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Abstract 
Many high dimensional data mining problems can be formulated as minimizing an empirical loss 
function with a penalty proportional to the number of variables required to describe a model. We 
propose a graduated non-convexification method to facilitate tracking of a global minimizer of this 
problem. We prove that under some conditions the proposed regularization problem using the 
continuous piecewise linear approximation is equivalent to the original 0l  regularization problem. 
In addition, a family of graduated nonconvex approximations are proposed to approximate its 1l  
continuous approximation. Computational results are presented to illustrate the performance. 
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1. Introduction 
Sparsity is a desired property in model estimation since it often leads to better interpretability and out-of-sample 
predictability. In [1], a risk bound is established for the model selection by minimizing the empirical loss func-
tion penalized by the number of variables needed to describe the model. In this context, model dimension is the 
number of unknown variables; sparsity refers to a small number of variables selected to define the model. Thus 
sparse model estimation is also sometimes referred to as variable selection. 

Selecting a model with a small number variables can be formulated as minimizing an empirical loss function 
with a penalization for the number of nonzero variables; this is referred to as 0l -regularization. Unfortunately 
this is a NP-hard global optimization problem, see, e.g., [2] [3]. Relaxation of cardinality regularization has long 
been used as a way to approach the sparse model selection problem, see, e.g., [4] [5]. Due to its computational 
simplicity, regularization based on the 2l  norm is popular in practice. This is referred to as ridge regression. 

It has also long been recognized that 1l  regularization often leads to sparsity in solutions, see, e.g., [6]-[11] 
[29]. Recent compressive sensing theory, e.g., [12]-[14]), formally establishes that, under a certain restricted 
isometry property (RIP) on a n m×  sensing matrix Φ , n m≤  a sparse vector x  can be reconstructed ex-
actly from Φy x= . In addition, computational methods have been developed to obtain solutions efficiently, see, 
e.g., [15]-[17]. 
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Despite its success, the 1l  regularization approach can potentially lead to model bias for model estimations, 
see, e.g., [18]-[21]. In [18], a smoothly clipped absolute deviation (SCAD) penalty is proposed using a noncon-
vex regularization to avoid the potential bias. Iterative methods are proposed in [23] [24] to approximate a local 
minimizer of the SCAD penalized loss. It is proposed in [18] that a proper regularization function for model es-
timation should be chosen with three objectives: avoid bias in the resulting estimator, achieve sparsity in the es-
timated model, and, finally, achieve continuity or stability in model prediction. The 1l  regularization function 
is able to achieve sparsity and smoothness but can lead to model bias. In addition, using 1l  regularization does 
not always lead to the sparsest model which fits the data to a specified accuracy. Recently computational meth-
ods have also been proposed to iteratively solve 0l  regularization problems, see, e.g., [25] [26]. 

The main objective of this paper is to devise a computational method to minimize the empirical loss function 
with a penalization for the number of nonzero variables. We approximate the counting indicator function by a 
continuous piecewise linear function. We show mathematically that a continuous piecewise linear approxima-
tion has appealing theoretical properties. To facilitate tracking a global minimizer, this continuous piecewise 
function is further approximated by a family of continuously differentiable piecewise quadratic functions which 
are indexed by a parameter controlling the degree of nonconvexity in the approximation. Starting from an initial 
convex function, a sequence of increasingly more nonconvex approximate problems are solved, using the solu-
tion to the previous problem as a starting point for the next approximate problem. In addition, each approxima-
tion can be regarded as a regularization function for model estimation; each approximation behaves similar to 
the 1l  function near the origin (ensuring sparsity), the 0l  function asymptotically (avoiding bias), and con-
tinuously differentiable everywhere (for smoothness). We illustrate the efficacy of the proposed method in de-
termining a sparse model for data fitting, computational efficiency of the approach, and the effect of the pa-
rameters on the gradual non-convex approximations. 

2. Continuous Approximation to 0L  
Assume that ( )f x  measures the empirical error based on the given data. We want to solve the following 0l  
regularization problem 

( ) ( )
1

min
n

n

i
x R i

f x xµ
∈ =

+ Λ∑                                 (2.1) 

where the counting indicator function ( )Λ ⋅  is  

( ) 1       if  0
0      otherwise

i
i

x
x

≠
Λ = 


 

and 0µ >  is a penalty parameter, balancing the objectives of minimization of ( )f x  and sparsity in the solu-
tion. 

