network and data on travel demand. A GA to tackle the UTRP giving 
priority to the passenger cost is presented in [9]. The computational results on the 
benchmark Mandl’s Swiss network outperforms most approaches in the literature. 
Reference [10] developed two models of GA to address the problem. The aim is to op-
timize the size of passengers satisfied, the overall travel time of served passengers, and 
the total number of transfers. The GA with elitism produced some competitive results, 
while the GA with increasing population outperforms all previous results in the litera-
ture. However, their results cannot be used as a direct comparison with others as the 
constraints on the maximum number of nodes (i.e. 8 nodes) in a route is relaxed as 
compared to other approaches in the literature. 

A hill climbing heuristic and simulated annealing (SA) is developed in [4] for solving 
the UTRP. Three issues including representation, initialization procedures, and neigh-
borhood moves that need to be considered to ensure the success of metaheuristics are 
highlighted. A bee colony optimization (BCO) algorithm for solving the UTRP is pro-
posed in [13]. Their approach consist of generating initial candidate solutions using a 
greedy heuristic, then an improvement version of the BCO is introduced to construct 
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optimal route sets. Experiments are conducted on benchmark Mandl’s Swiss network 
confirming that the BCO approach can produced high quality solutions. The particle 
swarm optimization (PSO) algorithm developed in [14] and [15] for solving the prob-
lem gives proper emphasis on both candidate solution representations and evaluation 
approach. The aim is optimize the coverage index subject to operator cost at the upper 
level. The methodology consists of two main elements: a candidate route construction 
module, and a discrete PSO algorithm to determine the optimal route set. 

A number of studies employed multiobjective models to solve the UTRP and the 
corresponding vehicle frequencies setting simultaneously ([16]-[23]). Reference [16] 
proposed a GA for solving the problem through fixed and variable string length coding. 
Based on some descriptors considered in the study, the fixed string length coding 
produced better results compared to the variable length coding. The GA proposed by 
[17] optimized the location of bus route and its corresponding headway. The proposed 
GA is found to converge efficientlyto optimum as confirmed by the solution from 
exhaustive search algorithm. A new approach to evaluate the fitness function values in 
GA for optimization of bus network is given in [18]. The aim is to develop a heuristic 
that determines the best bus route network of which both demand and transport offer 
are satisfied. An experiment is conducted and the model is tested on a realistic network. 
The GA developed by [19] tackled the bi-objective UTRP in optimizing the user and 
operator costs. The proposed GA introduces an adding-node mechanism to correct an 
infeasible solution. The genetic operators include effective route crossover and identical- 
point mutation. The computational results of the proposed GA tested on benchmark 
Mandl’s Swiss network outperformed the previous best pulished results in most cases.  

Reference [20] proposed a SA to solve the UTRP by considering the level of distribu-
tion node. The methodology comprised of initialization, transit trips assignment, and a 
SA algorithm that selects the optimum solution. To evaluate the quality of the solution 
obtained by the proposed SA, a GA solution is utilized as the benchmark. A tabu search 
(TS) is developed in [21] to optimize the problem. The methodology consists of three 
major components: initialization, demand assignment, and TS algorithm that deter-
mine the optimum. Computational results obtained outperform the GA which is used 
as the benchmark as in [20]. The TS employed in [22] analyzed an urban transportation 
problem in northern Spain. The aim is to optimize the level of service. The methodolo-
gy consists of line design and assignment of buses such that a local search and TS strat-
egies are modified alternatively at the two decision levels. The result obtained is far bet-
ter than the existing tools used by transport authorities.  

3. Mathematical Formulation 

In this study, the UTRP is solved from the passengers’ point of view. Generally, pas-
sengers would prefer to travel to their destination within the shortest journey time 
possible, but avoiding the discomfort associated with too many transfers. The passen-
gers’ cost for a route set, R is defined as the average journey time over all passengers. It 
is a difficult task to optimize the transit network where the journey time includes ve-



A. T. Buba, L. S. Lee 
 

15 

hicle travel time, waiting time, transfer time, and transfer penalties. Based on the stu-
dies by [3] and [19], minimizing the passengers’ cost is often considered as the most 
significant objective in bus network design with inelastic demand. 

