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ABSTRACT 

Gene regulatory networks play an important role the 
molecular mechanism underlying biological processes. 
Modeling of these networks is an important challenge 
to be addressed in the post genomic era. Several me- 
thods have been proposed for estimating gene net- 
works from gene expression data. Computational me- 
thods for development of network models and analy- 
sis of their functionality have proved to be valuable 
tools in bioinformatics applications. In this paper we 
tried to review the different methods for reconstruct- 
ing gene regulatory networks. 
 

Keywords: Gene Network; Gene Expression Data; Gene 
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1. INTRODUCTION 

A gene regulatory network or genetic regulatory network 
(GRN) is a collection of DNA segments in a cell which 
interact with each other indirectly (through their RNA 
and protein expression products) and with other sub- 
stances in the cell, thereby governing the rates at which 
genes in the network are transcribed into mRNA. GRNs 
provide a systematic understanding of molecular mecha- 
nisms underlying biological processes [1-7]. The groups 
of genes, regulatory proteins and their interactions are 
often referred to as regulatory networks, whereas the 
complete set of metabolites and the enzyme-driven reac- 
tions constitute the metabolic networks. The nodes of 
this network are genes and the edges between nodes rep- 
resent gene interactions through which the products of 
one gene affect those of another. These interactions can 
be inductive (the arrowheads), with an increase in the 
expression of one leading to an increase in the other, or 
inhibitory (the filled circles), with an increase in one 
leading to a decrease in the other. A series of edges indi-
cates a chain of such dependences, with cycles corre-
sponding to feedback loops.  

Gene regulatory networks play a vital role in organism 
development by controlling gene expression. Under- 
standing the structure and behavior of gene regulatory 

network is a fundamental problem in biology. With the 
availability of gene expression data and complete ge-
nome sequences, several novel experimental and com-
putational approaches have recently been developed 
which helps to comprehensively characterize these regu-
latory networks by enabling the identification of their 
genomic or regulatory state components. Accurate pre-
diction of the behavior of regulatory networks will also 
accelerate biotechnological projects and such predictions 
are quicker and cheaper than lab experiments.  

Creating accurate dynamic models of GRNs is gaining 
importance in biomedical research and development. 
Gene expression microarrays monitor the transcription 
activities of thousands of genes simultaneously, which 
provides great opportunities to explore large scale regu-
latory networks. Constructing a GRN from expression 
data, a process which is called reverse-engineering, is not 
a computationally simple problem because an enormous 
amount of time is needed even when a trivial approach is 
applied. Various computational models developed for 
regulatory network analysis can be roughly divided into 
four classes (Figure 1). The first class 1) logical models, 
describes regulatory networks qualitatively. They allow 
users to obtain a basic understanding of the different 
functionalities of a given network under different condi-
tions. Their qualitative nature makes them flexible and 
easy to fit to biological phenomena, although they can 
only answer qualitative questions. To understand and 
manipulate behaviors that depend on finer timing and 
exact molecular concentrations, a second class of models 
was developed 2) continuous models. For example, to 
simulate the effects of dietary restriction on yeast cells 
under different nutrient concentrations, users must resort 
to the finer resolution of continuous models. A third class 
of models was introduced following the observation that 
the functionality of regulatory networks is often affected 
by noise. As the majority of these models account for 
interactions between individual molecules, they are re-
ferred to 3) single molecule level models. The fourth 
class includes 4) hybrid models combining different 
techniques like neural networks and fuzzy rules. 

A complete gene regulatory network model incorpo- 
rates experimental knowledge about the components and 
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their interactions as well as the initial state of these 
components, and leads to the known final state or dy-
namical behavior of the network. Validated models then 
are able to investigate cases that cannot be explored ex-
perimentally, for example changes in the initial state, in 
the components or in the interactions, and they can lead 
to predictions and insights into the functioning of the 
system robust is the system under extreme conditions. In 
this article we review the various modeling techniques 
for reconstructing gene regulatory network. 