Unfortunately standard optimization methods cannot be applied to the data fitting problem (2.1) since the car-
dinality function ( )zΛ  is discontinuous and nonconvex. Convex relaxations have been proposed for (2.1), see, 
e.g., [5] [27]; these relaxations can be sub-optimal since (2.1) is nonconvex. In [28] the counting indicator 
( )zΛ  is approximated, in the context of image processing, by the piecewise quadratic ( )ĥ zλ  and solves 

( ) ( )
1

ˆmin
n

n

i
x R i

f x h xλµ
∈ =

+ ∑                                 (2.2) 

where 

( )
2 1if   ˆ

1        otherwise

    z z
h zλ

λ
λ

 ≤= 


 

and 0λ >  is a small resolution parameter. We propose to approximate the discontinuous counting indicator 
function ( )zΛ  by the following continuous 1l  penalty function ( )h zλ , 

( )
1    if  

1              otherwise

z z
h zλ

λ
λ

 ≤= 


 



T. F. Coleman, Y. Y. Li 
 

 
3 

Figure 1 illustrates ( )h zλ  and ( )ĥ zλ  Using ( )h zλ , the 0l  regularization problem (2.1) is approximated 
by 

( ) ( ) ( )def

1
min ;

n

n

i
x R i

p x f x h xλλ µ
∈ =

+ ∑                            (2.3) 

Next we establish mathematically that there exists a finite threshold parameter λ  such that a solution to (2.3) 
is a solution to the original 0l  penalty problem (2.1) for all 0λ λ≥ > . 

Assumption 2.1. Assume ( )f x  is twice continuously differentiable on an open set nD R⊆  and there ex-
ists 0K >  such that ( )i Kf x∇ ≤  for all x D∈ , 1, ,i n=  . 

Lemma 2.1. Suppose Assumption 2.1 holds. Let x D∗ ∈  be a local minimizer of ( );p x λ  with 
2

2

Kλ
µ

≥ , 

Then, for each index i , either ( ) 0ix∗ =  or ( ) 1
ix

λ∗ ≥ . Hence either ( )( ) 0ih xλ ∗ =  or ( )( ) 1ih xλ ∗ =  for 

1, ,i n=   
Proof. For notational simplicity, in this proof, we denote ( );p x λ . simply as ( )p x . 
Suppose the contrary, i.e., for some index i, 

( ) 10 ix
λ∗< < . We note that in this situation the derivative of ( )p x  with respect to ix  exists at x∗  be-  

cause ( )f x  is everywhere differentiable on D  and since by assumption𝑥𝑥∗is not a cusp point, ( )ih xλ  is also 
differentiable at ( )i ix x∗= . Then, by local optimality ( ) 0ip x∗∇ = , i.e., 

( )( ) ( )( )0  or  0i ii i
f x f xµ λ µ λ∗ ∗∇ + = ∇ − =  

But ( ) and iK f x Kµ λ ∗> ∇ ≤ , which is contradictory.   

Lemma 2.2. Let x∗  be a local minimizer for ( );p x λ  for some 
2

2

Kλ
µ

> . Then x∗  is a local minimizer of 

( );  for all p x λ λλ ≥ . 
Proof. Suppose that x∗  is not a local minimizer of ( );p x λ  for some λ λλ+= > . Lemma 2.1 states that  

the components of x∗  are partitioned into two sets: i.e., for each index𝑖𝑖either ( ) 0ix∗ =  or 1( )ix
λ∗ ≥ .  

Since λ λ+ > , the same partition applies with respect to λ+ . Therefore 
 

 
Figure 1. Quadratic (left subplot) and piecewise linear (right sunplot) approximations to the counting indicator function 
( )zΛ  with λ = 100. 
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( ) ( )
1 1

( ) ( )
n n

i i
i i

h x h xλ λ+∗ ∗
= =

=∑ ∑  

It follows from the definition for ( );p x λ  that x∗  cannot be a minimizer of ( );p x λ , a contradiction. ■  

Theorem 2.1. If x D∗ ∈  is a strong local minimizer for ( );p x λ  for some 
2

2

Kλ
µ

> . Then x∗  is a local 

minimizer of ( ) ( ) ( )1 i
n
ip x f x xµ
=

= + Λ∑ . 
Proof. By Lemma 2.2, x∗  is a local minimizer of ( );p x λ

 for all λ  sufficiently large. We show that x∗  
is a local minimizer of ( )p x  by contradiction. Suppose that𝑥𝑥∗is not a local minimizer of ( )p x . Then there 
exists a sequence kx  converging to , kx x x∗ ∗≠  and ( ) ( )kp x p x∗< . This implies that ( ) ( )kf x f x∗<  for 
sufficiently large k . Since, for sufficiently large k , 

( ) ( );k kp x p xλ <  

And ( ) ( );p x p xλ∗ ∗= , we have that ( ) ( ); ; .kp x p xλ λ∗<   This contradicts that𝑥𝑥∗is a strong local minimizer 

of ( );p x λ  for some 
2

2

Kλ
µ

> . 


