Basic peptide protamine exerts antimicrobial activity against periodontopathic bacteria

——Growth inhibition of periodontopathic bacteria by protamine

Tadashi Miura¹, Keishi Iohara², Tetsuo Kato³, Kazuyuki Ishihara⁴, Masao Yoshinari¹

¹Division of Oral Implants Research, Oral Health Science Center, Tokyo Dental College, Mihama-ku, Japan;
²Central Research Institute, Maruha Nichiro Holdings, Inc., Tsukuba, Japan;
³Laboratory of Chemistry, Oral Health Science Center; Tokyo Dental College, Mihama-ku, Japan;
⁴Department of Microbiology, Oral Health Science Center; Tokyo Dental College, Mihama-ku, Japan.
Email: tamiura@tdc.ac.jp

Received 28 September 2010; revised 18 October 2010; accepted 21 October 2010.

ABSTRACT

Protamine was investigated for its antibacterial activity against the periodontal pathogens, Porphyromonas gingivalis, Prevotella intermedia and Aggregatibacter actinomycetemcomitans. We determined the minimum inhibitory concentrations of protamine and its hydrolysate and their bactericidal activity. Protamine inhibited the growth of all periodontopathic bacteria tested on agar plates. Protamine, which MIC was 6.3 × 10⁻⁷ g L⁻¹, was most effective against P. gingivalis. The antibacterial effect of native protamine was higher than that of its hydrolysate. An ATP bioluminescence assay revealed that protamine showed bactericidal activity against P. gingivalis in a time-dependent manner. These results indicate that protamine could be candidate peptide for prevention of P. gingivalis infection.

Keywords: Antimicrobial Peptide; Periodontopathic Bacteria; Implantitis; Protamine

1. INTRODUCTION

Bacterial infection arising from an accumulation of microbial plaque around dental implants is a major cause of periodontal disease including peri-implantitis. Five species of periodontal pathogen detected in cases where a titanium implant was used [1]. This indicates the importance of maintaining biofilm-free surfaces on both the sub-gingival and supra-gingival portions of dental implants in preventing peri-implantitis. Porphyromonas gingivalis [2] and Aggregatibacter actinomycetemcomitans [3] are believed to be major etiologic bacteria in many cases of human periodontitis. Prevotella intermedia [4] has also been associated with human periodontal disease. Research at our laboratory has focused on developing a system of defense against infection on dental implant surfaces [5]. Reducing plaque has been emphasized in the prevention of periodontal diseases, including peri-implantitis [6]. It is possible that using antimicrobial materials can help reduce oral bacteria.

The loading of antimicrobial peptides onto the surface of a dental implant is an important candidate for achieving antimicrobial activity. Antimicrobial peptides, a promising new type of antimicrobial agent, offer the advantage of not easily acting as antigens against the host [7]. One of the aims of our ongoing study is to create a defense system against peri-implantitis. We are currently exploring the antimicrobial potential of peptides affixed to the surfaces of dental materials [8].

We investigated the anti-periodontopathic activity of the antimicrobial peptide, protamine and its hydrolysate. Protamine, a basic peptide [9], discovered from salmon testicles by F. Miescher in 1869 was later found to be involved in the folding of nucleic acids in salmon sperm [10]. Protamine has been isolated from more than 50 kinds of fish, and is used as a natural food preservative. Protamine has several characteristics, including high stability under heat and a preservative effect in neutral or alkaline food. It does not influence the texture, smell, or taste of food to which it is added. It can also be eaten as a raw material, and has been used as a food additive for many years. An acute toxicity test of protamine in mouse [11] and a sub-long-term toxicity test in rat [12] demonstrated its safety and confirmed that it was an excellent antibacterial agent in milt. The antibacterial activity of protamine is strongest against Gram-positive bacteria such as the Bacillus species [13] and lactobacilli [14], whereas its activity against fungi and yeast [15] is weak. Our previous study revealed that hydrolyzed protamine,
was most effective against the biofilm formation of C.
albicans [16]. In this study, we investigated the inhibitory
effect of protamine and its hydrolysate on growth of
periodontopathic bacteria.

2. MATERIALS AND METHODS

2.1. Bacteria and Culture Condition

For liquid culture, P. gingivalis ATCC 33277, ATCC53977,
W50 (ATCC, American Type Culture Collection) and P.
termedia ATCC 25611 were cultured in trypticase soy
broth (Becton Dickinson and Company, Sparks, MD,
USA) supplemented with hemin (5 g L\(^{-1}\); Sigma Chemi-
cal Co., St Louis, MO) and menadione (0.5 g L\(^{-1}\); Wako
Pure Chemical Industries, Osaka, Japan). A. actinomy-
cetemcomitans 310a and Y4 were cultured in Todd Hew-
itt Broth (Becton Dickinson and Company) supple-
mented with Yeast Extract (10 g L\(^{-1}\); Becton Dickinson
and Company). For plate culture, the bacteria were
grown on blood agar plates consisting of Tryptic soy
agar (Becton Dickinson and Company) supplemented
with 10% defibrinated horse blood, hemin (5 g L\(^{-1}\)), and
menadione (0.5 g L\(^{-1}\)). Cultures were performed at 37°C
in an anaerobic chamber filled with an atmosphere of
80% N\(_2\), 10% H\(_2\) and 10% CO\(_2\).