2. MODELLING TECHNIQUES 

Figure 1 illustrates various Gene Regulatory Network 
construction models that are discussed in following sec- 
tions. 

2.1. Logical Models 

The most basic and simplest modeling methodology is 
discrete and logic-based, and was introduced by Kauff-
man and Thomas [8,9]. The reconstruction of the regula-
tory network that controls the development of sea urchin 
embryos is a seminal example of the profound insights 
that qualitative examination of regulatory network mod-
els can provide. This work demonstrates how maternal 
cues initiate the activity of the regulatory network and 
how this network orchestrates the developmental process. 
Logical models represent the local state of each entity in 
the system (for example, genes, proteins and small 
molecules) at any time as a discrete level, and the tem-
poral development of the system is often assumed to oc-
cur in synchronous, discrete time steps. Entity levels are 
updated at each time step according to regulation func-
tions. Discrete modeling allows researchers to rely on 
purely qualitative knowledge. Such models can be ana-
lyzed using a broad range of well established mathe-
matical and statistical methods. 
 

 

Figure 1. Classification of models. 

2.1.1. Boolean Network 
Boolean networks are a dynamic model of synchronous 
interactions between nodes in a network. They are the 
simplest network models that exhibit some of the bio-
logical and systemic properties of real gene networks 
[10,11]. Because of the simplicity they are relatively 
easier to interpret biologically. 

A Boolean network is a directed graph G(X, E), where 
the nodes, xi ∈ X, are Boolean variables. To each node, xi, 
is associated a Boolean function, bi  1, 2, ,i i ix x x l , l ≤ n, 
xij  X, where the arguments are all and only the parent 
nodes of xi in G. Together, at any given time, the states 
(values) of all nodes represent the state of the network, 
given by the vector         1 2, , , nt x t x tS t x . For 
gene networks the node variables correspond to levels of 
gene expression, discretized to either up or down [12-14]. 
The Boolean functions at the nodes model the aggregated 
regulation effect of all their parent nodes. The states of 
all nodes are updated at the same time (i.e., synchro- 
nously) according to their respective Boolean functions: 

        1 1 , 2 , ,i i i i ix t b x t x t x l t   . 

All states’ transitions together correspond to a state 
transition of the network from S(t) to the new network 
state, S(t + 1). A sample network is shown in Figure 2. 

LIMITATION: These models are ultimately limited by 
their definition: they are Boolean and synchronous. In 
reality, of course, the levels of gene expression do not 
have only two states but can assume virtually continuous 
values. Thus discretization of the original data becomes a 
critical step in the inference, and often reducing the val-
ues to two states may not suffice. In addition, the updates 
of the network states in this model are synchronous, 
whereas biological networks are typically asynchronous. 
Finally, despite their simplicity, only small nets can be 
reverse engineered with the current state-of-the-art algo-
rithms. 

2.1.2. Probabilistic Boolean Network 
Often, due to insufficient experimental evidence or in- 
 

 

Figure 2. An example Boolean network and three possible 
ways to represent it. The one on the left is a gene network 
modeled as a Boolean network, in the middle is a wiring dia- 
gram obviating the transitions between network states, and on 
the right is a truth table of all possible state transitions. 
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complete understanding of a system, several candidate 
regulatory functions may be possible for an entity. This 
raises the need to express uncertainty in the regulatory 
logic. Shmulevich et al., [15,16] addressed this idea by 
modifying the Boolean network model such that an en- 
tity can have several regulation functions, each of which 
is given a probability based on its compatibility with 
prior data. At each time step, every entity is subjected to 
a regulation function that is randomly selected according 
to the defined probabilities. Hence the model is stochas- 
tic and an initial global state can lead to many trajecto- 
ries of different probabilities. The new model, the prob- 
abilistic Boolean network (PBN), generates a sequence 
of global states that constitutes a Markov chain. For ex- 
ample, a PBN was used to model a 15 gene sub network 
that was inferred from human glioma expression data 
[15,16]. This analysis demonstrates that the stationary 
distributions of entities may indicate possible regulatory 
relationships among them: entities that have the same 
states in a significant proportion of the global states are 
likely to be related. As the number of global states in the 
gene sub network was prohibitively large, one study es- 
timated the stationary distribution by sampling the global 
states. 