 

If one uses ( )ĥ zλ  to approximate ( )zΛ , a minimizer x∗  to the approximation problem (2.2) will gener-  

ally not be a minimizer to the 0l  regularization problem (2.1) unless either ( ) 0ix∗ =  or 1( )ix
λ∗ ≥ , which  

typically does not hold for any 0λ > . Theorem 2.1 indicate that our proposed approximation ( )h zλ  is supe-
rior to ( )ĥ zλ  in solving the 0l  regularization problem (2.1). 

3. Graduated Non-Convexification 
We now address a couple of additional challenges. Firstly, ( )h zλ  is not differentiable everywhere, which is 
also the case for ( )ĥ zλ . Secondly, ( )1

n
i ih xλ=∑  is not convex; thus problem (2.3) has many local minimizers. 

Assume { }1,2, , n⊂ =   . Consider the following 

( )min subject to x 0,
n i

x R
f x i

∈
= ∈                           (3.1) 

Then any local minimizer of (3.1) is a local minimizer of (2.1) for a fixed   0µ > . 
For a given   0µ > , computing a global minimizer of the 0l  regularization problem (2.1), or the proposed 

approximation (2.3), is NP-hard. However, the quality of the estimated model depends on being able to find, as 
much as possible, a sufficiently good approximation to the global minimizer of (2.1). Next we develop a com-
putational method to produce a good approximation to the global minimizer of the piecewise linear minimiza-
tion problem (2.3). 

Assume that the empirical loss function ( )f x  is convex. 
Hence the nonconvexity comes from the counting indicator function. In [28], a graduated non-convexification 

process is proposed, in the context of image processing, in an attempt to find the global minimizer of the piece-
wise quadratic approximation (2.2) as follows. The continuous function ( )ĥ zλ  is approximated using a family 
of continuously differentiable piecewise quadratic functions ( )ĝ zλ , where 

( )

2

2

 

ˆ ( ;  ) 1  
2

1 otherwise

z if z

g z z if zλ

λ κ
ρρ γ κ γ

 ≤

= − − ≤ ≤



                         (3.2) 

2 1 1,     .γ κ
ρ λ λγ

= + =                                 (3.3) 

Here 0ρ >  is a parameter indexing the family of approximations to ( )ĥ zλ . The function ( )ˆ ;g zλ ρ is a 
piece wise quadratic, with the concave quadratic 
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( )2
1

2
zρ γ− −  

when z ( ),κ γ∈ . Note that, for any 0ρ > , we have 1γ
λ

> . Thus 1κ γ
λ

< < . In addition the function  

( )λˆ ;ig x ρ  is continuously differentiable and symmetric with respect to z . Left subplot in Figure 2 graphically 
illustrates the function ( )ˆ ;g zλ ρ . Substituting ( )ˆ ;g zλ ρ  for ( )ĥ zλ , we have 

( ) ( )
1

ˆmin ;
n

n

i
x R i

f x g xλµ ρ
∈ =

 + 
 

∑                              (3.4) 

Let { }kρ  be a given monotonically increasing sequence which converges to +∞ . In [28], the global mini-
mizer of the piecewise quadratic minimization (2.2) is tracked by solving a sequence of problems (3.4) indexed 
by a monotonically increasing sequence { }kρ , using the solution of the ( )1k − th problem as the starting point 
for the kth problem. Initially, the minimizer for the empirical error function, which corresponds to (3.4) with 

0µ = , is computed. As 0kρ → , 0kκ → , and kγ → +∞ . Thus problem (3.4) approaches the minimization of 
the empirical error function min ( )f x  as 0kρ → . As kρ  increases, the second order derivative of the 
quadratic function in [ ],κ γ  equals ρ− , which becomes increasingly more negative, gradually introducing  

non-convexity. In addition, as 1, ,
λk k kρ γ κ→ +∞ → , and the function ( )ˆ ; kg zλ ρ  approaches ( )ĥ zλ . Geo-

metrically, the convex empirical error function ( )f x  is gradually deformed to the concave function, with the-

computed solution sequence following a path from the minimizer of ( )f x  to, ideally, the global minimizer of 

( ) ( )1
ˆ

i
n
if x h xλµ
=

+ ∑ . 

Similarly we can design a family of approximations to track the global minimizer of ( ) ( )1 i
n
if x h xλµ
=

+ ∑  in  
(2.3). For sparsity, we want to retain the 1l  segment zλ  in a neighborhood of 0z = . Outside this 
neighborhood, we require the approximation to be continuously differentiable. Finally, similar to ( )ˆ ; kg zλ ρ , 
we ensure that this approximation gradually approaches the piecewise linear ( )h zλ . 

Based on ( )ˆ ;g zλ ρ  in (3.2), we construct a family of approximations for ( )h zλ  with the desired properties 
as follows. Let γ  and κ  be defined in (3.3). First we select two break points ξ  and η  so that 

0 ξ η κ< < <  and η ξ κ η− = − . 

