Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering

Mei-Na Huang¹, Yuan-Liang Wang¹*, Yan-Feng Luo¹

National 985 Research Center of Bioinspired Material Science and Engineering, Bioengineering College, Chongqing University, Chongqing 400030, People’s Republic of China, Correspondence to Yuan-Liang Wang (wyl@cqu.edu.cn). Tel./fax: +86-23-65102509.

Received September 22nd, 2008; revised November 12th, 2008; accepted November 19th, 2008

ABSTRACT

Biodegradable porous polyurethanes scaffold have themselves opportunities in service, including controlled degradation rate, no-toxic degradation products. However, polyurethanes are lack of bioactive groups, which limits their application. This review gives the common modification methods, surface functionalization and blending modification. In finally, the review puts forward to the bulk modification as a new method to enhance the bioactivity of polyurethanes.

Keywords: Polyurethanes, Bioactivity, Biodegradation, Bone Repair

1. INTRODUCTION

Currently, tissue engineering involving synthetic materials offers a practical approach for bone repair and regeneration. In this approach, a 3-D porous biodegradable scaffold is beneficial to guide cell attachment, proliferation and tissue regeneration [1,2]. Therefore, a number of researchers are interested in developing biodegradable polymeric scaffolds for bone engineering repair[3,4,5,6]. Polyurethane, which concludes the polyurethane urea elastomer, is regarded as a kind of bone repair materials for its nice mechanical property and their special shape memory function.

Biodegradable polyurethanes, made from degradable polyester/polyether with hydrophilic group of ether bond, aliphatic diisocyanate, having the hydrophobic group of alkyl and chain extenders [7,8]. Due to these special group, polyurethanes have controlled degradation rate, in general, the degradation time can reach to some months with changing of the ratio polyester/polyether to diisocyanate [7,9], which fits to the growth rate of osteoblast. Moreover, the degradation give rise to non-toxic products, which will not produce side effect for body. Besides polyester/polyether and diisocyanate, chain extender is also a key factor. In order to regulate the pH of degradation products, and avoid the acid auto-catalytic effect in the degradation process, and then further controlling the easily control of degradation rate, some researches choose diamines [10]. Guan et al [4] synthesized (poly(etherurethane urea), PEUU) with PCL and 1, 4-diisocyanatobutane (BDI) and putrescine. And then, PEUU was made into highly porous, biodegradable polyurethane scaffold for tissue engineering. In this study, BDI was used, since it could release putrescine, a polyamine that is essential for cell growth and proliferation. Zhang et al [11] synthesized polyurethane by reacting of highly pure lysine diisocyanate with glucose, which resulted in major degradation products lysine and glucose (LDI-glucose), and then completely degrade and enter into human circulation system.

The degradation mechanisms of polymers are important and need to be investigated further. Non-toxic degradation products are necessary and, moreover, mechanical properties are also influenced by degradation mechanisms. LDI-glucose [11] polymer, for example, is degraded by hydrolysis of urethane bonds to liberate lysine, glucose, ethanol, and CO₂. Ethanol could inhibit cell-cell adhesion, but a study reported that concentrations less than 30mM are harmless to the cell. Moreover, in contrast to PLA and PLGA degradation mechanisms, the study showed that the degradation of polyurethane with diamine no significant increase in pH of the solution. PEUU degradation products were also shown to be non-toxic to endothelial cells. The polymer showed a linear degradation with no signs of autocatalytic effects when compared to PLA or PLGA degradation behaviour. In addition, regulating ratio of polyester/polyether to diisocyanate can change the molecular weight of polyurethane, and then control their degradation rate. The two regulation methods make it be balance with growth of cell/tissue and realize the real tissue engineering repair.

However, polyurethanes as a potential, biodegradable materials are lack of bioactive groups, which limits their applications. Therefore, how to ensure biodegradation and bioactive of polyurethane are two key factors for its application in bone repair [12,13]. A further requirement for scaffold, particularly used for bone engineering, is controllable interconnected porosity for cells to grow into the desired physical form and to compete vascularization of the ingrown tissue [12]. Other highly desirable
features concerning the scaffold processing are near-net 
-SHAs fabrication and scalability for cost-effective in-
dustrial production [12,14].