LIMITATION: Even though it is stochastic the state 
space is discrete.  

2.1.3. Bayesian Network 
The basic of Bayesian Network is Bayes’ Theorem. It 
can be described as follows. Let X be a data sample 
whose class label is unknown. Let H be a hypothesis that 
X belongs to class C. For classification problems, deter- 
mine  

P(H/X): the probability that the hypothesis holds given 
the observed data sample X. It is called posteriori prob- 
ability.  

P(H): prior probability of hypothesis H (i.e., the initial 
probability before we observe any data, reflects the 
background knowledge).  

P(X): probability that sample data is observed.  
P(X|H): probability of observing the sample X, given 

that the hypothesis holds. 
Given training data X, posteriori probability of a hy- 

pothesis H, P(H|X) follows the Bayes theorem: 

     
 

P X H P H
P H X

P X
  

A simple Bayesian Classifier will work as follows: 
Let D be a training set of tuples and their associated 

class labels. As usual, each tuple is represented by an 
n-dimensional attribute vector,  1 2, , , n X x x x  , de-
picting n measurements made on the tuple from n attrib-
utes, respectively, 1 2, , , nA A A . 

Suppose that there are m classes, . 

Given a tuple, X, the classifier will predict that X belongs 
to the class having the highest posterior probability, con- 
ditioned on X. That is, the naïve Bayesian classifier pre- 
dicts that tuple X belongs to the class Ci if and only if 

1 2 , mC, ,C C 

    for , .i jP C X P C X i j m j i     

Thus we maximize P(Ci|X). The class Ci for which 
P(Ci|X) is maximized is called the maximum posteriori 
hypothesis. By Bayes’ theorem 

     
 
i i

i

P X C P C
P C X

P X
  

Bayesian classifiers assume that the effect of an at-
tribute value on a given class is independent of the val-
ues of the other attributes. This assumption is called class 
conditional independence. It is made to simplify the 
computations involved and, in this sense, is considered 
“naïve”. Bayesian belief networks are graphical models, 
which unlike naïve Bayesian classifiers allow the repre-
sentation of dependencies among subsets of attributes. 

Bayesian networks are a class of graphical probabilis- 
tic models. Formally a Bayesian network [17,18] is a 
joint probability distribution over a set of random vari- 
ables. They combine two very well developed mathe- 
matical areas: probability and graph theory. A Bayesian 
network consists of an annotated directed acyclic graph 
G(X, E), where the nodes, xi  X, are random variables 
representing genes’ expressions and the edges indicate 
the dependencies between the nodes. The random vari- 
ables are drawn from conditional probability distribu- 
tions   |i iP x Pa x , where  iPa x  is the set of parents 
for each node. A Bayesian network implicitly encodes 
the Markov Assumption that given its parents, each vari-
able is independent of its non-descendants. With this as- 
sumption each Bayesian network uniquely specifies a de- 
composition of the joint distribution over all variables 
down to the conditional distributions of the nodes: 

    1 2
1

, ,
n

n i
i

P x x x P x Pa x


 i  

A belief network is defined by two components, a di- 
rected acyclic graph and a set of conditional probability 
tables [19]. Each node in the directed acyclic graph 
represents a random variable. The variables may be dis- 
crete or continuous-valued. They may correspond to ac- 
tual attributes given in the data or to “hidden variables” 
believed to form a relationship. If an arc is drawn from a 
node Y to a node Z, then Y is a parent or immediate 
predecessor of Z and Z is a descendant of Y. Each vari- 
able is conditionally independent of its non descendants 
in the graph, given its parents. 

