Liver fibrosis recognition using multi-compression elastography technique

Ashraf Ali Wahba, Nagat Mansour Mohammed Khalifa, Ahmed Farag Seddik, Mohammed Ibrahim El-Adawy

Faculty of Engineering, Biomedical Engineering Department, Helwan University, Helwan, Cairo, Egypt
Email: ashraf_wahba@h-eng.helwan.edu.eg, nagatmansour@gmail.com, ahmed_sadik@h-eng.helwan.edu.eg, mohamed@eladawy.com

Received 6 September 2013; revised 8 October 2013; accepted 19 October 2013

Copyright © 2013 Ashraf Ali Wahba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Liver fibrosis recognition is an important issue in diagnostic imaging. The accurate estimation of liver fibrosis stages is important to establish prognosis and to guide appropriate treatment decisions. Liver biopsy has been for many years the reference procedure to assess histological definition for liver diseases. But biopsy measurement is an invasive method besides it takes large time. So, fast and improved methods are needed. Using elastography technology, a correlation technique can be used to calculate the displacement of liver tissue after it has suffered a compression force. This displacement is related to tissue stiffness, and liver fibrosis can be classified into stages according to that displacement. The value of compression force affects the displacement of tissue and so affects the results of the liver fibrosis diagnosing. By using finite element method, liver fibrosis can be recognized directly within a short time. The proposed work succeeded in recognizing liver fibrosis by a percent reached in average to 86.67% on a simulation environment.

Keywords: Liver Fibrosis; Liver Cirrhosis; Liver Inflammation; Hook’s Law; Correlation; Elastography and Liver Fibrosis Recognition

1. INTRODUCTION

This paper introduces an algorithm for recognizing liver fibrosis stage. Liver fibrosis is the imbalance of the synthesis and decomposition of the collagens and extra cellular matrix (ECM) caused by liver cell inflammation and necrosis [1,2]. This imbalance causes proliferation of connective tissue in the liver. In the normal liver, every gram of liver tissue contains about 5.5 to 6.5 mg of collagen, while in cirrhotic liver it can be higher than 20 mg [1]. When the connective tissue start to proliferate in the portal area, this process is called fibrosis, which is the liver’s repairing reaction to liver cell injuries and inflammation. Cirrhosis is the end result of liver fibrosis. In the cirrhotic liver, the fibrous septa and regenerative nodule occur and the structure of the normal liver deteriorates. When fibrosis progresses to the cirrhotic stage, it can cause portal vein hypertension and many other complications. The progression of fibrosis in cirrhotic liver can push compensated liver functions to become de-compensated. When cirrhosis advances to the decompensated stage, portal vein hypertension, liver atrophy, ascites, hepatic encephalopathy, and other serious dysfunctions can lead to liver failure [1,3]. In order to evaluate the stage of fibrosis, liver biopsy is the main method which can be used today. According to biopsy measurements, liver inflammation can be diagnosed in grades as A0 to A4 where; A0: none, A1: mild, A2: moderate, and A3: the severe inflammation. Also, the stages of fibrosis F0 to F4 are as follows: F0: no fibrosis; F1: portal fibrosis without septa; F2: portal fibrosis with few septa; F3: numerous septa without cirrhosis; and F4: cirrhosis. Some previous works measure liver stiffness related to each stage of liver fibrosis and liver inflammation from liver biopsy. For liver inflammation stages in hepatitis C virus (HCV) mono-infected patients A0, A1, A2, and A4, the mean values of liver stiffness in Kilo Pascal (KPa) are 4.8, 6.4, 9.4, and 12.6 respectively. Also, for liver fibrosis stages F0–F1, F2, F3, and F4, the mean values of liver stiffness in (KPa) are 6.6, 7.4, 11, and 17.2 respectively [1]. These stiffness values for liver inflammation and liver fibrosis can be measured using elastography imaging instead of using biopsy measurements. The aim of the proposed system is to construct an algorithm which can classify between fibrosis stages according to the stiffness of each stage using medical elastography imaging. This algorithm depends on Hook’s low and equation of elasticity [4-6]. By correla-
tion between deformed and un-deformed liver images, a
displacement of tissue motion can be calculated. Then,
the stiffness of liver tissue can be classified according to
this displacement which will vary from a stage to another
in liver fibrosis. Based on that the time needed for deter-
mining, the patient liver fibrosis stage will be decreased.