In the paper, we only discuss how to enhance the bio-
activity of porous polyurethane scaffold. In general, bio-
active functionalization methods of polyurethanes can be
concluded to three major design strategies [15,16,17, 18,19]. One approach is blending the polyurethanes with
tricalcium phosphate/ hydroxyapatite or other inorganic cerami
[16,17,18,19]. Various bioactive factors further enhance the cellular compatibility. The inorganic ce-
amic have another advantage, the function of bone in-
duction and the conduction [16,17,18,19]. The other ap-
proach involves endowing the biomaterials with bioac-
tivity by incorporating soluble bioactive molecules, such
as growth factors and plasmid DNA, into biomaterial
 carriers so that the bioactive molecules can be released
from the materials and trigger or modulate new tissue
formation [20,21,22]. The last one is incorporation of
cell-binding peptides into biomaterials via chemical or
physical modification. The cell-binding peptides include
a native long chain of extracellular matrix (ECM) pro-
teins as well as short peptide sequences derived from
intact ECM proteins that can incur specific interactions
with cell receptors [15,23,24,25]. This paper reviews
above methods and focuses on their opportunities as a
kind of bone repair materials, and puts forward a new
method to improve the bioactivity of biodegradable
polyurethanes.

2. BIOACILITY OF POLYURETHANES

Tissue engineering applies methods from materials en-
gineering and life sciences to artificial construction new
tissue. Two common approaches are transplanting the
biomaterials with cell [26] or the biomaterials with some
bioactive factor/bioactive substance for the cell homing
to realize restoration. Facing the complex biological and
sensitive human body, requirements of biomaterials are
extremely challenging. The First and most, compared to
other bioactive materials, polyurethanes are lack of bio-
active factors and cytocompatibility [27], which can be
well solved by introduction of bioactive substances, in-
cluding the inorganic phosphate, growth factors and ex-
tracellular matrix.

2.1. Introduction of Inorganic Phosphate
Into Polyurethanes

Hydroxyapatite, glasses, glass-ceramics or calcium
phosphates having similar components with natural bone
[14,20], are important categories of bioactive materials.
Coating and blending are the most common methods to
modify polymer with inorganic phosphate. Biomimetic
method is a chemical modification with inorganic phos-
phate [28,29,30].

Hydroxyapatite (HA), the most important inorganic
phosphate, has been extensively investigated over the
past few decades as a biomedical material. It can be de-
signed as a bioactive material, besides it is similar com-
position with natural bone, osteoconductive, osteoinduc-
tivity, biodegra-dability, high mechanical strength and
their medical products such as screws, plates and rods
have been commercial forms a strong bond to natural
bone in vivo [31,32,33]. Moreover, the introduction of
HA can regulate the pH of biomaterials. Above proper-
ties of hydroxyapatite and other inorganic phosphate
can induct the growth of bone and prevent the inflamma-
try reaction [31,32,33,34].

Rezwan, K. et al [13] reviewed the function of bioac-
tive glasses, glass-ceramics and the calcium phosphates
or HA in the enhancement of the bioactivity of polyure-
thanes. It has been found that reactions on bioactive
glass surfaces can release critical concentrations of solu-
ble Si, Ca, P and Na ions, depending on the processing
route and particle size. The released ions induce intra-
cellular and extracellular responses. One key reason that
makes bioactive glassed-correlation material is the pos-
sibility of controlling a range of chemical properties and
thus the rate of bioreorption. Park, Y.S. et al. [35] in-
vestigated the fabrication method of a three-dimensional
reticulated scaffold with interconnected pores of several
hundred micrometers using calcium phosphate glass in
the system of CaO-CaF2-P2O5-MgO-ZnO and a polyure-
thane sponge as a template. It is thought that this kind of
biodegradable glass scaffold combined with osteogenic
cells has potential to be studied further as a tissue engi-
nereed bone substitute. The structure and chemistry of
glasses, in particular sol-gel derived glasses, can be tai-
lored at a molecular level by varying either composition,
or thermal or environmental processing history.