For example, let us consider the five variables in Fig- 
ure 3. Without using any independence assumptions, the  
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Figure 3. Conditional 
independence in a sim- 
ple Bayesian network. 
This network structure 
implies several condi- 
tional independence 

⊥ ⊥cases: (A  E), (B  
⊥D | A, E), (C  A, D, 

⊥E | B), (D  B, C, E | 
⊥A), and (E  A, D). 

 
joint probability distribution can be written as: 

     
     

, , , , , , , , ,

,

P A B C D E P E A B C D P D A B C

P C A B P B A P A




. 

In contrast, using the independence assumptions im- 
plied by the network in Figure 3, the same distribution 
can be expressed as:  
           , , , , ,P A B C D E P E P A P B A E P D A P C B . 

If the variables are all binary in this network, the former 
form requires 31 parameters, while the latter only needs 
10 parameters. More generally, if G is defined over N 
binary variables and their maximal number of parents is 
bound by M, then instead of using 2N − 1 independent 
parameters to represent the full joint probability distribu-
tion, a Bayesian network model can represent the same 
joint distribution with at most 2MN parameters. 

A node within the network can be selected as an “out-
put” node, representing a class label attribute. There may 
be more than one output node. Various algorithms for 
learning can be applied to the network. Rather than re-
turning a single class label, the classification process can 
return a probability distribution that gives the probability 
of each class. A major advantage of Bayesian network 
models is the ability to learn them from observed data. 
Bayesian networks can capture linear, non-linear, com- 
binatorial, stochastic and other types of relationships 
among variables. They are suitable for modeling gene 
networks because of their ability to represent stochastic 
events, to describe locally interacting processes, to han- 
dle noisy or missing biological data in a principled statis- 
tical way and to possibly make causal inferences from 
the derived models [20,21]. Hence, Bayesian networks, 
including their variants Dynamic Bayesian networks, 
Gaussian networks, Module networks, mixture Bayesian 
networks and state-space models (SSMs), etc., have be- 
come widely used tools for regulatory-network model- 
ing. 

LIMITATION: Although effective in dealing with 
noise, incompleteness and stochastic aspects of gene 
regulation, they fail to consider temporal dynamic as- 
pects that are an important part of regulatory networks 
modeling. Dynamic Bayesian networks (DBN) evolved 
feedback loops to effectively deal with the temporal as- 
pects of regulatory networks but their benefits are hin- 
dered by the high computational cost required for learn- 
ing the conditional dependencies in the cases where large 
numbers of genes are involved. 

2.2. Continuous Models 

Biological experiments usually produce real, rather than 
discrete valued, measurements. Examples include reac- 
tion rates, cell mass [22-25], cell cycle length and gene 
expression intensities. Logical models require discretiza- 
tion of the real valued data, which reduces the accuracy 
of the data. Continuous models, using real valued pa- 
rameters over a continuous timescale, allow a straight- 
forward comparison of the global state and experimental 
data and can theoretically be more accurate. In practice, 
however, quantitative measurements are almost always 
partial (that is, they cover only a fraction of the system’s 
entities). Therefore, some of the parameters of continu- 
ous models are usually based on estimations or inference. 

2.2.1. Linear Model 
The defining property of linear models is that each regu- 
lator contributes to the input of the regulation function 
independently of the other regulators, in an additive 
manner [10]. In other words, the change in the level of 
each entity depends on a weighted linear sum of the lev- 
els of its regulators. This assumption allows a high level 
of abstraction and efficient inference of network struc- 
ture and regulation functions.  

A biological system can be considered to be a state 
machine, where the change in internal state of the system 
depends on the current internal state plus any external 
inputs. The mRNA levels form an important part of the 
internal state of a cell (ideally, we also want to measure 
protein levels, metabolites, etc.). As a first approximation, 
we fit the expression data with a purely linear model, 
where the change in expression level of each mRNA 
species is derived as a weighted sum of the expression 
levels of all other genes. Of course, a linear model can 
never be much more than a caricature of the real system, 
but perhaps we can still draw some interesting conclu-
sions from it.  

