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ABSTRACT 

Alzheimer’s disease (AD) is a dementing disorder and 
one of the major public health problems in countries 
with greater longevity. The cerebral cortical thickness 
and cerebral blood flow (CBF), which are considered 
as morphological and functional image features, re- 
spectively, could be decreased in specific cerebral re- 
gions of patients with dementia of Alzheimer type. 
Therefore, the aim of this study was to develop a com- 
puter-aided classification system for AD patients ba- 
sed on machine learning with the morphological and 
functional image features derived from a magnetic 
resonance (MR) imaging system. The cortical thick- 
nesses in ten cerebral regions were derived as mor- 
phological features by using gradient vector trajec- 
tories in fuzzy membership images. Functional CBF 
maps were measured with an arterial spin labeling 
technique, and ten regional CBF values were obtain- 
ed by registration between the CBF map and Talai- 
rach atlas using an affine transformation and a free 
form deformation. We applied two systems based on 
an arterial neural network (ANN) and a support vec- 
tor machine (SVM), which were trained with 4 mor- 
phological and 6 functional image features, to 15 AD 
patients and 15 clinically normal (CN) subjects for 
classification of AD. The area under the receiver ope- 
rating characteristic curve (AUC) values for the two 
systems based on the ANN and SVM with both image  

features were 0.901 and 0.915, respectively. The AUC 
values for the ANN- and SVM-based systems with the 
morphological features were 0.710 and 0.660, respec- 
tively, and those with the functional features were 
0.878 and 0.903, respectively. Our preliminary results 
suggest that the proposed method may have potential 
for assisting radiologists in the differential diagnosis 
of AD patients by using morphological and functional 
image features. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common cause of 
dementia in the majority of developed countries [1-5]. 
AD is associated with morphological and functional 
changes, i.e., the atrophy of gray matter in the cerebral 
cortex, and the decrease of cerebral blood flow (CBF) in 
specific cerebral regions which can be evaluated with 
magnetic resonance imaging (MRI) and nuclear medi- 
cine examinations obtained by positron-emission tomo- 
graphy (PET) or single-photon emission computed tomo- 
graphy (SPECT) [6-13]. However, the examinations by 
PET and SPECT are more expensive and invasive than 
those using MRI. On the other hand, arterial spin labe- *Corresponding author. 

OPEN ACCESS 

mailto:arimurah@med.kyushu-u.ac.jp


Y. Yamashita et al. / J. Biomedical Science and Engineering 6 (2013) 1090-1098 1091

ling (ASL) is a cheaper and non-invasive MR imaging 
technique for the measurement of CBF without using 
contrast medium [14,15]. Yoshiura et al. suggested that 
the CBF map images measured by the ASL technique 
can be used to assist radiologists in the discrimination of 
patients with AD [16]. 

In recent years, various kinds of computer-aided dia- 
gnosis (CAD) methods for AD patients have been deve- 
loped [17-21]. However, to the best of our knowledge, 
there is no CAD system for the classification of AD pa- 
tients using machine learning with morphological and 
functional image features obtained by MR imaging alone. 
Therefore, our purpose in this study was to develop a 
computer-aided differential diagnosis system for AD 
patients based on machine learning with morphological 
and functional image features obtained by MR imaging 
without contrast medium. 

2. MATERIALS AND METHODS 

2.1. Subjects and MR Data 

This study was approved by an institutional review board 
of the Kyushu University Hospital. We applied our 
proposed method to three-dimensional (3D) T1-weighted 
MR images of the whole brain and ASL images obtained 
from 30 cases, including 15 patients who were clinically 
diagnosed with AD by a neuropsychiatrist at Kyushu 
University Hospital (age range: 54 - 89 years; mean age: 
77 years; Mini-Mental State Examination (MMSE) score: 
11 - 25; mean: 22) and 15 cognitively normal (CN) sub- 
jects (age range: 68 - 86 years; mean age: 73 years; 
MMSE score: 28 - 30; mean: 29). These data were acqui- 
red on a 3.0-T MRI scanner (Intera Achieva 3.0 T Qua- 
sar Dual R2.1; PHILIPS Electronics, Best, Netherlands).  