In this study, the UTRP is defined as follows: given a road network represented by 
the graph, G = (N, A), where N is the set of nodes representing the demand points (bus 
stops) and A is the set of edges (links) representing the street segments. Let λij denote 
the shortest journey time of any pair of nodes (i, j) of route set R, calculated based on 
the Dijkstra’s algorithm [24], n is the number of nodes of the route set R, dij represents 
the travel demand between nodes i and j. The proxy for passenger cost for a route set R 
is the mean journey time over all passengers [3]. The objective of the UTRP is to find a 
set of route network that achieves the minimum cost Equation (1) while meeting all the 
requirements and constraints of (1)-(8):  
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subject to the following constraints: 
1) Each route should have a minimum and a maximum length (a minimum length to 

ensure connectivity of the route network while a maximum length to aid bus schedule 
adherence). 

2) There must be exactly number of routes in a route set R predefined by the transit 
operator due to resource limitation. 

3) The transit graph must be connected, so that there should be a path connecting 
any two nodes where any passenger using the route network can travel between any 
two nodes. 

4) Each route in the route set is free from repeated nodes. Hence, no cycles or back-
tracks should be allowed in the individual routes. 

5) All nodes must be included in the route set to form a complete route set. 
6) The demand, travel time, and distance matrices are symmetrical along the same 

route. 
7) The demand level is inelastic throughout the period of the study and passenger 

choice of routes is based on the shortest travel time. 
8) The policy headway is not considered, it is assumed there are adequate vehicles 

and capacity. 

4. Sub-Route Reversal Repair Mechanism 

Based on the literature, heuristics and shortest path algorithms have been commonly 
utilized to generate the candidate route sets during the initialization procedure. Ac-
cording to [4], it has not been justified which of the two approaches will yield the best 
initial solution. The quality of the initial solution is assessed in terms of coverage, con-
nectivity, and diversity of the candidate route sets. The use of heuristics and shortest 
path algorithms often resulted in many initial candidate route sets being rejected due to 
infeasibility. A feasible candidate route set is characterized by connected route sets and 
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every node presents in the original transit network is included. In most cases, a repair 
mechanism is employed to reduce the infeasibility of the candidate route sets. The re-
pair mechanisms currently available in the literature are the terminal repair [3] and 
make-small-change [4]. However, there are still far from being efficient. With the aim 
to improve the quality of the initial candidate route sets in terms of the feasibility, a new 
repair mechanism, called sub-route reversal repair mechanism is proposed to comple-
ment the existing repair mechanisms mentioned above. The steps of the proposed re-
pair mechanism in dealing with an infeasible route set are as follows: 

 

STEP 1: 
Compile a list of the missing nodes, Ň = {ň1, ň2 , ..., ňm} from the constructed infeasible route 
set, Ř = {ř1, ř2, ..., řs}. 

STEP 2: The first route from Ř is selected as the current route, ři (i = 1). 

STEP 3: The first node from Ň is selected as the current missing node, ňj (j = 1). 

STEP 4: 
IF, ři contains a neighbor (i.e. two nodes are directly connected) of ňj, go to STEP 5, ELSE, go 
to STEP 6. 

STEP 5: 
Identify the neighborx, of ňj in ři. The route ři is divided into two sub-routes, s1 and s2 for two 
cases: 

 

Case 1: 

the neighbor x is located at the end of s1. Reverse the sequence of nodes in s1 so the x 
becomes the first node. The new route is built from the reversed s1 by appending the 
nodes from s2 (if feasible) continuously until the neighborhood relation is exhausted 
or the maximum number (i.e. 8) of nodes for a route is satisfied. This new route is 
labeled as ři

1. 

Case 2: 

the neighbor x is located at the beginning of s2. Reverse the sequence of nodes in s2 
so the x is located at the end of the node sequence in this reversed s2 sub-route. The 
new route is built from the reversed s2 by appending the nodes from s1 (if feasible) 
continuously until the neighborhood relation is exhausted or the maximum number 
(i.e. 8) of nodes for a route is satisfied. This new route is labeled as ři

2. 

 
The new ři

* = max {ři
1, ři

2}. Breaking ties arbitrarily. Update Ň by removing the ňj from the list. 
Update ři in Ř with the new route ři

*. Go to STEP 2. 