2.2. Preparation of Protamine and its
Hydrolysates

Protamine (designated as Prot) was obtained from Ma-
ruha Nichiro foods, Inc., Tokyo, Japan. This product is
prepared from the milt of salmon (Oncorhynchus keta),
living in the northern part of Japan. This milt has been
reported to contain four different molecular species [17]
rich in arginine, the primary structures of which were
reported to be as follows:

\[\text{Prot}: \text{PRRRRSSSPRIRRRRPRASRRRRGGRRRR,} \]
\[\text{Protamine hydrolysate}: \text{PRRRRSSRPPRIRRRPRASRRRRGGRRRR,} \]
\[\text{Protamine hydrolysate}: \text{PRRRRSSRPPRIRRRPRASRRRRGGRRRR,} \]
\[\text{Protamine hydrolysate}: \text{PRRRRSSRPPRIRRRPRASRRRRGGRRRR,} \]

The Prot consisted of 30 or 32 amino acids in this
study, and the arginine residues constituted 60-70% of
the amino acid sequences. Protamine hydrolysate (des-
ignated as Brom) obtained by digestion with the enzyme
bromelain [18], a cysteine protease, was kindly donated
by Maruha Nichiro foods, Inc.

2.3. Evaluation of Minimum Inhibitory
Concentration.

Agar plates containing Prot or Brom were used to de-
termine minimum inhibitory concentration (MIC). Pept-
ide concentration was adjusted by stepwise dilution.
Using a loop, each bacterial strain was streaked onto an
agar plate. The agar plates were then incubated for 3-7
days in the anaerobic chamber at 37°C. Minimum in-
hibitory concentration was defined as the lowest concen-
tration of peptides that would inhibit the visible growth
of the microorganism after incubation. The values were
expressed as the mean \(\pm \) SD of four experiments.

2.4. Antibacterial Activity of Protamine against P.
gingivalis ATCC 33277

P. gingivalis ATCC 33277 was anaerobically grown at
37°C to the early-stationary phase in the broth described
above. The harvested cells were washed once in auto-
claved water and then resuspended in freshly autoclaved
water containing adequate concentrations of protamine.

Cell suspensions were incubated at 37°C, and every 30
minutes the samples were examined for cell viability.

Cell viability was determined by ATP-bioluminescent
assay using the BacTiter-Glo Microbial Cell Viability
Assay kit (Promega, Madison, USA). Briefly, a volume of
BacTiter-Glo reagent equal to the volume of each
suspension was added and briefly mixed. The lumines-
cence of the solution was then recorded by using the
AUTO-LUMICOUNTER Model 1422EX (Microtec Co.,
Ltd, Funabashi, Japan). The value obtained was ex-
pressed as the ratio to that at the start of incubation.
The results were expressed as the mean \(\pm \) SD of three
experiments.

2.5. Statistical Analysis

Data were analyzed for statistical significance using a
two-way analysis of variance (ANOVA) followed by the
Scheffe test for multiple comparisons.

3. RESULTS AND DISCUSSION

As shown in Figure 1, protamine and its derivative
showed an inhibitory effect on growth of all the perio-
dontopathic bacteria tested, with inhibitory effect great-
est on growth of the P. gingivalis strains. The inhibitory
effect of native protamine was greater than that of its
hydrolysate \((p < 0.05) \). The MIC values for P. gingivalis
ranged from \(6.3 \times 10^{-7} \) to \(7.5 \times 10^{-7} \) g L\(^{-1}\), while those for
A. actinomycetemcomitans and P. intermedia required a
higher concentration, of almost double or more. Recently,
we reported that protamine absorbed onto PMMA or
PMMA treated with oxygen (O\(_2\)) plasma caused a mar-
ginal decrease in initial attachment of C. albicans [16].
In the case of C. albicans, the initial amount of fungal
attachment to Brom- or O\(_2\) plasma-treated PMMA di-
minished slightly in comparison to that treated with na-
tive peptide. These findings suggest that protamine ex-
hibits selective inhibitory action against growth of oral
microorganisms.
Figure 1. Minimum Inhibitory Concentration of Prot. and Brom. against periodontopathic pathogens. Identical letters indicate no significant difference (p > 0.05). 33277, 53977 and W50: *P. gingivalis*; 310a, Y4: *A. actinomycetemcomitans*; 25611: *P. intermedia*.

To further investigate possible mechanisms of inhibition of *P. gingivalis* growth, the bactericidal activity of protamine was assessed. As shown in Figure 2, protamine and its derivative possessed bactericidal activity in a dose- and time-dependent manner against *P. gingivalis*. At 6.0×10^{-6} g L$^{-1}$, which is approximately ten-fold the value of the MIC (6.0×10^{-7} g L$^{-1}$), the number of *P. gingivalis* cells after two hours incubation was less than 40% of that at 30 min incubation. A higher concentration of protamine induced further inhibition of growth of *P. gingivalis*. A significant difference was observed in inhibitory action between the two concentrations used (p < 0.01). This indicates that this peptide has an inhibitory effect on the growth of oral bacteria. In this study, we found that protamine had an inhibitory effect on periodontal pathogens, as well as fungi. Further investigation is necessary to elucidate the properties of this peptide, for example, using immobilization methods established at our laboratory. We believe that the application of protamine to dental implants would offer ad-
vantages in the prevention of periodontal diseases such as peri-implantitis and oral care.

4. ACKNOWLEDGEMENTS

This research was supported by Oral Health Science Center Grant hrc7 from Tokyo Dental College, and by a “High-Tech Research Center” Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology) of Japan, 2006-2010.

The authors would like to thank Associate Professor Jeremy Williams, Tokyo Dental College, for his assistance with the English of this manuscript.

REFERENCES