2. MATERIALS AND METHOD

The proposed work is to determine the human liver fi-
brosis (F_0, F_1, F_2, F_3, or F_4) using multi-compression force
elastography technique. The proposed recognition algo-
algorithm is shown in Figure 1. This algorithm composes of
the following five basic steps:

1) Initialization step.
2) Simulation of liver fibrosis images.
3) Applying of compression forces.
4) Image correlation.
5) Liver fibrosis recognition.

2.1. Initialization Step

The ultrasound of liver was discussed in various works
[7-9]. Many previous works concentrated on studying li-
ver fibrosis through biopsy measurements which is the
main reference measurements in liver fibrosis diagnosing
[10-14], and other works focused on ultrasound imaging
of liver fibrosis [15,16]. Phantoms can be used to mim-
icking the soft tissue and other parts in human body, to
be tested using ultrasound imaging. These phantoms used
to assess the accuracy of using ultrasound imaging in tu-
mor diagnosing [17-19]. In our proposed work we use an
elastography technique which based on a multi-com-
pression force. It is assumed that liver fibrosis stiffness
values were calculated before from biopsy measurements,
and these values will be used as references when staging
liver fibrosis from elastography images. Liver fibrosis
stages F_0, F_1, F_2, F_3, and F_4 are assumed also to have stiff-
ness values of E_1, E_2, E_3, and E_4 respectively. As stages
F_0 and F_1 are near to each other, then E_1 can represent
their stiffness value.

2.2. Simulation of Liver Fibrosis Images

Finite element method (FEM) using ABAQUS software
is the source of simulated liver fibrosis images [20-22].
Finite element model of liver fibrosis is represented as
shown in Figure 2. A reference material such as a silicon
rubber with stiffness of $E_r = 5$ (KPa) is assumed to be
near that of soft tissue stiffness value to get impedance
matching and good power performance. This reference
material is put between the modeled soft tissue and the
compression force surface to be used as a main reference
layer for stiffness measurements. In ABAQUS software,
the stiffness of the simulated materials are chosen, where,
the stiffness of a reference material is assumed to be 5
(KPa), soft tissue material is assumed to be 5.5 (KPa),
and liver fibrosis materials are assumed to be (in KPa)
6.6, 7.4, 11, and 17.2 for F_0, F_2, F_3, and F_4 respectively
[1].

2.3. Applying of Compression Forces

A suitable compression force is applied on the model,
then, a deformation will be measured. The images before
and after compression, will be taken to be correlated as
described in the next section.

2.4. Image Correlation

Digital image processing is a main tool to describe image
details and image features [23,24]. To differentiate be-
tween compressed and un-compressed images, a digital
image correlation technique may be used as an important
section in digital image processing [25-27].

The steps of using the two dimension (2D) digital im-
age correlation in this proposed work are as follows:

![Figure 1. Block diagram of Liver fibrosis recognition.](image1)

![Figure 2. Representation of finite element model of liver fibro-
sis (E_x), where E_x is one of the stiffness values of E_1, E_2, E_3, or
E_4.](image2)
Input the correlation function [28,29] the deformed (compressed) and un-deformed (un-compressed) images for correlation, and assign the first image (undeformed or un-compressed) as a reference image for correlation as shown in Figure 3. This figure contains three parts, one of them is the reference part, the second part is a soft tissue that represents the normal liver, and the third part is the liver fibroses.

The correlation function is used to match a subset from the reference image to another in the second deformed image as shown in Figure 3 and can be written as follows in Equation (1) [28,29]

\[R(x,y,x',y') = \sum |F(x,y) - G(x',y')| \]

Where \(F(x,y) \) and \(G(x',y') \) represent the gray levels within the subset of the un-deformed and deformed images respectively. \(R \) is the magnitude of intensity value difference. Also, \((x,y) \) and \((x',y') \) are the coordinates of a point on the subset before and after deformation respectively. The symbol of the summation represents the sum of the values within the subset. The coordinate \((x',y') \) after deformation relates to the coordinate \((x,y) \) before deformation, therefore, displacement components are obtained by searching the best set of the coordinates after deformation \((x',y') \) which minimize \(R(x,y,x',y') \).