T1-weighted sequencing was performed using a mag- 
netization prepared rapid gradient echo (MPRAGE) se- 
quence (time of repetition (TR): 8.3 ms; time of echo 
(TE): 3.8 ms; time of inversion (TI): 240 ms; flip angle: 
8 degrees; sensitivity encoding (SENSE) factor: 2; num- 
ber of samples averaged (NAS): 1; 240 × 240 × 150 
voxels; individual voxel size: 1.0 mm × 1.0 mm × 1.0 
mm). ASL was performed using quantitative signal tar- 
geting by alternating radiofrequency pulses labeling of 
arterial regions (QUASAR), a pulsed ASL technique de- 
veloped by Petersen et al. [22]. The QUASAR protocol 
consisted of two-dimensional image sequencing (labeling 
slab thickness: 150 mm; gap between the labeling and 
imaging slabs: 15 mm; SENSE factor: 2.5; TR: 4000 ms; 
TE: 22 ms; sampling interval: 300 ms; sampling time 
points: 13; 64 × 64 matrix; individualvoxel size: 3.6 mm 
× 3.6 mm; 84 dynamics; seven transverse slices of 6.0 
mm thickness (gap: 2 mm)). T2-weighted images (TR: 
3000 ms; TE: 105 ms; 512 × 512 matrix; seven tran- 
sverse slices of 6.0 mm thickness) were obtained at the 

same slice level as the ASL sequence. 

2.2. Proposed Method 

Our proposed method consists of three steps, i.e., the 
measurement of the functional and morphological image 
features, and the classification of AD patients based on 
machine learning. Figure 1 shows the overall scheme for 
the calculation of AD patients and CN subjects based on 
the functional and morphological image features. The 
average CBFs in 16 cerebral cortical regions were deter- 
mined as functional image features based on the CBF 
map images obtained by the ASL technique. The average 
thicknesses in ten cerebral cortical regions were mea- 
sured as morphological image features in 3D T1-weigh- 
ted whole brain images. In the next step, a combination 
of functional and morphological image features for 
classification of AD patients was selected based on the 
statistical p-values and post studies in 16 average CBFs 
and ten cerebral thicknesses. Finally, AD patients and 
CN subjects were classified by using a machine learning 
technique, i.e., an arterial neural network (ANN) or a 
support vector machine (SVM). 

2.2.1. Measurement of Functional Image Features 
Average CBFs in 16 cerebral cortical regions were de- 
termined as functional image features based on the CBF 
map image, which was non-linearly aligned with the Ta- 
lairach brain atlas by using a registration method with an 
affine transformation and a free form deformation (FFD). 
The Talairach brain atlas is one of the standard models 
labeled for functional human brain mapping, and consists 
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Figure 1. Overall scheme for the calculation of AD patients 
and CN subjects based on the functional and the morphological 
image features. 
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of 5 levels (hemisphere, lobe, gyrus, tissue and cell level) 
[23-25]. The lobe and tissue levels were used for 
measuring the average CBF in each lobe of the cerebral 
cortical region. 

We developed the registration method between the 
Talairach brain atlas and a CBF map image of a patient 
through the corresponding T2-weighted brain image. 
Figure 2 illustrates the registration procedure for mea- 
surement of the average CBF values in 16 cortical re- 
gions. Our registration method was composed of two 
steps. In the first step, an affine transformation was 
applied as a global registration. The affine transforma- 
tion is given by 
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where nx  and n  are the coordinates in the moving 
image (the CBF map image or the Talairach brain atlas), 
and n

y

X  and n  are the coordinates in the deformed 
image. The affine transformation matrix consisting of 

11  to 32  was obtained by using a least squares- 
method based on a singular value decomposition so that 
the feature points in the moving and reference images 
corresponded with each other. For determination of the 
affine transformation, the minimum and maximum coor- 
dinates of the binary images of the moving images and 
T2-weighted images were selected as four sets of cor- 
responding feature points. 
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Figure 2. Flowchart of registration for extraction the average 
CBF values in 16 cortical regions. 