In addition, ξ  and η  monotonically increase to 1
λ

 as ρ  converges to +∞ ; this property also holds  

 

  
Figure 2. Graduated nonconvex approximation ( )ˆ ;g zλ ρ  (left subplot) and ( );g zλ ρ  (right subplot). 
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for κ . Then we construct the unique quadratic spline ( ) ( ) ( ){ }1 2,S z s z s z=  on [ ],ξ η : 

( ) ( )
( )

1

2

when
when

s z z
S z

s z z
ξ η
η κ

 ≤ ≤=  ≤ ≤
 

which satisfies the following boundary conditions: the function values and the derivative values at ξ  and η  

are given by 1 z
γ

 and ( )2
1

2
zρ γ− −  respectively, i.e., 

( ) ( )

( ) ( ) ( ) ( )2

1 1,   ,

1 ,   .
2

S S

S S

ξ ξ ξ
γ γ

ρκ κ γ κ ρ κ γ

′= =

′= − − = − −

                      (3.5) 

We now approximate the nondifferentiable piecewise linear function ( )h zλ  when [ )0,z∈ +∞  by the fol-
lowing continuously differentiable function ( );g z ρ  below: 

( )
( )
( )

( )

1

2

2

1 if

if
; if

1 if
2

1 otherwise

z z

s z z
g z s z z

z z

λ

ξ
γ

ζ η
ρ η κ

ρ γ κ γ

 ≤


≤ ≤
= ≤ ≤

 − − ≤ ≤



                       (3.6) 

where γ  and κ  are defined in (3.3). Subplot (b) in Figure 2 graphically illustrates the function ( )λ ; kg z ρ . 
By construction, ( )λ ; kg z ρ  is an even function. In addition, it is continuously differentiable on ( )0,+∞ . We 

now establish the monotonicity property for ( )λ ; kg z ρ when [ )0,z∈ +∞ . 
Lemma 3.1. Let ( )S z  be the quadratic spline in [ ],ξ κ  with the breakpoints 0 ξ η κ< < <  and the 

boundary conditions (3.5) restated below 

( ) ( )

( ) ( ) ( ) ( )2

1 1,   ,

1 ,   .
2

S S

S S

ξ ξ ξ
γ γ

ρκ κ γ κ ρ κ γ

′= =

′= − − = − −

 

where γ  and κare defined in (3.3). Assume 0ρ >  and η ξ κ η− = − . Then ( )S z  is strictly monotonically 
increasing on [ ],ξ κ  and ( ); kg zλ ρ  is strictly monotonically increasing on [ ]0,γ . 

Proof. Assume that ( ) ( ) ( )2
1 1 1 1s z a b z c zξ ξ= + − + − and ( ) ( ) ( )2

2 2 2 2s z a b z c zξ ξ= + − + −  are the quad-
ratics. For the spline ( )S z  on [ ],ξ κ  with the boundary conditions (3.5), we have 

( ) ( )1 1 12s z b c z ξ′ = + − , 

and ( ) ( )2 2 22s z b c z ξ′ = + − . The boundary conditions (3.5) imply that 

( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

2
2 2 2 2

1 1, ,

1 , .
2

a s b s

a s b s

ξ ξ ξ
γ γ

ρκ κ γ κ ρ γ κ

′= = = =

′= = − − = = −

                   (3.7) 

The derivative and function continuity of the spline at z η=  yields 

( ) ( )

( ) ( ) ( ) ( )

2 1
1 2

2 2
1 2 2 1 2 1

,
2

.

b bc c

c c a a b b

η ξ η κ

η ξ η κ η κ η ξ

−
− − − =

− − − = − + − − −
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This leads to  

( ) ( ) ( )

( ) ( )( )

2 1
2 1 2 1

1 2
2

b ba a b b
c

η κ η ξ κ η

η ξ κ η η ξ

−
− + − − − + −

=
− + − −

. 

Since ( )ˆ ;g zλ ρ  is continuous at z κ= , ( ) ( ) 2
2 2 ˆ ;a s gλκ κ ρ λκ= = = . Using (3.3), 

( )2
2

1a λκ λκ κ κ
γ

= = = . 

Let κ η η ξ∆ = − = − ,. From 1
1a ξ
γ

= , using (3.7), and 2κ ξ− = ∆ , 

( ) ( )2 1 1 1
1 2a a b bκ ξ κ ξ
γ

− = − = − = ∆  

Since ( )ˆ ;g zλ ρ  is continuously differentiable at z κ= , using (3.7), we have 

2 2 1
2( ) 2 2b s bκ λκ
γ

′= = = = . 

Hence 

( ) ( )2 1 13b b bη κ η ξ− − − = − ∆ . 

Using above, 2 1 12a a b− = ∆ , and Δκ η− = , we obtain 

( ) ( ) ( )2 1
2 1 2 1 1

1
2 2

b ba a b b bη κ η ξ κ η
−

− + − − − + − = − ∆ . 

