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Abstract 
Dimensionality reduction is very important in pattern recognition, machine learning, and image 
recognition. In this paper, we propose a novel linear dimensionality reduction technique using 
trace ratio criterion, namely Discriminant Neighbourhood Structure Embedding Using Trace Ratio 
Criterion (TR-DNSE). TR-DNSE preserves the local intrinsic geometric structure, characterizing 
properties of similarity and diversity within each class, and enforces the separability between dif-
ferent classes by maximizing the sum of the weighted distances between nearby points from dif-
ferent classes. Experiments on four image databases show the effectiveness of the proposed ap-
proach. 
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1. Introduction 
Linear discriminant analysis (LDA) has been used widely in pattern recognition, machine learning, and image 
recognition [1] [2]. However, methods based on LDA techniques are optimal under Gaussian assumption [3] [4] 
and they effectively capture only the global Euclidean structure which may impair the local geometrical struc-
ture of data [5]-[7]. Recently, many approaches have shown the importance of local geometrical structure for 
dimensionality reduction and image classification. One of the most popular linear approaches is neighbourhoods 
preserving embedding (NPE) [8]. NPE aims to discover the local structure of the data and find projection direc-
tions along which the local geometric reconstruction relationship of data can be preserved. 

Motivated by NPE, many discriminant approaches have been developed to further improve the data classifi-
cation accuracy [9]-[11], such as margin fisher analysis (MFA) [12], locality sensitive discriminant analysis 
(LSDA) [13], locally linear discriminant embedding (LLDE) [14] and discriminative locality alignment (DLA) 
[15]. They preserve the intrinsic geometrical structure by minimizing a quadratic function.  

The local variation of data characterizes the most important modes of variability of data and is important for 
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data representation and classification [13] [16]-[19]. By maximizing the variance, we can unfold the manifold 
structure of data and may preserve the geometry of data. Structure of real-world data is complex and unknown, 
thus a single characterization may not be sufficient to represent the underlying intrinsic structure. It indicates 
that none of the aforementioned approaches can detect a stable and robust intrinsic structure representation. 

In this paper, we propose a novel dimensionality reduction approach, namely discriminant neighbourhood 
structure embedding using trace ratio criterion (TR-DNSE) which explicitly considers the global variation, local 
variation, and local geometry. Experiments on four image databases indicate the effectiveness of TR-DNSE. 

The remainder of this paper is organized as follows: Section 2 analyzes NPE. The idea of TR-DNSE is pre-
sented in Section 3. Section 4 describes some experimental results. Section 5 offers our conclusions. 

2. Problem Statements 

Given training data matrix [ ]1 2 NX x x x=  , where n
ix R∈  ( )1, ,i N=   denotes the i-th training data, N  is 

the number of training data. The objective function of NPE is [8] 

* arg min
T T

T T

XMX
XX

α αα
α α

=                                   (1) 

where α  denotes a projection matrix, ( ) ( )T
N NM I W I W= − − . The elements ijW  in weight matrix W  

denote the coefficients for reconstructing ix  from its neighbours { }jx , and can be calculated using [6]. 

The objective Function (1) can be decomposed into the following two objective functions: 

min T TXMXα α                                       (2) 

max T TXXα α                                        (3) 
The objective Function (2) aims to preserve the intrinsic geometry of the local neighborhoods [6] [8]. Given 

that all data points are centered, i.e. 1 0iix N x= =∑ , then the objective function (3) becomes 

( )( )
, 1

1max
2

N TT
i j i j

i j
x x x x

N
α α

=

 
− − 

 
∑                              (4) 

Obviously, the objective function (4) which is equal to principal component analysis [2] aims to preserve the 
amount of variation of the values of data in the reduced space. However, it results in the following problems. It 
distorts the local geometry of data. As aforementioned analysis, the objective function (4) does not detect the 
local discriminating information among the nearby data points. Furthermore, NPE is an unsupervised approach, 
which does not make good use of the label information. It means that the generalization ability and stableness of 
NPE are not good enough. 