In the second step, FFD was employed as a non-linear 
local registration [26] to register the Talairach brain atlas 
with the T2-weightedimages by determining the trans- 
formation function based on B-spline functions, from 
which a moving vector  ,x yD D  in a two-dimensional 
image was obtained. The moved coordinates  ,X Y  in 
the coordinate system in the T2-weighted image were- 
defined by 

   ,, x y yX Y x D D              (2) 

where x and y are the original coordinates in the Ta- 
lairach brain atlas. Sixty-four sets of corresponding 
feature points were determined by using a template- 
matching technique between the Talairach atlas and 64 
subimages (matrix size: 128 × 128) obtained from the 
T2-weighted image. Each feature point was determined 
as the coordinates where the centers of the template subi- 
mage took the maximum cross-correltion coefficient in 
the Talairach atlas. 

To approximate the moving distance space ,x y , we 
formulate an approximation function ,

D

x y  as uniform 
bicubic B-spline functions, which were defined by using 
a control lattice 

D

  overlaid on the domain . We 
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Ω
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Ω
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spans the integer grid in the domain . Let ij  be the 
value of the control point on lattice , located at   ,i j  
for 1,0i 1m   and 1,0 1n j   . The approxi- 
mation function  , yD x  in the moving distance space 
was defined in terms of these control points by 
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We chose 16 cerebral cortical regions in the Talairach 
brain atlas, i.e., frontal, limbic, occipital, parietal, sub- 
lobar, temporal lobes, posterior cingulate gyri and pre- 
cuneuses in the left and right brain hemispheres after the 
registration, where the average CBFs were measured. 

2.2.2. Measurement of Morphological Image Features 
Our method applied cerebral cortical thicknesses as mor- 
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phological image features for the classification of AD 
patients. Tokunaga et al. developed an automated me- 
thod for measuring the 3D cerebral cortical thicknesses 
in AD patients based on 3D fuzzy membership maps 
derived from T1-weighted images, which includes the 
atrophy in the cortical and white matter regions deter- 
mined on each cortical surface voxel by using mem- 
bership profiles on trajectories of local gradient vectors 
in a fuzzy membership map [21]. For measurement of 
the cortical thicknesses in ten cerebral regions, we adop- 
ted Tokunaga’s method. This method consisted of 
mainly three steps as follows: 

1) Segmentation of the brain parenchymal region 
based on a brain model matching between a brain mask 
and a 3D T1-weighted image; 

2) Creation of a fuzzy membership map for the cere- 
bral cortical region based on the fuzzy c-means (FCM) 
clustering algorithm; 

3) Calculation of the cerebral cortical thickness using 
localized gradient vector trajectories in fuzzy member- 
ship maps. 

In order to investigate the regional atrophy at the lobe 
level, i.e., frontal, temporal, parietal, occipital lobes and 
insula for the left and right brain hemisphere, the cere- 
bral cortical thicknesses were separately evaluated in ten 
lobar regions. The ten lobar regions were obtained by 
registration of the lobar model image to each brain 
parenchymal image by using the affine transformation 
and FFD. The lobar model image was selected from a 
probabilistic reference system for the human brain at the 
International Consortium for Brain Mapping (ICBM) 
website of the Laboratory of Neuro Imaging (LONI) 
[27]. 