The basic linear model is of the form 

  i ij j jX t t W X t    ,  

where Xi(t + Δt) is the expression level of gene i at time t 
+ Δt, and Wij indicates how much the level of gene j inu-
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ences gene i. For each gene, we will also add an extra 
term indicating the influence of kainate, and a constant 
bias term to model the activation level of the gene in the 
absence of any other regulatory inputs. The differences in 
gene regulation due to tissue type will be modeled by a 
difference in bias. The final formula becomes: 

     kainatei ij j ij i iX t t W X t K t C T        

where kainate(t) is the kainate level at time t, Ki is the 
influence of kainate on gene i, Ci is a constant bias factor 
for each gene, and Ti indicates the difference in bias be- 
tween tissue types (Ti = 0 when simulating spinal cord, 
so the total bias for spinal cord is Ci, for hippocampus Ci 

+ Ti). 
LIMITATION: Linear additive regulation models re- 

vealed certain linear relations in regulatory systems but 
failed to capture nonlinear dynamics aspects of genes 
regulation. When higher sensitivity to detail is desired, 
more complex models are preferable. 

2.2.2. Differential Equation Based Model 
Differential equation models encode a gene network as a 
system of differential equations. Difference and differen- 
tial equations allow more detailed descriptions of net- 
work dynamics, by explicitly modelling the concentra- 
tion changes of molecules over time [26,27].  

The basic difference equation model is of the form 

      

        

1 1 11 1 1

1 1

n n

n n n nn n

g t t g t w g t w g t t

g t t g t w g t w g t t

      

      






 

where gi(t + Δt) is the expression level of gene i at time t 
+ Δt, and wij the weight indicating how much the level of 
gene i is influenced by gene j  , 1, ,i j n  . Note that 
this model assumes a linear logic control model—the 
expression levels of genes at a time t + Δt, depends line- 
arly on the expression levels of all genes at a time t. For 
each gene, one can add extra terms indicating the influ- 
ence of additional substances. Differential equation mo- 
dels are similar to difference equation models, but follow 
concentration changes continuously, modelling the time 
difference between two time steps in infinitely small time 
increases, i.e. Δt is approaching 0. 

Difference and differential models depend on numeri- 
cal parameters, which are often difficult to measure ex- 
perimentally. An important question for these models is 
stability—does the behaviour of the system depend on 
the exact values of these parameters and initial substance 
concentrations, or is it similar for different variations. It 
seems unlikely that an unstable system represents a bio- 
logically realistic model, while on the other hand, if the 
system is stable, the exact values of some parameters 
may not be essential. 

The rate of change in concentration of a particular 
transcript is given by an influence function of other RNA 
concentrations. The non-linear differential equations de-
scribe the mutual activating and repressing influences of 
genes in a GRN at a high-level of abstraction. In particu-
lar, it is assumed that the rate of gene expression depends 
exclusively on the concentration of gene products arising 
from the nodes (genes) of the GRN. This means that the 
influence of other molecules (e.g., transcription factors) 
and cellular processes (translation) is not taken into ac- 
count directly. Even with these limitations, dynamic 
GRN models of this kind can be useful in deciphering 
basic aspects of gene-regulatory interactions.  

One major advantage of all three methods described 
below lies in their simple homogeneous structures, as 
this allows the settings of parameter discovering software 
to be easily customized for these structures. The three 
methods describe dynamic GRN models by means of a 
system (or set) of ordinary differential equations. For a 
GRN comprising N genes, N differential equations are 
used to describe the dynamics of N gene product concen-
trations, Xi with 1, ,i N  . In all three methods, the 
expression rate dXi/dt of a gene product concentration 
may depend on the expression level of one or more gene 
products of the genes Xj, with . Thus, the 
gene product concentration Xi may be governed by a 
self-regulatory mechanism (when i = j), or it may be 
regulated by products of other genes in the GRN. The 
three modeling methods differ in the way they represent 
and calculate expression rates.  