STEP 6: 
IF, the current route, ři is not the last route of Ř, set i = i + 1, go to STEP 4. ELSE, go to STEP 
7. 

STEP 7: The missing node, ňj could not be inserted in Ř. Hence, the Ř is infeasible. STOP. 

 
The steps are repeated until all missing nodes are inserted into the route set (i.e. the 

infeasibility is repaired), or when the STEP 7 is invoked (i.e. infeasible). 
To further enhance the efficiency in dealing with the infeasibility of the route sets, a 

combined repair mechanism is used. The combined repair mechanism work in such a 
way that the three repair mechanisms, terminal repair, make-small-change and sub- 
route reversal are performed in a sequential order. The terminal repair will be applied 
first to repair the infeasibility. If the operator failed to repair the infeasible route set, the 
make-small-change will be applied next, follow by the sub-route reversal operator. The 
efficiency of the proposed repair mechanism is investigated in Section 6.2. 
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5. Differential Evolution 

In this section, the classic DE and the proposed DE framework for solving the UTRP 
are discussed. The DE is a variant of GA that is originally introduced by [25] for global 
optimization problems over continuous space. The DE algorithm utilizes three major 
operators similar to GAs including the mutation, crossover and selection operators. 
However, DE depends heavily on mutation as a primary search mechanism to distin-
guish it from the GA. The mutation operator of DE involves the computation of weighted 
differences of randomly sampled pairs of solutions in the population such that the ex-
ploration of the search space is favored at the initial stage of the evolution process. 
Subsequently, exploitation of the search space is favored as evolution advances as a re-
sult of mutation operator. Therefore, during the implementation, the DE adapts the 
search step automatically through the mutation to achieve the best value. The DE algo-
rithm utilizes a uniform crossover that can select child vector from one parent more 
often than the other to construct trial vectors. The crossover operator efficiently ex-
changes information between successful combinations, whereby the most promising 
area of the search space is located for an optimum. 

In the DE algorithm, a mutant vector is created for each target vector in the popu-
lation. Then the crossover operator is carried out between the mutated population 
and the target population in order to give rise to a population of trial vectors. Next, 
the selection operator is introduced for the comparison of the target and trial popula-
tion based on the fitness value. Finally, better vectors constitute the members of the 
population for the next generation. Through repeated cycles of the evolutionary op-
erators the DE directs the population towards the neighborhood of the global opti-
mum.  

Proposed Differential Evolution Algorithm Framework 

While employing the DE algorithm framework, it is likely that infeasible vectors will be 
generated due to the evolutionary operators (mutation and crossover). Some studies in 
the literature considered such vectors to be rejected and the whole initialization proce-
dure together with feasibility checks is repeated to construct a feasible solution to re-
place it ([3] [19] and [26]). In this paper, we employed the combined repair mechan-
isms as described in Section 4 to deal with the infeasibility. The steps of the proposed 
DE framework for solving the UTRP are structured as follows: 

 

STEP 1: 
The DE algorithm starts with a population of Np solution vectors initially generated based on 
the construction algorithm [3] by incorporating the combined repair mechanisms to increase 
the number of feasible vectors. 

STEP 2: 

During the generation G, for a Target vector Xi, G = (x1, i, G, x2, i, G, …, xd, i, G), where i = 1,  
d represents d-components in the d-dimensional space; a random vector is selected from the 
population (except the selected Target vector) and an identical point mutation proposed in [19] 
is applied on the random vector to generate a Noisy Random vector, Vi, G. In the case where the 
resulted Noisy Random vector, Vi, G is infeasible, the combined repair mechanism is introduced 
to correct the infeasibility. 
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Continued 

STEP 3: 

To increase the diversity of the Target and Noisy Random vectors, the uniform route crossover 
[27] is introduced. In this work, a pair of Trial vectors, Ui, G is generated through selecting the 
vector component values either from the Target vector, Xi, G or the Noisy Random vector, Vi, G 
using a 0/1 crossover mask where each sub-route in the Trial vector is constructed by copying 
the corresponding sub-route either from the Target or the Noisy Random vector. In the case 
where the resulted Trial vector(s), Ui, G is/are infeasible, the combined repair mechanism is 
introduced. 