2.2.3. Classification of AD Patients 
We applied two machine learning classifiers, i.e., an 
ANN and a SVM, which were trained with the functional 
and morphological image features, to 15 AD patients and 
15 CN subjects for classification of AD. The in putfunc- 
tional features for the classifiers were the average CBF 
values in the six regions, i.e., the four lobes (left occipital 
lobe, left posterior cingulate gyrus, left and right precu- 
nei) where AD-related hypoperfusion was found in the 
previous step, and the two regions (right occipital lobe 
and right parietal lobe) where the hypoperfusion was 
expected based on previous reports [28]. In addition, the 
input morphological features were the average values of 
the cortical region thicknesses in four regions, i.e., the 
left and right temporal lobes, and the left and right insula, 
all of which showed statistically significant differences 
between AD and CN subjects. All input features were 
normalized for the training and testing of the classifiers. 
Ten input features for the ANN were normalized from 
−0.9 to 0.9, because the hyperbolic tangent (tanh) func- 

tion was used as a neuron output function. The ANN 
with ten inputs, four hidden layers and one output was 
trained based on a Levenberg-Marquardt algorithm, in 
which the learning coefficient was empirically set as 0.9, 
a convergence criterion was empirically set as 0.0001 
and the maximum number of iterations was set as 200. 
Regarding the SVM, input features were normalized 
from −1.0 to +1.0. We constructed an SVM classifier 
with a Gaussian kernel by using the open source software 
package SVM light [29], which was empirically set as 
3.0 for this study. The regularization parameter C of a 
cost function for determination of an optimal hyperplane, 
which can efficiently distinguish between AD cases and 
CN subjects, was empirically determined as 180. The 
maximum number of iterations was set as 100,000. 

2.2.4. Evaluation of Our Proposed Classification 
System for AD 

The performance of our proposed method was evaluated 
based on a receiver operating characteristic (ROC) analy- 
sis, where the area under the ROC curve (AUC) was 
used as a measure of the performance for classification 
of AD. The ANN and the SVM were trained and tested 
using a leave-one-out-by-case method. The ROCKIT 
program was used for creating the ROC curve [30]. The 
performances of classification of AD patients based on 
an ANN and a SVM were compared with each other. In 
addition, the performances using the morphological and/ 
or functional image features were compared with those 
using one of two kinds of image features to investigate 
the effect of the image features. 

The statistical differences in CBFs and cortical thick- 
nesses between AD patients and CN subjects in each 
lobe were estimated with the Student paired t test. 

3. RESULTS 

Figures 3(a) and (b) show therelationship between the 
average CBFs and cortical thicknesses in the frontal lobe 
and temporal lobe, respectively. The relationships bet- 
ween the CBFs and cortical thicknesses of the AD 
patients and CN subjects in the frontal lobe and the 
temporal lobe were overlapped in their feature spaces. 
There were no statistically significant differences be- 
tween the two groups in the average CBF or cortical 
thicknesses of frontal lobe. On the other hand, there were 
statistically significant differences between the AD pa- 
tients and the CN subjects in the average CBF of pre- 
cuneus (p < 0.05) and cortical thicknesses of the tem- 
poral lobe (p < 0.05). Table 1 shows the results of 
average CBFs and average thicknesses in cortical regions 
of each lobe. The average CBFs and cortical thicknesses 
of AD patients were 29.3 ml/100ml/min and 3.15 mm, 
respectively. On the other hand, the average CBFs and 
cortical thicknesses of CN subjects were 33.1 ml/100  

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



Y. Yamashita et al. / J. Biomedical Science and Engineering 6 (2013) 1090-1098 

Copyright © 2013 SciRes.                                                                      

1094 

 

 T
ab

le
 1

. T
he

 r
es

ul
ts

 o
f 

av
er

ag
e 

C
B

F
s 

an
d 

av
er

ag
e 

th
ic

kn
es

se
s 

in
 c

or
ti

ca
l r

eg
io

ns
 o

f 
ea

ch
 lo

be
. 