1, ,j   N

2.2.2.1. The Artificial Neural Network (ANN) Method 
Vohradsky [28] introduced ANNs as a modeling method 
capable of describing the dynamic behavior of GRNs. 
The way this method represents and calculates expres-
sion rates depends on the weighted sum of multiple 
regulatory inputs. This additive input processing is capa-
ble of representing logical disjunctions. The expression 
rate is restricted to a certain interval where a sigmoidal 
transformation maps the regulatory input to the expres-
sion interval. ANNs provide an additional external input 
which has an influence on this transformation in that it 
can regulate the sensitivity to the summed regulatory 
input. Finally, the ANN method defines the degradation 
of a gene product on the basis of standard mass-action 
kinetics. Formally, the ANN method is defined as:  

1

d
0

d

N
i

i ij j i i i i i i
j

X
v f w X k X v k

t
 



 
    

 
  

The parameters of the ANN method have the follow-
ing biological interpretations: 

N: Number of genes in the GRN to be modeled. The 
genes of the GRN are indexed by i and j, where 
, 1, ,i j N  . 
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vi: Maximal expression rate of gene i. 
wij: The connection weight or strength of control of 

gene j on gene i. Positive values of wij indicate activating 
influences while negative values define repressing influ-
ences. 
ϑi: Influence of external input on gene i, which modu-

lates the gene’s sensitivity of response to activating or 
repressing influences. 

f: Represents a non-linear sigmoid transfer function 
modifying the influence of gene expression products Xj 
and external input ϑi to keep the activation from growing 
without bounds. 

ki: Degradation of the i-th gene expression product.  
The mathematical properties of the ANN method have 

been well studied because it is a special case of a recur-
rent neural network. In particular, the symmetry of the 
matrix of connection weights wij influences whether the 
network dynamics are oscillatory or whether they con-
verge on a steady (or even chaotic) state. High positive 
or negative values of the external input, ϑi, reduce the 
effect of the connection weights. This is explored in Case 
D where ϑi has been interpreted as a delay to the reaction 
kinetics of the transcriptional machinery. 

2.2.2.2. The S-System (SS) Method 
Savageau [29] proposed the synergistic system or 
S-system (SS) as a method to model molecular networks. 
When modeling GRNs with the SS method, the expres- 
sion rates are described by the difference of two products 
of power-law functions, where the first represents the 
activation term and the second the degradation term of a 
gene product Xi. This multiplicative input processing can 
be used to define logical conjunctions for both the regu- 
lation of gene expression processes and for the regulation 
of degradation processes. The SS method has no restric- 
tions in the gene expression rates and thus does not im- 
plicitly describe saturation. Formally, the SS method is 
defined as: 

1 1

d
, 0, ,

d
ij ij

N N
g hi

i j i j i i ij ij
j j

X
X X g h

t
   

 

    R

R

 

The parameters of the SS method have the following 
biological interpretations: 

N: Number of genes in the GRN to be modeled. The 
genes of the GRN are indexed by i and j, where 

. , 1, ,i j N 
αi: Rate constant of activation term; in SS GRN mod-

els, all activation (up-regulation) processes of a gene i 
are aggregated into a single activation term. 
βi: Rate constant of degradation term; in SS GRN 

models, all degradation processes of a gene i are aggre-
gated into a single degradation term. 

gij,hij: Exponential parameters called kinetic order. 
These parameters describe the interactive influences of 

gene j on gene i. Positive values of gij indicate an acti-
vating influence on the expression of gene i, whereas 
inhibiting influences are represented by negative values. 
Similarly, positive values of hij indicate increasing deg-
radation of the gene product Xi, whereas decreasing deg-
radation is represented by negative values. The parame-
ters used in SS models have a clear physical meaning 
and can be measured experimentally, yet they describe 
phenomenological influences, as opposed to stoichio- 
metric rate constants in general mass action (GMA) sys- 
tems. The SS method generalizes mass-action kinetics by 
aggregating all individual processes into a single activi- 
tion and a single degradation term (per gene). In contrast, 
the GMA system defines all individual processes k with 