STEP 4: 
After the crossover, the objective function values corresponding to the Trial vectors, Ui, G are 
evaluated and compared with that of the Target vector, Xi, G. 

STEP 5: 
An elitism selection strategy is employed, where the best vector with the lowest fitness value 
between the Target vector, Xi, G and the Trial vectors, Ui, G will be selected for the next  
generation. Repeat STEP 2 - STEP 4 for i = 2, …Np to complete one generation. 

 
STEP 2 - STEP 5 are repeated until the termination criterion (e.g., maximum genera-

tion, execution time, etc.) is met. The framework of the proposed DE for solving the 
UTRP is shown in Algorithm 1. 

6. Computational Experiments and Discussion 
6.1. Benchmark Data and Experimental Design 

The proposed DE algorithm is utilized to design the best transit route network of 
Mandl’s Swiss network [7] (see Figure 1) which is the benchmark network for demon-
strating the effectiveness and efficiency of an algorithm. This network consists of 15 
demand points (nodes) within a 33 minutes shortest travel time between the two farthest 
nodes and 21 links, with a total travel demand of 15570 units daily. Many variations 
 
Algorithm 1. DE for UTRP. 

Generate Np candidate route set based on heuristic in [3] with combined repair mechanism 
for i: = 1 to Np 

fitness evaluation (Equation (1)) 
end for 
for n: = 1 to G 

for i: = 1 to Np 
set Target vector = Xi, n 
select randomly a vector (except the selected Target vector, Xi, n) in the population 
apply identical point mutation to generate a Noisy Random vector, Vi,n (repair if infeasible) 
apply uniform crossover between Xi, n and Vi, n to generate a pair Trial vectors, Ui, n (repair if 
infeasible) 
fitness evaluation of Ui, n (Equation (1)) 
elitism selection 
if Trial vector fitness ≤Target vector fitness 

new_population [i] = Trial vector, Ui, n 
else 

new_population [i] = Target vector, Xi, n 
end for 
Np = new_population 

end for 
return BEST 
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Figure 1. Mandl’s Swiss road network. 

 
of the UTRP (i.e. different objectives) are solved by [2] [4] [9] [10] [13] [14], and [28]. 
The performance parameters together with their solutions will be used as the bench-
mark results to validate the proposed DE algorithm. 

The proposed algorithm is coded in Python programming language and executed on 
a 1.60 GHz Intel Core™ i 5 - 4200 CPU with 4.00 GB of RAM. The performance of the 
proposed DE algorithm is evaluated using the following parameters adopted by many 
researchers in the literature ([4] [7] [9] [13] [14] and [28]): 
• do—the percentage of demand satisfied without any transfers, 
• d1—the percentage of demand satisfied with one transfer, 
• d2—the percentage of demand satisfied with two transfers, 
• dun—the percentage of demand unsatisfied, 
• ATT—average travel time in minutes per transit user. 

The travel time includes vehicle travel time, waiting time, transfer time, and transfer 
penalties. Based on the literature, the transfer penalty is fixed at 5 minutes per passen-
ger. The minimum and maximum of nodes in a route is also fixed at 2 and 8 nodes re-
spectively. We performed comparison in four scenarios: 4, 6, 7 and 8 routes in each 
route set. The best values of the parameters are computed.  

6.2. Computational Experiments of Repair Mechanisms 

To investigate the efficiency of the proposed sub-route reversal repair mechanism in 
dealing with the infeasible candidate route set, we compared it with the terminal repair 
[3], make-small-change [4], and the combined repair mechanism. We performed the 
experiments on benchmark Mandl’s Swiss network by generating a population of 500 
infeasible candidate route sets using the heuristic proposed in [3] in all four cases with 
route set sizes of 4, 6, 7, and 8 routes respectively. For each case, 10 runs are recorded to 
obtain the descriptors for each repair mechanism as shown in Table 1. The descriptors 
represent the average, minimum, and maximum number of infeasible candidate route  
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Table 1. The comparison of infeasible route sets repaired by the repair mechanisms. 