Make a grid on the reference image for the part needed to be correlated. The grid will contain a number of \(N \) rasters \((M_n) \), where \(n \) varies from 0 to \(N - 1 \), and each raster \((M_n) \) represents number of pixels. Assuming that the motion is in one direction only \((x) \), then, the position of rasters will be in \(x \) direction only and denoted by \(grid_x \).

Run the correlation function to the previous grid. The function will give the new position of the grid rasters on the compressed image in \(x \) direction, which is denoted by \(validx \).

The displacement for each grid point \(\Delta L_x \) in \(x \) direction (the direction of the applied force) can be calculated as follows in Equation (2):

\[\Delta L_x = |grid_x - validx| \]

2.5. Liver Fibrosis Recognition

Liver fibrosis stage can be determined according to the displacement \(\Delta L_x \) calculated in Equation (2). Hooke’s law specifies that the force affecting material is directly proportional to the displacement occurred on each part of this material as follows in Equation (3) [30].

\[F = K \cdot X \]

Where: \(F \) is the applied force; \(K \) is a constant depends on the elasticity or the stiffness of the material, and \(X \) is the displacement. If the force \(F \) is fixed at a constant value, then the displacement will depend only on the elasticity of the material which changes from material to another. The relation between the displacement \(\Delta L_x \) and the stiffness \(E \) is as follows in Equation (4):

\[E = \frac{\text{Stress}}{\text{Strain}} = \frac{F/A}{\Delta L_x/L} = \frac{F \cdot L}{A \cdot \Delta L_x} \]

Where:

\(A \) is the cross section area of the material under stress, \(L \) is the initial length, and \(\Delta L \) is the displacement.

If \(L, A, \) and \(F \) are assumed to be constants, then from Equation (4) we can see that the stiffness \(E \) is inversely proportional to the displacement \(\Delta L \) as follows in Equation (5):

\[Ea \Delta L_x \]

To eliminate the need for a proportionality constant we can write the stiffness of two materials as follows in Equation (6):

\[\frac{E_1}{E_2} = \frac{\Delta L_{2r}}{\Delta L_{1r}} \]

The proposed work uses different forces for compression, and with each force the displacement \(\Delta L_{2r} \) of each raster \(M_n \) will be calculated through the correlation function. This displacement of each raster will be used to indicate the liver fibrosis.

\(\Delta L_{2r} \) is assumed to be the displacement of the checked raster. \(\Delta L_{1r} \) is the displacement of the reference raster that has been located in the reference material which has a stiffness value of \(E_r = 5 \) (KPa) as shown in Figure 2. Also, \(E_1, E_2, E_3, \) and \(E_4 \) are assumed to be the stiffness values to liver fibrosis stages of \(F_0.1, F_2, F_3, \) and \(F_4 \) respectively as stated above in Section 2.2. According to the proposed work, the checked rasters can be classified to refer to one of the liver fibrosis stages as follows:

Rasters that refer to fibrosis \(F_J \) should achieve Equation (7) as follows:

\[\frac{E_j}{E_r} \leq \frac{\Delta L_{2r}}{\Delta L_{1r}} \leq \frac{E_{J,n+1}}{E_r} \]

Where \(J = 1, 2, \) or 3. \((E_j)\) is stiffness values of liver fibrosis. \((n)\) is an index for rasters in the checked area.
(\(E_r\)) is the stiffness of the reference material.

(\(\Delta L_{\text{ref}}\)) is the displacement of a raster in the reference material resulted from applying a compression force in x direction.

(\(\Delta L_{\text{ch}}\)) is the displacement of a raster in the checked area resulted from applying a compression force in x direction. The above Equation (7) is suitable for fibrosis \(F_0,1,\) \(F_2,\) and \(F_3,\) but for rasters that refer to fibrosis \(F_4,\) it should achieve Equation (8) as follows:

\[
\frac{E_r}{E_r} \leq \frac{\Delta L_{\text{ref}}}{\Delta L_{\text{ch}}} \quad (8)
\]

The correct rasters and then the correct liver fibrosis stage will be recognized, and the success of our algorithm is represented by a ratio called correct recognition ratio (CRR), which specifies the number of liver fibrosis image rasters that can be recognized correctly. Multiple compression forces can be assumed and the liver fibrosis will be recognized for each compression force magnitude, and an average correct recognition ratio can be calculated.