Above inorganic phosphate is important bioactive
modification material, however, current technology is
difficult to solve the compatibility between inorganic
phosphate and polyurethanes. It is difficult to make a
uniform matrix, particularly, the current coating/blending
methods, which result in that it is difficult to form a
uniform matrix, particularly, the content of inorganic
ceramic is high [36,37]. Some researches found that
some of HA/PLA composites lost their strengths rapidly
in physiological environment and failures occur mainly
at the interface of HA and the polymer matrix. Two main
reasons may take responsibility for these interfacial fail-
ures: one is lack of effective adhesion between ceramic
phase and polymer matrix; the other is self-catalytic
degradation of hydroxyl groups on HA surfaces to poly-
mer main chains. The structure of polyurethanes/HA
is similar to HA/PLA, which may result in the same inter-
face separation. For solving the problem, Xian, YM
adopted chemical reaction to produce HA crystal on the
polymer surface, the chemical reaction to make inorganic
phosphate in the surface polymer can solve the interface
separation, however, another problem appeared [30]. The
reaction of making HA/polymers crystal is similar to the
biomimetic calcification, which lasted for more than one
week, and then make negative effect on the polymers.
Moreover, the products can not ensure the crystal struc-

SciRes Copyright © 2009
Introducing inorganic phosphate can not wholly solve the bioactivity problem. Some researchers use bioactive factor, which can react with polymers to enhance their bioactivity [38,39,40], such as RGD, moreover, the bioactive factors is important for cell homing.

2.2. Surface Modification of Porous Polyurethanes Scaffold with Bioactive Factors

2.2.1. Arg-Gly-Asp(RGD) Modified Biomimetic Polyurethanes

In an effort to improve the adhesion and retention of cells to polymer scaffolds, researches typically coated with various extracellular matrix proteins [40,41,42]. These studies highlight that extracellular proteins played an important role in attachment and spreading of cells to surface, where specific domains on cell membrane bind directly with extracellular matrix molecules via integrins [43,44]. A number of specific cell-recognition sequences have been identified, the most extensively studied sequence being the arginine-glycine-aspartic acid (RGD) motif present in matrix molecules such as vitronectin, fibronectin, laminin and collagen, fibrillin [40,45,46,47].

RGD peptide is one of the major bioactive factor to design biomimetic polyurethanes and has been widely researched in recent years [38,39,40]. In order to provide a stable linking, RGD peptides should be covalently attached to polymer via functional groups like hydroxyl-, amino-, or carboxyl-groups. Some polyurethanes are amino-terminated [4,38], which can react with the carboxyl-groups of RGD, with 1,3-Dicyclohexylcarbodiimide (DCC) as catalyst. Other polyurethanes are hydroxyl-terminated, the hydroxyl-also can react with the carboxyl-group of RGD [48].

Moreover, in order to enhance the surface functionalization, polymeric materials, such as polyurethane must be functionalized before bioactive peptides or proteins are immobilized on their surfaces [44]. In general, the functionalization can be realized by a variety of means, either by introduced the multi-functional groups monomer or polymer[39], or by subsequent surface modification by plasma treatment [45] ozone oxidation[46] surface graft polymerization [40] or site-specific reactions [47]. Here, we put emphasis on two examples to demonstrate the successful application of linking group in surface modification. One example [39], the difunctional spacer molecule-diisocyanate is introduced as the linking group of polyurethane film and RGD, realizing the surface functionalization of polyurethane. Another example, Jozwiak, A.B [40] used two steps to enhance the introduction rate. First, the multi-amino group-polyethyleneimine (PEI) is introduced, a medium sized molecular weight branched form of PEI was used here in order to provide a large number of reactive primary amine groups and enhance its entrapment within the polyurethane surface. Second, introducing the dextran, which is functional spacer molecule and can link the RGD easily.

2.2.2. Growth Factors Modified Biomimetic Polyurethanes

Chemotaxis, proliferation, differentiation and matrix synthesis are essential in natural tissue/organ development and wound healing [45]. Owing to the rapid advances in recombinant technology and the availability of large scale manufacturing of cytokines and growth factors, many recent tissue engineering strategies have turned to specific growth factors to stimulate cellular activity in vitro and to improve functional neotissue formation in vivo [47,48]. Characteristic of these bioactive factors is that they can effective release at specific site and realize the function of improving cell proliferation and recruitment [46,49]. Incorporation of angiogenic growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), among others, into scaffolds for controlled release has been shown to promote local angiogenesis [50]. Platelet-derived growth factor (PDGF) has been demonstrated to stimulate proliferation and recruitment of both periodontal ligament and bone cells in vitro. In vivo study also showed that PDGF-BB enhances the ability of healing [46].