From the value of 1c  and the above, we have 

( )1 1
12
2

c bη ξ− = −  

Hence  

( ) ( )1 1 1 1
12 0.
2

s b c bη η ξ′ = + − = >  

Since ( )1s z′  and ( )2s z′  are linear in [ ],ξ η  and [ ],η κ  respectively, from ( ) ( ) ( )1 1 20, 0s s sξ η η′ ′ ′> = >  
and ( )2 0s κ′ > , we conclude that ( )1s z′  and ( )2s z′  are strictly monotonically increasing in [ ],ξ η  and  

[ ],η κ . Since 1 z
γ

 and ( )21
2

zρ γ− −  are strictly monotonically increasing in [ ]0,ξ  and [ ],κ γ  respectively,  

we conclude that ( );g z ρ  is monotonically increasing in [ ]0,γ . 


 
Figure 2 compares the approximation ( )ˆ ;g zλ ρ  with the approximation ( );g zλ ρ  for a few values of ρ . 

Left and right subplots visually look very similar. However, the main difference can be seen near 0z = . 
Replacing ( )hλ ⋅  by ( );g zλ ρ , we obtain: 

( ) ( )
1

min ;
n

n

i
x R i

f x g xλµ ρ
∈ =

 + 
 

∑                               (3.8) 

Each approximation ( )1 ;n
ii g xλ ρ

=∑  can be considered as a regularization for the empirical function mini-
mization. 

This penalty function corresponds to the 1l  penalty around 0ix =  for 1 i n≤ ≤ ; it behaves like the count-
ing indicator function when ix  is very large. The size of each region depends on the parameter ρ . When 

ρ → +∞ , the 1l  penalty is used in 10,
λ

 
 
 

 and the counting indicator function is used in 1 ,
λ

 
+∞

 
. For  

any given 0ρ > , the penalty function is continuously differentiable everywhere except at the origin. The func-
tion ( );g zλ ρ  is piecewise quadratic with a concave quadratic piece for [ ],z κ γ∈ .  
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Based on (3.8), a gradual nonconvexification process can similarly be applied to track the global minimizer of 
(2.3), and (2.1) if λ  is sufficiently large. Assume that the empirical function ( )f x  is convex. For notational 
simplicity, let 

( ) ( ) ( )
1

;
n

k i k
i

P x f x g xλµ ρ
=

= + ∑                             (3.9) 

Starting from the minimizer of ( )f x , a sequence of approximations to the penalized empirical error mini-
mization problem (3.8), { }, 1, 2, ,k k =   is solved by approximating the indicator function. As kρ  converges 
to zero, ξ , η  and κ  all converge to zero and γ  converges to +∞ . Thus ( );g zλ ρ  approaches the quad-  

ratic segment ( )2
1

2
zρ γ− −  with the (negative) curvature converging to zero. Hence the optimization problem  

(3.8) approaches the empirical error function minimization as kρ  approaches zero. As kρ  increases, the cur-
vature of the quadratic function defining ( ); kg zλ ρ  for [ ],k kz κ γ∈  becomes more negative, introducing a 
graduated nonconvexity. The negative curvature interacts with the positive curvature of the empirical error func-
tion in an attempt to reach the optimal subset solutions via minimizing ( )kP x . In addition, as kρ → +∞ , kγ ,  

1
kκ λ
→  and the functions ( ); kg zλ ρ  approach ( )h zλ . 

Figure 3 graphically illustrates how this graduated nonconvexification process tracks the global minimizer of  

the minimization problem (2.3) with an one-dimensional function ( )21( ) 2
2

f z z= − . In the top-left subplot of  

Figure 3, we see the original nonconvex function ( ) ( )f z h zλµ+ , a convex approximation (corresponding to 
0.001kρ = ), and its minimizer. Increasing ρ  to 1, we see the next approximation to the original function in 

the top-right subplot. With the minimizer of the first approximation function as a starting point, the minimizer of 
the new approximation, which is very close to the global minimizer, is computed. In the bottom two subplots  
 

 
Figure 3. Tracking the global minimizer of ( ) ( )f z h zλµ+ : Graduated nonconvex approxima-
tions. 
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( 10kρ =  and 1000 respectively), we see how the approximating functions ( )kP z  approach the original func-
tion as kρ  increases. From this illustration we see that the proposed process first considers large scale features 
of the function ( ) ( )f z h zλµ+  and gradually focuses in on features of a smaller scale. This graduated noncon-
vexification process can be terminated when the approximation ( ); kg zλ ρ  to ( )h zλ  is sufficiently accurate at 
the computed solution. 

Next Theorem 3.1 shows that when, for all i  either ( )i kk
x ξ∗ ≤  or ( )i kk

x γ∗ ≥ , ( )( )1 ;n
i ki k

g xλ ρ∗
=∑  accu-

rately approximates ( )( )1
n

ii k
h xλ

∗
=∑  at the computed solution and remains so for any larger ρ . 