 

 OPEN ACCESS 



Y. Yamashita et al. / J. Biomedical Science and Engineering 6 (2013) 1090-1098 1095

 

0

10

20

30

40

50

0 1 2 3 4 5

A
ve

ra
ge

 C
B

F 
of

 f
ro

nt
al

 lo
be

(m
l/

10
0m

l/
m

in
)

Average thickness of cortical 
region in frontal lobe (mm)

AD
CN

 
(a) 

0

10

20

30

40

50

0 1 2 3 4 5

A
ve

ra
ge

 C
B

F 
of

 p
re

cu
ne

us
(m

l/
10

0m
l/

m
in

)

Average thickness of cortical 
region in temporal lobe (mm)

AD
CN

 
(b) 

Figure 3. Relationship between the ave- 
rage CBFs and cortical thicknesses in the 
frontal lobe (a) and temporal lobe (b). 
There were no significant differences be- 
tween the two groups in either the average 
CBF or the cortical thicknesses in the 
frontal lobe (a). On the other hand, there 
were statistically significant differences 
between the AD patients and the CN sub- 
jects in the average CBF of the precuneus 
(p < 0.05) and cortical thicknesses of the 
temporal lobe (p < 0.05) (b). 

 
ml/min and 3.50 mm, respectively. In addition, there 
were statistically significant differences between the AD 
patients and the CN subjects in the average CBFs of the 
left occipital lobe, left posterior cingulate gyrus, left pre- 
cuneus, and right precuneus and in the cortical thick- 
nesses of the left and right temporal lobe, and left and 
right insula (p < 0.05). 

Figure 4 shows ROC curves for the overall perfor- 
mance of our method in classifying patients with AD and 
CN subjects by using the ANN system and the SVM 
system. The AUC values for the ANN- and the SVM- 
based systems using both image features were 0.901 and 
0.915, respectively. The AUC values for the ANN- and 
SVM-based systems with the morphological features  

AUC=0.878

AUC=0.710

AUC=0.901

 
(a) 

AUC=0.660

AUC=0.915

AUC=0.903

 
(b) 

Figure 4. Receiver-operating characteris- 
tic curves for overall performance of our 
method in classification of patients with 
AD and CN subjects by using the ANN 
system (a) or the SVM system (b). The 
areas under the curve in both classifier 
systems were improved to over 0.9 when 
calculated using the average CBFs and 
thicknesses. The area under the curve in 
the SVM system was particularly impro- 
ved, to 0.915, when the average CBFs and 
thicknesses were used. 

 
were 0.710 and 0.660, respectively, and those with the 
functional features were 0.878 and 0.903, respectively. 

4. DISCUSSION 

This study showed that the proposed CAD system based 
on a combination of the morphological and functional 
image features yielded a higher diagnostic performance 
for classification of AD compared with those using only 
of the two kinds of image features. Although the pro- 
posed method misclassified two AD patients and a CN 
subject when using only one type of features, the pro- 
posed method correctly identified three cases when both 
the functional and morphological image features were 
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used. Figure 5 shows one (an 81-year-old male with an 
MMSE score of 20) of the two AD cases that were mis- 
classified using only the cortical thickness features. 
However, the proposed method correctly classified this 
AD case when a combination of the functional and mor- 
phological image features was used, which may have 
been due to thelow CBF value, as shown in Figure 5.  