There are many methods to incorporate growth factors into synthetic scaffolds, such as absorbing growth factor to scaffold, and blending growth factor containing microspheres into the scaffold [46], or directly mixing growth factor containing protein powder into the scaffold during processing [50]. However, absorbing growth factors onto the scaffold has the drawback of low loading efficiency and rapid releasing, which may be associated with in bioactivity due to harsh solvents such as hexane [46] or methylene chloride [51]. Incorporating growth factor directly into the scaffold can potentially avoid these shortcomings.

Whether or not has bioactivity of the released bioactive factors is an essential problem. Bioactivity of the factors can be assessed in two methods [47,50,52]. First, bioactivity of the released factor can be determined through the direct method-human gingival fibroblase DNA synthesis as measured by specific composition [46]. Second, the bioactivity is assessed in terms of its ability to stimulate the growth of cells [50,52].

3. CONCLUSION AND PRESPECT

3.1. Possibility and Challenge of Bulk Modification for Polyurethanes

Besides above methods, how can we improve bioactivity of polymers? Now, a great wealth of knowledge about the biology of integrin mediated cell adhesion has proved that the modification of polyurethanes with RGD peptides or other bioactive factors are useful tool to design bioactive porous scaffolds that can provide biological cues elicit specific cellular responses and direct new tissue formation. However, the surface modification has some limitations. Since surface modification has been performed on well-defined model surfaces and the
evaluation of cell behavior on material has been conducted under serum free media, the results may not properly indicate complicated events associated with in vivo environments. Even though some model surfaces may be useful to provide fundamental knowledge to understand cell behavior through specific binding, they may not be directly used as tissue engineering scaffolds.

If we use bulk designing of polyurethanes, incorporated RGD or collagen may result in recognition sites is present not only on the surfaces but also in the bulk of the materials. Niu, X.F. et al [53] review the bulk modification, which describe the bulk modification of biomaterials is beneficial to tissue engineering applications where injectable biomimetic materials are required to match the complex HA of native tissue at defect sites. Cook et al [54] and Barrera et al [55] conducted a lot of investigations in understanding the effects of bulk modification via RGD peptides. They synthesized RGD bulk modified poly (lactic acid-co-lysinne) and successfully blended it with PLA to fabricate a thin film. When this film was exposed to endothelial cell suspended media for 4 h, the specific function of RGD was maintained to facilitate cell spreading.

Polyurethanes are the biomaterials with hydroxyl-terminated and amine-terminated. The RGD or other peptide can react with the terminal group of polyurethanes, which may result in bioactive polyurethanes. My laboratory chose the bulk modification to introduce the bioactive factor, such as RGD/MAF, and then emulsion/freeze drying mean was adopted to make porous polyurethane scaffold with bioactivity polyurethane.

3.2. The Possibility of Introduction of Inorganic Phosphatse by Chemical Reaction

Inorganic phosphate is important component of natural bone, however, current technology is difficult to solve the compatibility between the inorganic phosphate and polyurethanes.

How to introduce the inorganic phosphate, and at the same time avoid above disadvantage is a key problem for enhancing the stability of polyurethane/inorganic phosphate composition. In order to overcome these limitations of composite, covalently attached the inorganic phosphate to polyurethanes by linking group may be a feasible method. Linking group should easily react with the hydroxyl-from inorganic phosphate and the carboxyl- or amino-group from polyurethanes. Silane derivatives are used as modification molecular to link hydroxyl groups (OH) in HA surface to polymer main chain, which is carried out via direct reactions of –OR groups on HA surfaces. At the same time, other functional groups (–NH2) of silane derivatives may further react towards the terminal groups carboxylic group or hydroxyl group. Moreover, glutaraldehyde [43] may be the important cross-linking agent. In addition, in order to ensure the homogeneity of composite, the effective connection of emulsion blending-chemical crosslinking may be an efficient method [44].

For realizing biodegradation, bioactivity and mechanical property of the bone repair materials, the paper puts forward two methods to make the biodegradable materials, which are equipped with the uniform structure and bioactive components.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support from the “Eleven-Five” National Science and Technology Program Support Program of China (2006BAI03B04).

REFERENCES