1, ,k    with the sum of power-law functions ac-
cording to:  

1 11 1

d

d

, 0, ,

ijk ijk
N NR R

g hi
ik j ik j

k kj j

ik ik ijk ijk

X
X X

t

g h

 

 
  

 

 

  
R

 

The parameters of the GMA system have the follow- 
ing biological interpretations: 
αi: Rate constant of activation process k. 
βik: Rate constant of degradation process k. 
gijk: Exponential parameter called kinetic order de-

scribing the interactive influence of Xj on gene i of proc-
ess k. 

hijk: Exponential parameter called kinetic order de-
scribing the interactive influence of Xj on gene i of proc-
ess k. 

2.2.2.3. The General Rate Law of Transcription (GRLOT) 
Method 

The GRLOT method has been used to generate bench-
mark time-series data sets to facilitate the evaluation of 
different reverse-engineering approaches. GRLOT mod-
els multiply individual regulatory inputs. Activation and 
inhibition are represented by different functional expres-
sions that are similar to Hill kinetics, which allow the 
inclusion of cooperative binding events. Identical to the 
ANN, the degradation of gene products is defined via 
mass-action kinetics. Formally, the GRLOT method is 
defined as: 

d

d

, , , 0.

j k

j j k k

n n
ji k

i in n n n
j k k kj j

i j j i

KiX A
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         



  iX
 

The parameters of the GRLOT method have the fol- 
lowing biological interpretations: 

vi: Maximal expression rate of gene i. 
Ij: Inhibitor (repressor) j. 
Ak: Activator k; the number of inhibitors I, and the  
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Table 1. Advantages and disadvantages of the different algorithms for gene network construction. 

TECHNIQUE ADVANTAGES DISADVANTAGES 

Boolean Networks 

A simplistic Boolean formalism can represent  
realistic complex biological phenomena such as 
cellular state dynamics that exhibit switch-like 
behavior, stability, and hysteresis. 

Boolean: Two states are not sufficient for the 
levels of real gene expressions. The updates of 
the network states in this model are  
synchronous, whereas biological networks  
are typically asynchronous. Can be applied  
only for small networks. 

Probabilistic Boolean Networks 

It is stochastic. Overcome the deterministic rigidity 
of Boolean networks. They are able to cope with 
uncertainty both in the data and in the model  
selection. 

Even though it is stochastic the state space is 
discrete 

Bayesian Networks 

Effective in dealing with noise, incompleteness and 
stochastic aspects of gene regulation. 

Dynamic Bayesian networks (DBN) evolved  
feedback loops to effectively deal with the temporal 
aspects of regulatory networks. 

Fail to consider temporal dynamic aspects that 
are an important part of regulatory networks 
modeling.  

The benefits are hindered by the high  
computational cost required for learning the 
conditional dependencies in the cases where 
large numbers of genes are involved. 

Linear Model 

Linear models do not require extensive knowledge 
about regulatory mechanisms. It can be used to 
obtain qualitative insights about regulatory  
networks. 

Failed to capture nonlinear dynamics aspects of 
genes regulation. 

Not sufficient if higher sensitivity to detail is 
desired. 

Differential Equation Based Model 
Simple homogeneous structures: this allows the 
settings of parameter discovering software to be 
easily customized for these structures. 

Involve a large number of parameters—O(d2 ) 
parameters where d is the number of genes 
modeled. 

Single Molecule Level Model The most detailed, can capture stochasticity. computationally expensive 

Hybrid Model 
In the real world systems both continuous aspects 
and discrete aspects are present.  
Hybrid models helps in modeling both together. 

Computationally expensive 

 
number of activators A can be related to the total number 
of genes by I + A ≤ N. 

Kij: Concentration at which the influence of inhibitor j 
is half of its saturation value. 