Theorem 3.1. Assume that ( )κ ρ  and ( )γ ρ  are defined in (3.3), 0 ξ η κ< < < , and ( )ξ ρ  and ( )η ρ  
are monotonically increasing functions of ρ . Then the following holds: 
• If the first order necessary condition for (3.8) is satisfied at x∗  with 0ρ >  and either x ξ∗ <  or x γ∗ > , 

then the first order optimality condition for (3.8) is satisfied at x∗  for any ρ ρ≥ . 
• If the second order necessary condition for (3.8) is satisfied at x∗  with 0ρ >  and either x ξ∗ <  or 

x γ∗ > , then the second order optimality condition for (3.8) is satisfied at x∗  for any ρ ρ≥ . 
Proof. Assume that 0ρ >  and either ix ξ∗ <  or ix γ∗ >  for 1 i n≤ ≤ . By definition (3.3), ( ) ( )γ ρ γ ρ<  

and ( ) ( )κ ρ κ ρ<  for ρ ρ≥ .From the monotonicity assumption of ξ  and η , for ρ ρ≥ , ( ) ( )ξ ρ ξ ρ≥  
and ( ) ( )η ρ η ρ≥ . Therefore, 

( ) ( ) ( ) ( )2 2

0 0 0 0

; ; ,   and  ; ; .
i i i i

n n n n

i i i i
x x x x

g x g x g x g xλ λ λ λρ ρ ρ ρ
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

≠ ≠ ≠ ≠

∇ = ∇ ∇ = ∇∑ ∑ ∑ ∑  

Hence the first order and the second order necessary conditions for (3.7) hold at x∗  with 0ρ > , when these 
conditions for (3.7) hold at x∗  with 0ρ > . 


 

Applying Theorem 3.1, the following can be used as a stopping condition for the graduated nonconvexifica-
tion process: 

( ) ( )either or       ,i k i kk k
x x iξ γ∗ ∗< > ∀                         (3.10) 

We also note that ( )gλ ⋅  only can be erroneous in approximating ( )hλ ⋅  in [ ],ξ η . Thus when γ ξ−  is 
sufficiently small, we can also regard this approximation as sufficiently accurate. Thus, the computation can also 
terminate if the region of the inaccuracy k kγ ξ−  becomes sufficiently small. 

The proposed graduated non-convex approximation process is summarized in Figure 4. 

4. Computational Results 
In this section we illustrate the performance of the proposed computational methods for mode estimation. We 
assume that the variables are constrained to be nonnegative; we note that the illustrated properties of the pro-
posed sequence of 1l  approximations to 0l  regularization on sparsity will be similar when the model parame-
ters are unconstrained. 

To illustrate, we generate random sparse model selection problems based on least squares data fitting prob-
lems below: 
 

GNC1 Algorithm. Let 0λ >  be a large constant and { }kρ  be 
a monotonically increasing sequence which converges to +∞ . 
Lettolbe a positive stopping tolerance. 
 
1) Compute a minimizer for minimization problem (3.8) with the 
penalty parameter 0µ = . Let 1k = . 

2) Compute a solution to (3.8) with kρ ρ=  using the computed 

solution of (3.8) with 1kρ ρ −=  as a starting point. 

3) If either (3.10) or the inequality tolk kγ ξ− <  holds, terminate. 

Otherwise,   1k k← +  and go to the step 1). 

Figure 4. A graduated nonconvexification method for the 
sparse model selection. 
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( )2

20 1

1min
2

n

ix i
Ax b xµ

=≥
− + Λ∑                             (4.1) 

Each random problem instance is generated by a random matrix A UDV=  where U  is an m -by- m  
random orthogonal matrix, V  is an n -by- n  random orthogonal matrix, and D  is a random diagonal ma-
trix with a condition number equal to a specified constant. The m -by-1 vector b  is set to equal to Ax ε∗ +  
where 0x∗ ≥  is a random vector with K ∗  nonzero components (randomly selected); the nonzero components 
equal ( )100 1 rand+ . Here rand is a random sample from the uniform distribution in [ ]0,1 . The vector ε  is a 
vector of m  independent standard normal with a standard deviation equal to 210− , unless stated otherwise. 

Using the graduated nonconvexification algorithm, we compute a solution to (4.1) by solving a sequence of 
approximations below: 

( )2

20 1

1min ;
2

n

i kx i
Ax b g xλµ ρ

≥ =

− + ∑                            (4.2) 

where { }kρ  is a sequence of monotonically increasing positive numbers. Unless stated otherwise, we set

1 0.05
λ
= , 110k kρ ρ −= , and 5

0 10ρ −= . In addition, we let the spline breakpoints be as follows: 

11 0.5min ,0.5 ,

11 0.25min ,0.5 .