3. RESULTS

To calculate the correctness of classification between different fibrosis stages we will follow these steps:

1) In the FEM domain we will consider set up of three areas, known as a reference material, soft tissue, and a known fibrosis area as shown in Figure 2.

2) Consider 100 rasters distributed in each of the three areas where the position of each raster in these areas is known.

3) Apply a compression force in the direction from the reference material to the soft tissue to the fibrosis area. As results of the force, each raster will move certain displacement in the direction of the applied force depending on the material stiffness that contains this raster.

4) Use the correlation technique to recognize each raster’s new position after the force is applied.

5) From this new position of each raster, the displacement of this raster will be calculated.

6) Applying Equations (7) and (8) on the displacement calculated in step 5 which depending on the magnitude of the applied force, the type of the material can be identified which may be one of the following materials;
 a) Reference material.
 b) Soft tissue.
 c) Fibrosis \(F_1,\)
 d) Fibrosis \(F_2,\)
 e) Fibrosis \(F_3,\)
 f) Fibrosis \(F_4,\)

7) According to the classification of each raster material we fill in Table 1, where from this table we can calculate the correct recognition ratio CRR for those 100 checked rasters affected by that specific force.

8) Changing the force and go to step 3) and repeat for 10 different values of the applied force, and in each case calculate CRR.

9) Calculate the overall CRR on the 10 different forces.

10) Table 2 shows the average of the 10 tables where each one represents certain force.

Table 1. CRR for liver fibrosis assuming 100 rasters in each area.

<table>
<thead>
<tr>
<th>Recognized area</th>
<th>Reference</th>
<th>Soft tissue</th>
<th>Fibrosis</th>
<th>CRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual area</td>
<td>(F_1, F_2, F_3, F_4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>90</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>3</td>
<td>95</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>(F_1)</td>
<td>-</td>
<td>3</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>(F_2)</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>(F_3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>(F_4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

Average correct recognition 85

Table 2. Overall CRR for each liver fibrosis as a result of applying 10 different values of the compression force.

<table>
<thead>
<tr>
<th>Proposed 100 rasters</th>
<th>Distribution of the recognized 100 rasters</th>
<th>Fibrosis</th>
<th>CRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference10</td>
<td>[9]</td>
<td>(F_1, F_2, F_3, F_4)</td>
<td></td>
</tr>
<tr>
<td>Soft tissue10</td>
<td>[1]</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>(F_1)</td>
<td>-</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>(F_2)</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>(F_3)</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>(F_4)</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Average CRR 86.67
4. CONCLUSION

The liver fibrosis can be recognized in the elastography imaging by using liver fibrosis biopsy measurements as a reference. The biopsy measurements give the average stiffness values of liver fibrosis. The equation of elasticity specifies that tissues with high stiffness values will move a short distance when it is exposed to a certain compression force, and vice versa. The proposed recognition algorithm of liver fibrosis stages takes a short time to recognize the liver fibrosis stage. This algorithm can recognize the liver fibrosis stages $F_{0,1}$, F_2, F_3, F_4, by an overall CRR of about 86.67%. This method of course will be faster than biopsy measurements, besides it is considered as a non-intervening operation. This proposed work can be improved by using real elastography images for liver fibrosis, then, the correct recognition ratio CRR is expected to be increased. It is worth to mention that the tolerance in each of the reference values of liver fibrosis stiffness is being ignored in this proposed work to avoid complicated calculations, and that resulted in decreasing of CRR. This shortcoming can be eliminated in the future work.

REFERENCES

[7] Christoph, F.D., Carla, S. and Maciej, J. (2011) Ultrasound of the liver. European Course Book by University of Bologna, Department of Diagnostic Imaging, 2nd Medical Faculty of Warsaw Medical University.

[23] Amalka, P. (2009) Digital image analysis of cells. Applications in 2D, 3D and time. Box 337, SE-75105 Uppsala, Sweden. Faculty of Science and Technology, Centre for Image Analysis, Uppsala University, Uppsala, Pinidiyaa-