3. Discriminant Neighborhood Structure Embedding Using Trace Ratio Criterion 
3.1. The Objective Function for Dimensionality Reduction 
Given training data matrix [ ]1 2 NX x x x=  , where n

ix R∈  ( )1, ,i N=   denotes the i-th training data, N is 
the number of training data. iτ  denotes the class label of data ix . Motivated by manifold learning approaches  
[6] [8] [18]-[20], we construct two adjacency graphs, namely geometry graph { },gG Z S=  and variability 

graph { },vG Z B= , with a vertex set { }, 1, ,iZ x i N= =   and two weight matrices S  and B , to model the  
local geometry and variation of data, respectively. The elements ijS  can be calculated by the following [6] [8]: 

2
min i ij jj

i
x S x − 

 
∑ ∑                                  (5) 

Subject to two constraints: first, enforcing 0ijS =  if i jτ τ≠ , second 1ijj S =∑ . 
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From the viewpoint of statistics, if two points ix  and jx  are very close to each other, 2
i jx x−  ( •  de-

notes the Euclidean distance between two vectors) is small, then the amount of variation of the values between 
them is also small. According to the analysis, the elements ijB  can be defined as follows: 

( )2
exp , ( ) , ( )

0 , Otherwise

i j i k j j k i i j
ij

t x x if N N and 
B

 − − ∈ ∈ == 


x x x x τ τ
                  (6) 

where ( )k iN x  is k nearest neighbors of ix , 0t ≥  is a positive parameter. 

Moreover, motivated by LDA [1], we construct two global graphs { }w , wG Z M=  and { }b , bG Z M=  over 

the training data points to model the global variation, where, ( ), 1 /w cM i j n=  and ( ), 1 / 1/b cM i j N n= −  if  

i jτ τ= , and ( ), 0wM i j =  and ( ), 1 /bM i j N= . cn  is the number of the samples in the c-th class. The cor- 
responding Laplacian matrices are denoted as wL  and bL  and L D S= − , where D  is a diagonal matrix 
with the ( ) ( ), ,jD i i S i j= ∑ . As shown in [20], the between-class scatter matrix bS  and the within-class 

scatter matrix wS  can be rewritten as T
w wS XL X=  and T

b bS XL X= . 
The goal of TR-DNSE is to find projection directions such that both the amount of variation of values of data 

and local geometry can be preserved in the reduced space. A reasonable criterion for choosing a good map is to 
optimize the following four objective functions 

2
min i ij jj

i
y S y − 

 
∑ ∑                                    (7) 

( )2
max ij i j

ij
B y y

 
− 

 
∑                                     (8) 

( )max T
btr YL Y                                        (9) 

( )min T
wtr YL Y                                        (10) 

where iy  denotes the low-dimensional representation of ix , ( )1 2, , , NY y y y=  . 
The objective function (7) ensures that the weights, which reconstruct the point ix  by its same class datasets 

in the high dimensional space, will well reconstruct iy  by the corresponding datasets points in the low dimen-
sional space. The objective function (10) ensures the data points from the same class will be closer than data 
from different class. The objective function (9) emphasizes the large distance data pairs. Maximizing (8) is an 
attempt to ensure that, if the amount of variation of the values between ix  and jx  is large, then the amount of 
variation between iy  and jy  is also large. By simultaneously solving the four objective functions, we can 
obtain reasonable projection directions such that the variation and geometry of data can be well detected in low- 
dimensional space. 