ξ κ
ρ

η κ
ρ

  
= −  

  
  

= −  
  

 

We refer to the computational algorithm in Figure 4 with the specified parameter setting above as GNC1. We 
use the trust region algorithm for bound constrained problems proposed in [30] to solve (4.2). We illustrate 
various properties of the computed model x̂ . Specifically we report empirical error, sparsity, and errors com-
pared to the true model x∗  used to generate data. In measuring sparsity, we regard a component ˆix  as zero if 

6ˆ 10ix −≤ . In addition, we assess the approximation error of using the continuous approximation ( )h ⋅  or ( )ĥ ⋅  
to the indicator function at the computed solution x̂ . We also evaluate the computational cost of the graduated 
nonconvexification process and report the total number of optimization iterations required to obtain the estimate 
x̂  and the average number of optimization iterations required for minimizing each k . 

Specifically, based on 100 random problem instances, we report the following attributes based on the average 
values from 100 random problem instances: 
• Empirical error: 2

ˆAx b−  

• Average relative distance to the true model: 2

2

x x

x

∗

∗

−
 

• Sparsity: the number of zeroes in the computed solution x̂ , i.e., ( )6
1

ˆ 10n
ii x −

=
Λ ≤∑ . 

• Accuracy in approximating the counting indicator function ( )zΛ  by ( )h zλ  or ( )ĥ zλ : recall that the ap-

proximation is accurate if 1z
λ

≤
√

 implies that 0z = . Thus we measure this accuracy by 

( )6
1

1

ˆ 10

1ˆ

n
ii

n
ii

x

x
λ

−
=

=

Λ ≤

 Λ ≤ √ 

∑

∑
; value 1 means 100% accuracy. 

• Average number of optimization iterations over all : itnk kρ . 
• Total number of optimization iterations for the entire gradual non-convexification process: itnk

k
∑ . 

Table 1 reports the performance assessment for GNC1based on the piecewise linear approximation ( )h zλ  
to the counting function ( )zΛ  in the specified parameter setting. The number of observations𝑚𝑚equals 200 and 
the dimension𝑛𝑛 of x∗  equals 100. Two subpanels correspond to ( )1Λn

ii x∗
=∑  the number of nonzeros in x∗ , 

equals to 50 and 90 respectively. The column under 0µ =  provides the properties of the least squares solution 
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for the given data; we see that the average least squares error 2Ax b−  is approximately 0.1. As the penalty 
parameter µ  increases, the average data fitting error increases but sparsity in the estimate x̂  also increases 
from 0 to about 70. 

In addition observe from Table 1 that there is little difference in the fitting error when 40,10µ − ∈    but the 
sparsity in the solution estimate x̂  is drastically different, from no zero components to more than 35 when the 
true solution x∗  has about 50 zero components, i.e., 50K ∗ = . From Table 1, we also observe that the relative 
average distance to the true parameter x∗  is smaller than that of the least squares solution, when the penalty 
parameter is ( 40,10µ − ∈   for which estimate x̂  is fairly sparse. This indicates that sparsity regularization is 
indeed important in accurate model estimation. We also note that the error in using ( )h ⋅  to approximate the 
counting indicator function at the computed estimate x̂  is very small with a minimum correctness of 80% for 
penalty parameter 610µ −= ; complete accuracy of 100% is achieved when 310µ −≥ . 

One potential concern of the proposed graduated non-convex method is the computational cost since a poten-
tially large sequence (corresponding to the parameter sequence { }kρ  of optimization problems need to be 
solved. However, since for each minimization of k , the solution from 1k −  is used as a starting point, the to-
tal number of optimization iterations required is quite reasonable. 

For example, when 50K ∗ = , on average a total of 77.31 iterations are required to compute for the entire 
GNC1 process. Since the average number of iterations for minimizing kP  is 4.83, this implies that the GNC1 
process here terminates after about 16 steps on average. It can be observed that the total number of iterations 
required increases with the penalty parameter µ . 

We also investigate performance for the underdetermined data fitting problems; the number of observations is 
less than the number of unknown variables (specifically 100m =  and 200n = ). Table 2 illustrates that the 
relative distance to the true model x∗  is significantly larger in the underdetermined case than in the over de-
termined case; the corresponding entries in Table 1 are included in Table 2 for comparison. This is reasonable 
since there is less information available to infer the true model. 
 
Table 1. GNC1 performance statistics from 100 random problems with the number of observations m greater than the di-

mension n: 1 = 10k kρ ρ+  with 0ρ  = 1e-005 and 
1 = 0.05
λ

. 