Kak: Concentration at which the influence of activator 
k is half of its saturation value. 

nj , nk: Regulate the sigmoidicity of the interaction be-
havior in the same way as Hill coefficients in enzyme 
kinetics. 

ki: Degradation of the i-th gene expression product. 
LIMITATIONS: Unless they are restricted to simple 

function forms, differential equation models involve a 
large number of parameters—O(d2) parameters where d 
is the number of genes modeled. Moreover, differential 
equation models require time-series data to learn the pa-
rameters 

2.3. Single Molecule Level Model 

Every biological network is composed of stochastic 
components, and therefore it may manifest different be-
haviours, even starting from the same initial conditions 
[30,31]. When the number of involved molecules of each 

species is large, the law of mass action can be used to 
accurately calculate the change in concentrations, and 
little or no stochastic effect is observable. However, 
when the number of molecules is small, significant sto-
chastic effects may be seen. This is particularly true for 
regulatory networks, in which the number of regulatory 
molecules is often low [32-35]. Recently, single cell ex-
perimental assays demonstrated the stochastic behaviour 
of the processes of transcription and translation [36]. 

2.4. Hybrid Model 

In the real world systems both continuous aspects and 
discrete aspects are present. In general, concentrations 
are expressed as continuous values, whereas the binding 
of a transcription factor to DNA is expressed as a dis-
crete event (bound or unbound). However, the bounda-
ries between the discrete and continuous aspects depend 
on the level of detail that our model is designed for. For 
instance, on single cell level the concentrations may have 
to be expressed by molecule counts and become discrete, 
whereas if we use thermodynamic equilibrium to model 
the protein-DNA binding, the variable describing the 
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binding state becomes continuous. Hybrid models have 
been developed in an attempt to describe both, discrete 
and continuous aspects in one model. 

An example of a hybrid model [37,38] is a multi-layer 
evolutionary trained neuro-fuzzy recurrent network 
(ENFRN) applied to the problem of GRN reconstruction, 
which addresses the major drawbacks of currently exist- 
ing computational methods. This choice was driven by 
the benefits, in terms of computational power, that neural 
network based methods provide. The self-organized na-
ture of ENFRN algorithm is able to produce an adaptive 
number of temporal fuzzy rules that describe the rela-
tionships between the input (regulating) genes and the 
output (regulated) gene. Related to that, another advan-
tage of this approach is that it overcomes the need of 
prior data discretization, a characteristic of many com-
putational methods which often leads to information loss. 
The dynamic mapping capabilities emerging from the 
recurrent structure of ENFRN and the incorporation of 
fuzzy logic drive the construction of easily interpretable 
fuzzy rules of the form: “IF gene x is highly expressed at 
time t THEN its dependent/target gene y will be lowly 
expressed at time t + 1”. The evolutionary training, based 
on the PSO framework, tries to avoid the drawbacks of 
classical neural networks training algorithms [39]. Addi- 
tionally, we are approaching the under-determinism pro- 
blem by selecting the most suitable set of regulatory 
genes via a time-effective procedure embedded in the 
construction phase of ENFRN. Also, besides determining 
the regulatory relations among genes, this method can 
determine the type of the regulation (activation or re- 
pression) and at the same time assign a score, which 
might be used as a measure of confidence in the retrieved 
regulation.  

Comparison of different models discussed in this pa- 
per is given in Table 1. 

3. CONCLUSION 

In this paper we have reviewed the different modeling 
methods for reconstructing gene networks from gene 
expression data. All methods mentioned above are for 
reverse engineering of GRNs from gene expression data. 
The Boolean network models have the limitation of dis- 
crete apace and in reality, of course, the levels of gene 
expression do not have only two states but can assume 
virtually continuous values. The probabilistic methods 
have the flexibility of assuming different probability of 
expression for gene at a particular point of time and are 
closely related to real time situations. Also we discussed 
continuous models like linear and differential models 
using non-discrete values. Single molecule based models 
consider stochastic behavior of biological network and 
hybrid models combines different concepts for GRN 

reconstruction. 
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