Arimura et al. [17] developed a CAD method for AD 
with measuring cerebral cortical thicknesses based on 
normal vectors in 3D T1-weighted MR image. The AUC 
value in their method was 0.909 in a leave-one-out test 
method in identification of AD cases among 29 AD cases 
(mean age: 70; mean MMSE: 20) and 19 CN cases 
(mean age: 62; mean MMSE: 28). Klӧppel et al. [18] 
proposed a CAD method by using a linear SVM to 
classify the grey matter segment of T1-weighted MR 
scans, and tested their method for distinguishing AD 
from CN cases. According to their results, 95% (a sen- 
sitivity of 95.0% and a specificity of 95.0%) of AD 
patients were distinguished in a leave-one-out test among 
20 AD cases (mean age: 81; mean MMSE: 17) and 20 
CN cases (mean age: 80; mean MMSE: 29). Colliot et al. 
[19] reported that their developed method based on 
hippocampal volumes in 3D T1-weightedMR images 
achieved a classification rate of 84% (a sensitivity of 
84%, a specificity of 84%, and a AUC value of 0.913) 
between 25 AD patients (mean age: 73; mean MMSE: 
24) and 25 controls (mean age: 64; MMSE: no descrip- 
tion). Ramirez et al. [20] developed a CAD system for 
AD patients based on a baseline principal component 
analysis (PCA) system in brain SPECT images. They re-  
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Figure 5. Original MR images and color-coded maps of cere- 
bral cortical thicknesses in patients with Alzheimer’s disease 
(age: 81 years; gender: male; mini-mental statement examina- 
tion score: 20): (a) an original T2-weighted image; (b) an ori- 
ginal CBF map image obtained by the ASL technique; (c) an 
original T1-weighted image; (d) a color-coded axial map of 
cortical thicknesses; (e) a color-coded volume-rendering map 
of cortical thicknesses. 

ported a sensitivity of 100%, a specificity of 92.7%, and 
an accuracy of 96.9% for 41 AD cases and 56 CN cases 
(age and MMSE were not mentioned). On the other hand, 
in our results, the AUC values using the SVM-based sys- 
tem when individually using morphological features and 
functional features were 0.660 and 0.903, respectively. In 
comparison between this study and past studies, the AUC 
value of the proposed method was lower than conven- 
tional methods when using only morphological image 
features. However, the AUC value achieved 0.915 when 
applying the combination of two image features. 

The proposed CAD system for differential diagnosis 
of AD has the advantage that it can provide the func- 
tional and morphological image features by means of 
only an MR examination without contrast medium. If the 
differential diagnostic accuracy of AD could be impro- 
ved by using our proposed system, then highly accurate 
AD diagnosis would be achievable by only an MR 
examination without contrast medium, and the exami- 
nation burden for patients would be mitigated. 

Our proposed method has three limitations. The first 
limitation is that the classification results were affected 
bysome artifacts on MR imaging. Such artifacts were 
particularly prevalent when using the ASL technique, 
and included motion artifacts, N/2 ghost artifacts, which 
area type of magnetic susceptibility artifacts, and the 
artifacts caused by blood flow in the vessels. Figure 6 
shows an AD case (a 72-year-old man with an MMSE 
score of 23) that was incorrectly classified as a CN sub- 
ject due to overestimation of the CBF value by motion 
artifact. The second limitation was the number of cases 
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Figure 6. Original MR images and color-coded maps of cere- 
bral cortical thicknesses in patients with Alzheimer’s disease 
(age: 72 years; gender: male; mini-mental statement examina- 
tion score: 23): (a) an original T2-weighted image; (b) an 
original CBF map image obtained by the ASL technique; (c) 
an original T1-weighted image; (d) a color-coded axial map 
of cortical thicknesses; (e) a color-coded volume-rendering 
map of cortical thicknesses. 
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used to train the classifier. Both machine learning classi- 
fiers, SVM and ANN, were trained with 15 AD cases 
and 15 CN subjects in our proposed method. It will be 
necessary to collect more data sets in order to improve 
the classification accuracy, because the number of 
training cases greatly influences the result [31]. The third 
limitation is that additional classifiers will need to be 
tested, because only the SVM and ANN were evaluated 
in this study. 

5. CONCLUSION 

We have developed a computer-aided classification sys- 
tem for AD patients based on a combination of mor- 
phological and functional image features obtained by 
MR imaging without contrast medium. Our preliminary 
results suggest that the proposed method may have 
feasibility for the classification of AD patients by using 
morphological and functional image features. 
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