 µ = 0 1e-006 0.0001 0.01 1 
Number of nonzeros in the generator K* = 50  m = 200  n = 100 

2
ˆAx b−  0.098 0.108 0.111 0.257 2.380 

*

2
*

2

x̂ x
x
−

 0.199 0.172 0.188 0.469 0.686 

( )( )6

=1
ˆ| | 10n

ii
x −Λ ≤∑  0.000 20.610 35.020 53.480 68.700 

( )
( )

6ˆ | 10

ˆ | 1
ii

ii

x

x λ

−Λ ≤

Λ ≤

∑
∑

 0.000 0.812 0.942 1.000 1.000 

kitn  0.000 2.123 4.832 7.947 7.281 

kk
itn∑  0.000 33.970 77.320 127.150 116.490 

Number of nonzeros in the generator K* = 90  m = 200  n = 100 

2
ˆAx b−  0.099 0.102 0.103 0.309 2.831 

*

2
*

2

x̂ x
x
−

 0.160 0.150 0.177 0.485 0.694 

( )6

=1
ˆ| | 10n

ii
x −Λ ≤∑  0.000 5.260 9.820 31.140 53.660 

( )
( )

6ˆ| | 10

ˆ| | 1
ii

ii

x

x λ

−Λ ≤

Λ ≤
∑
∑

 0.000 0.805 0.948 1.000 1.000 

kitn  0.000 2.023 3.094 7.353 8.368 

kk
itn∑  0.000 32.370 49.510 117.650 133.890 
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Table 2. Distance to the true model (GNC1): overdetermined vs underdetermined, 1 = 10k kρ ρ+  with 0ρ  = 1e-005 and 
1 = 0.05
λ

. 

Distance to the True Model: 
*

2
*

2

x̂ x
x
−

 

 µ = 0 1e-006 0.0001 0.01 1 

(m,n) Number of nonzeros in the generator K* = 50 

(200,100) 0.199 0.172 0.188 0.469 0.686 

(100 200) 0.720 0.714 0.715 0.781 0.857 

(m,n) Number of nonzeros in the generator K* = 90 

(200,100) 0.160 0.150 0.177 0.485 0.694 

(100 200) 0.722 0.718 0.721 0.784 0.861 

5. Concluding Remarks 
In high dimensional data fitting problems, the objective is to minimize an empirical loss function based on data 
while achieving sparsity in the model parameters at the same time. Achieving sparsity can be crucial in obtain-
ing robust out-of-sample performance and attaining meaningful understanding of the causal relationship in data. 
In addition, sparsity may be an explicit goal in practical applications such as tracking market indices with a 
small number of assets. 

The combination of minimizing empirical loss and maximizing sparsity naturally leads to a minimization 
problem regularized by a penalty, which is proportional to the number of variables describing the model to be 
estimated, this problem with many local minimizers. 

The empirical loss function is often convex. Assuming this property, we propose a graduated non-convex al-
gorithm to minimize a convex empirical loss function regularized with a penalty proportional to the number of 
nonzero variables. 

The proposed algorithm is based on approximating the counting indicator function by a continuous piecewise 
linear function. We show mathematically that the continuous piecewise linear approximation to the counting in-
dicator function has more attractive properties than the continuous piecewise quadratic approximation. Specifi-
cally, there exists a sufficiently large parameter λ  so that the regularized optimization problem using this ap-
proximation is equivalent to the original optimization problem regularized by the number of nonzero in the 
model parameters. This property does not hold for the continuous piecewise quadratic approximation. 

A graduated nonconvexification process is proposed by introducing a family of approximations to the con-
tinuous piecewise linear function. This family of approximations is indexed by a nonnegative parameter ρ . In 
addition, these approximations can be regarded as penalty functions themselves with the following properties. 
Firstly there is a region around the origin in which the penalty function is the 1l  penalty. In another region, the 
penalty function equals counting indicator functions. As ρ increases, both regions increases and the region with  

1l  penalty converges to 10,
λ

 
 
 

 and the region with the counting indicator function as penalty converges to 

1 ,
λ

 
+∞

 
. In addition, for any 0ρ > , the penalty function is continuously differentiable everywhere except at  

the origin. Each penalty function is an even function with a monotonicity property. When the parameter ρ  is 
small, a small negative curvature is added to the convex empirical loss function to form a regularized objective 
function. As ρ increases, more negative curvature is added but the region in which the penalty is nonconvex 
shrinks. 

We investigate performance of the proposed graduated nonconvexification algorithm based on randomly gen-
erated least squares problems with different sparsity levels in the true solution x∗  We observe that the data fit-
ting error increases as the penalty parameter μ increases. Simultaneously sparsity in the computed solution in-
creases as the penalty increases. In addition, sparse solutions (with sparsity close to the true solutions) can be 
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computed without much compromise in the magnitude of the data fitting error. Indeed, the solution with the 
smallest relative distance to the true solution is obtained by sparse solutions with the sparsity close to that of the 
true solutions. 

Our results also indicate that the computational costs required by the GNC process is relatively moderate, 
since the computed solution in the kth step in the graduate nonconvexification process is often a good starting 
point for the (k+1)th step. 
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