Case 
Number of 

Routes 
Repair Mechanism Average Minimum Maximum 

CPU Time 
(sec) 

I 4 

Terminal Repair 47 34 68 0.013 

Make-Small-Change 53 39 69 0.052 

Sub-Route Reversal 56 47 68 0.040 

Combined Repair 139 126 157 0.001 

II 6 

Terminal Repair 149 133 170 0.029 

Make-Small-Change 206 193 220 0.490 

Sub-Route Reversal 169 157 181 0.032 

Combined Repair 292 277 306 0.002 

III 7 

Terminal Repair 201 184 219 0.029 

Make-Small-Change 293 267 317 0.066 

Sub-Route Reversal 223 210 234 0.025 

Combined Repair 352 335 377 0.001 

IV 8 

Terminal Repair 231 207 250 0.020 

Make-Small-Change 356 319 376 0.042 

Sub-Route Reversal 265 242 284 0.025 

Combined Repair 379 347 399 0.012 

 
sets that were repaired by the corresponding repair mechanism. It can be seen in Table 
1 that the results from the proposed sub-route reversal repair mechanism is performed 
better than the terminal repair in all cases but only slightly better than the make-small- 
change in one of the cases. Although the make-small-change repaired more infeasible 
route sets than the proposed repair mechanism, but its average CPU time is the highest 
in all cases. 

The results obtained through the combined repair mechanism for all cases are very 
promising. The mechanism significantly outperformed all other repair mechanisms in 
terms of the number of infeasible route sets repaired and with the fastest CPU time. 
Therefore, it is only logical to implement the combined repair mechanism in both the 
heuristic [3] and the proposed DE algorithm when dealing with the infeasible route 
sets. 

6.3. Comparative Results of Differential Evolution 

In this section, the UTRP is solved by the proposed DE algorithm from the viewpoint of 
the passengers’ cost. We conducted the computational experiments for each of the four 
cases to obtain the best route set, evaluated based on the performance parameters ex-
plained in Section 6.1. A population of 20 vectors and 200 generations is used for the 
computational experiments based on the initial experiments conducted during the de-
velopment of the proposed algorithm. For each case, the proposed DE algorithm is 



A. T. Buba, L. S. Lee 
 

21 

performed for 10 runs and the best result is reported in Table 2, column 12. The pre-
vious best solutions found in the literature are reported in column 3 to column 11. The 
best route sets for all cases found by the proposed DE algorithm are also presented in 
Table 3.  

It is important to note that, some of the approaches in the literature utilize the same 
formulation for the modeling of the UTRP and attempt to optimize the equivalent ob-
jective function. For instance, [10] proposed two algorithms (GAWE and GAWIP) to 
handle the UTRP in a similar manner as in [13] but by relaxing the constraint on route 
length (max. 8 nodes) in their approach to achieve the best results so far (see Table 2, 
column 10 and 11). However, [14] confirmed computationally that if the number of 
nodes per route is set to a value greater than 8, the percentage transfer demands satis-
fied directly (do) is increased. On the other hand, as the number of nodes per route is 
increased, the number of transfer demands satisfied with one transfer or with two 
transfers is decreased. However, in practice, increasing the length of route alone is not 
enough to improve the quality of transport services. 

 
Table 2. Comparison results (best route sets) of Mandl’s Swiss network. 

Number of 
routes 

Parameters 1 2 3 4 5 6 7 8* 9* 10 

4 

do 69.94 n/a 86.86 93.26 92.42 92.10 91.84 96.14 95.83 94.28 

d1 29.93 n/a 12.00 6.74 6.81 7.19 7.64 3.47 3.60 5.72 

d2 0.13 n/a 1.14 0.00 0.77 0.71 0.52 0.39 0.57 0.00 

dun 0.00 n/a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ATT 12.90 n/a 11.90 11.37 10.51 10.51 10.64 10.49 10.35 10.36 

6 

do n/a 78.61 86.04 91.52 95.57 95.63 96.21 98.39 98.91 98.01 

d1 n/a 21.39 13.96 8.48 4.43 4.37 3.47 1.61 1.09 1.99 

d2 n/a 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 

dun n/a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ATT n/a 11.86 10.30 10.48 10.28 10.23 10.23 10.14 10.10 10.01 