3.2. Optimal Linear Mapping 

Suppose α  is a projection matrix, that is, T
i iy xα= . By simple algebra formulation, the objective function (7) 

and (8) can be reduced to 
2 T T

i ij jj
i

y S y X M Xα α− =∑ ∑                               (11) 

( ) ( )2 2 T T
ij i j d

ij
B y y X L Xα α− =∑                              (12) 

where NI  is a N-dimensional identity matrix, ( ) ( )T
N NM I S I S= − − , dL H B= − , B  is a N N×  sym-

metric matrix, H  is a diagonal matrix whose elements on diagonal are row or column sum of B , i.e. 
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ii ji ijj jF B or B= ∑ ∑ . Finally, the optimization problem in ratio trace criterion can be reduces to finding: 

( )
* arg max

T T
b

T T
d w

XL X
X M L L X

α α
α

α α

  =  
− +  

                          (13) 

3.3. Discriminant Neighborhood Structure Embedding Using Trace Ratio Criterion 
Generally, the objected function (13) can be solved by using generalized eigenvalue decomposition. Given that 
the low-dimensional data representation is F . F  is constrained to be in the linear subspace spanned by the  
training data matrix X . As shown in [21], we relax the hard constraint by substituting TX α  by F  and add-
ing a regression residual term 

2TF X α−  into the reformulated objective function. Then, F  is enforced to 

be close to TX α . Specifically, we propose the following objective function:  

( )
( )

( ) ( )2
,

*, * argmax
T

T
b

T T TF I
a

Tr F L F
F

Tr F L F X F Trα α
α

α β α α=

=
+ − +

                   (14) 

( )( ) ( ) ( )( )2T T T T
t t b t t a t t t t tTr F L F Tr F L F X F Trλ α β α α= + − +                 (15) 

where β  is a parameter to balance different terms and a d wL M L L= − + . 
The above optimization problem in (14) is solved by Algorithm 1. 
Explanation of Algorithm 1: With tλ  from the t-th iteration in (16), 1tF +  and 1tα +  are computed by max-

imizing the following trace different problem: 

( ) ( )( ) ( ) ( ) ( )1 1
,

, argmax 2
T

T T T T T
t t b t a t t t t

F I
F Tr F L L I F Tr XF Tr XX Tr

α α
α λ λ λ α λ α α λ β α α+ +

=

= − − + − −     (16) 

From (16), it can be observed that ( ),
t

U Fλ α  is a concave quadratic function with respect to the variable F  

when the matrix ( )b t a tL L Iλ λ− −  is negative-definite. We set the partial derivative of ( ),
t

U Fλ α  with re-
spect to the variable F  as zero, namely 

( ) ( )( ),
2 0t T T

b t a t t t

U F
L F L F F X F V X

F
λ α

λ λ α λ α
∂

= − − − = ⇒ =
∂

               (17) 

where ( ) 1
t t t a bV I L Lλ λ −= + − . In most cases, the matrix ( ) 1

t t a bI L Lλ λ −+ − is negative-definite in our experi-

ments, and ( ) 1
t t a bI L Lλ λ −+ −  is symmetric. Substituting F  in (16) by (17), then we get: 

( )( )( )( )12
1 argmax

T

T T
t t t t a b t

I
Tr X I L L I X

α α
α α λ λ λ λ α−

+
=

= + − −                  (18) 

 
Algorithm 1. TR-DNSE algorithm. 

Input: 1t = , Îα = , ˆ f dI R ×∈ ˆ 1iiI = , for ( )1, ,i d=  , and 0 otherwise. 

While 4
1 ( 10 )t tλ λ ξ ξ −
+ − 〈 = : 

Compute tλ  by Equation(15); 

Update 1tα +  as the eigenvectors corresponding to the d  largest eigenvalues of the matrix ( )( )12 T
t t t a b tX I L L I Xλ λ λ λ−+ − − ;. 

Update ( ) 1

1 1
T

t t t t a b tF I L L Xλ λ λ α−

+ += + − ;. 

1t t= + ; 
Output resultant *λ  and *α . 
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In (18) we use the property 1- -b t a t tL L I Vλ λ −= . We also have ( )TTr dα α =  because T Iα α = . Hence, 

1tα +  is composed of the eigenvectors corresponding to the d  largest eigenvalues of the matrix  

( )( )12 T
t t t a b tX I L L I Xλ λ λ λ−+ − − , which explains the step 3 in Algorithm 1. 