7 

do n/a 80.99 89.15 93.32 96.60 98.52 97.17 99.17 99.55 98.07 

d1 n/a 19.01 10.85 6.36 3.40 1.48 2.83 0.83 0.45 1.93 

d2 n/a 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 

dun n/a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ATT n/a 12.50 10.15 10.42 10.25 10.15 10.16 10.07 10.07 10.21 

8 

do n/a 79.97 90.38 94.54 97.50 98.97 97.75 99.87 99.87 98.59 

d1 n/a 20.03 9.62 5.46 2.50 1.03 2.25 0.13 0.13 1.41 

d2 n/a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

dun n/a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ATT n/a 11.86 10.46 10.36 10.17 10.09 10.13 10.03 10.04 10.01 

Note: n/a = not available, *constraint of maximum 8 nodes per route is relaxed, 1: Heuristic by [7], 2: AI by [28], 3: 
GA by [2], 4: Metaheuristic by [4], 5: GA by [9], 6: BCO by [13], 7: PSO by [14], 8: GA with Elitism by [10], 9: GA 
with Increasing Population by [10], 10: Proposed DE algorithm.  
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Table 3. Best route sets generated from Mandl’s Swiss network by the proposed DE algorithm. 

Case Number of Routes Description of routes 

I 4 

13-9-10-11-3-1-2-5 

0-1-2-5-7-14-6-9 

8-14-5-7-9-13-12-10 

0-1-4-3-11-10-9-12 

II 6 

13-12-10-11-3-4-1-0 

9-6-14-7-5-2-1-0 

12-13-9-10-11-3-5-7 

4-3-1-2-5-14-7-9 

8-14-5-7-9-12-10-11 

6-9-10-11-3-5-2 

III 7 

0-1-3-5-7-9-6 

8-14-6-9-10-11-3-4 

0-1-2-5-3-11-10-12 

0-1-4-3-11-10-9-7 

2-1-3-5-7-14-6-9 

9-10-11-3-5-2-1-4 

13-12-10-9-6-14-8 

IV 8 

6-14-7-5-3-4-1-2 

1-4-3-11-10-12-13 

0-1-3-11-10-9-6 

8-14-7-5-3-11-10-9 

11-10-12-13-9-6-14-8 

8-14-5-2-1-4-3 

9-10-11-3-4-1-2-5 

12-13-9-7-5-2-1-0 

 
The quality of a route set is assessed by considering the parameters mentioned in 

Section 6.1. In Table 2, the proposed DE algorithm performed the best for 4 and 6 
routes while in 7 and 8 routes, the DE algorithm is ranked second after [13]. However, 
the best ATT recorded by the DE algorithm is better than [13] in the case of 8 routes. 
Note that the results achieved by [10] should not be used as a direct comparison since 
the constraints on the maximum number of nodes (i.e. 8 nodes) in a route is relaxed as 
compared to other approaches in Table 2. 

In all four cases considered in this study, the DE produced results with maximum 
only one transfer required to satisfy all the travel demand. In addition, as efficient route 
set is defined by the values of dun (0.00), do (as high as possible) and ATT (as low as 
possible), it can be concluded that the route sets constructed by the proposed DE algo-
rithm for all cases are highly efficient as compared to other approaches in the literature.  
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7. Conclusion 

In this paper, a sub-route repair mechanism that complements the terminal repair and 
make-small-change repair mechanisms in dealing with the infeasible route sets is pro-
posed. To further enhance the efficiency, a combined repair mechanism is developed 
where all three repair mechanisms: terminal repair, make-small-change and sub-route 
reversal, are implemented in a sequential order. The combined repair mechanism sig-
nificantly outperformed all other repair mechanisms with the fastest CPU time. In ad-
dition, a new DE algorithm that constructs efficient route networks for UTRP has been 
developed. Computational experiments performed on the benchmark Mandl’s Swiss 
network show that the proposed DE algorithm is competitive to the other approaches 
published in the literature. In real sense, the efficiency of the urban transport system 
depends not solely on the topology of the transit route network, but also on the operat-
ing frequency of the routes. Consequently, the application of the proposed model to 
handle the UTRP and the operating frequency simultaneously, as well as improving the 
effectiveness of the sub-route reversal repair mechanism will be the focus of the future 
work. 
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