4. Experiments 
In this section, we employ four widely used image databases (YALE, PIE, FERET and COLL20) to evaluate the 
performance of TR-DNSE and compare it with some classical approaches including Fisher face [22], MFA [12], 
LSDA [13], DLA [14] and LLDE [15] in the experiments. In classification stage, we use the Euclidean metric to 
measure the dissimilarity between two feature vectors and the nearest classifier for classification. 

In our experiments, we first use the PCA to reduce the dimension of the training data by keep 80% - 97% 
energy of images. Likewise, we empirically determine a proper parameter k  within the interval [ ]1, 1N −  and 
parameter t within the interval ( )0,∞  for the corresponding approaches. 

The CMU PIE database [23] contains 68 subjects with 41368 face images as a whole. We select pose-29 im-
ages as gallery that includes 24 samples per person. The training set is composed of the first 12 images per per-
son, and the corresponding remaining images for testing. Moreover, each image is of the size 64 64× .  

The Yale Face Database contains 165 grayscale images of 15 individuals. There are 11 images per subject. In 
our experiments the images are normalized to the size of 32 32× . The first six images are selected to be the 
training data, and the rest for testing.  

The FERET database [24] includes 1400 images of 200 individuals (each with seven images). All the images 
were cropped and resized to 80 80×  pixels. The images of one person are shown in Figure 1. In the experi-
ment, we choose four images per person for training, and the remaining images from for testing. 

The COIL20 image library contains 1440 gray scale images of 20 objects (72 images per object) [25]. Each 
image is of size 32 32× . In the experiments, we select the first 36 images per object for training and the re-
maining images for testing. 

Table 1 shows the best results of six approaches on four databases. Figure 2 plot the curves of recognition 
accuracy vs. number of projected vectors on four databases. 

TR-DNSE has the best recognition accuracy than the other approaches in all the experiments. This is probably 
due to the fact that TR-DNSE preserves both the local geometry and variation of data, especially the discrimi-
nating information embedded in nearby data from different classes. Different from other approaches, TR-DNSE 
approach has a trace ratio criterion in solution. Related work demonstrates that the projection matrix solved  

 

 
Figure 1. Some sample images of one subject in the FERET database. 

 
Table 1. Top recognition accuracy (%) of six approaches on four databases and the corresponding number of features. 

Database PIE YALE FERET COIL20 

Methods Recognition Dimension Recognition Dimension Recognition Dimension Recognition Dimension 

Fisherface 86.89 45 77.33 8 87.17 21 92.64 10 

MFA 85.66 61 73.33 8 86.5 32 93.61 10 

LSDA 89.58 64 73.33 9 78 27 92.78 21 

DLA 89.58 189 73.33 13 76.83 38 93.61 7 

LLDE 93.63 101 80 18 89.83 31 92.08 12 

TR-DNSE 95.96 65 81.33 16 90.83 39 95 7 

bd be bf bg ba bj bk
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Figure 2. Recognition accuracy vs. number of projection vectors on the four databases. 

 
by using trace ratio criterion is generally better than the projection matrix solved by using generalized eigenva-
lue decomposition. By the trace ratio criterion, we can get an orthogonality projection matrix which helps to un-
fold the geometry and encode discriminating information of data. So the trace ratio criterion of TR-DNSE helps 
to get a better projection which results in better results. 

5. Conclusion 
Our method, TR-DNSE, which is proposed for dimensionality reduction, incorporates the intrinsic geometry, 
local variation, and global variation into the object function of dimensionality reduction. Geometry guarantees 
that nearby points can be mapped to a subspace in which they are still very close, which characterizes the simi-
larity of data. Global variation and local variation characterize the most important modes of variability of pat-
terns, and help to unfold the manifold structure of data and encode the discriminating information, especially the 
discriminating information embedded in nearby data from different classes. Experiments on four real-world im-
age databases indicate the effectiveness of our TR-DNSE approach. 
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