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Abstract 
A drug of abuse, Foxy or Methoxy Foxy gained popularity among recreational 
users as an alternative to MDMA (Ecstasy). Considerable research into the 
consequences of MDMA use is available, yet much remains unknown about 
the neurobiological consequences of Foxy use. In addition, research into the 
long-term neuropsychological repercussions associated with these two com-
pounds remains incomplete. The goal of the present research was to explore 
the effects of MDMA or Foxy on cognitive processes associated with adoles-
cent exposure considered over much of the lifespan. Here we investigated 
whether the reported effects following adolescent exposure resolved in early 
adulthood or continued throughout life. The protocol involved repeated doses 
of either MDMA or Foxy during the period defined as mid-adolescence 
(postnatal days 34 - 46) in rats, followed by the use of four series of learning 
and memory tasks repeated at different points in the rodent lifespan. At four 
time points in adulthood, the animals were trained and tested on a on a series 
of spatial and nonspatial memory tasks designed to assess the impact and se-
verity of Foxy and MDMA. Oddly, MDMA-treated rats were impaired on a 
step down passive avoidance task. The performance of the drug-treated rats 
was markedly inferior to that of the control animals on more demanding wa-
ter maze tasks, with some results suggesting a lack of flexibility in adapting to 
changing task demands. MDMA rats were the most impaired. While some 
persistent cognitive deficits were found, no significant group differences in 
serotonin or dopamine levels were found in any of the measured regions of 
the brain changes, cortical or subcortical. These results provide evidence for 
compromised neurocognition that continues long after drug exposure in the 
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absence of any discernable changes in neurotransmitter levels. Several possible 
physiological and neurochemical mechanisms associated with these com-
pounds requiring further study are also outlined. 
 

Keywords 
MDMA, Ecstasy, 5-MeO-DIPT, Foxy, Spatial Learning, Development,  
Memory 

 

1. Introduction 

While adolescence is time of considerable neurodevelopmental change, it is also 
characterized as a period marked with significant risk-taking behavior [1] [2]. 
One of such set of adolescent risk-taking behaviors involves the use of “club 
drugs” such as 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) [3], a 
drug with a variety of potential neurotoxic effects [4]. Owing to the fact that the 
limbic areas and prefrontal cortex continue to undergo considerable matura-
tional change, the adolescent brain is particularly susceptible to the putative 
neurotoxic effects associated with MDMA use [3] [5] [6] [7].  

The recreational use of MDMA is associated with reported effects including 
euphoria [8], enhanced confidence [9], and deeper pro-social feelings and em-
pathy for others leading to its characterizations as an empathogen [10]. Addi-
tionally, a number of neuropsychological deficits associated with MDMA have 
been reported [11] [12] [13]. Various processes have been implicated, including 
excitotoxicity and oxidative stress [14], yet full molecular changes driving these 
neurotoxic effects remain to be fully elucidated [15]. The consensus is that there 
is an MDMA-induced neurodegeneration of serotonin terminals [15] [16] and 
that this compound produces a reduction in CNS serotonin and dopamine levels 
in areas of the brain [17] central for normal learning and memory to occur [18].  

Indolealkylamines (IAA) are a class of chemical derivatives of 5-hydroxy- 
tryptamine (5-HT, serotonin) [19], which principally act on 5-HT systems [20]. 
As a neurotransmitter, 5-HT has been implicated in a number of processes in-
cluding attention, cognition, and memory, dreaming, and pain regulation [21]. 
Some IAAs have been used for medical purposes, with others used in religious 
rites [22]. Unfortunately, as a class which include compounds such as LSD, psi-
locybin, they have considerable potential for recreational abuse and are classified 
under the Controlled Substances Act. Of interest here, one drug, 5-methoxy-N, 
N-diisopropyltryptamine (5-MeO-DIPT; Foxy), has properties similar to other 
tryptaminergic hallucinogens [23] leading recreational users of MDMA and 
other compounds to experiment with it [24]. 

Research into the effects of Foxy with rodent models have led to reports of 
Foxy-associated deficits [24] [25] [26] [27]. While the specific effects associated 
with exposure to Foxy remains to be elucidated, the available evidence is sugges-
tive of deficits primarily associated with compromised attentional processes and 
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response perseveration [28]. Response perseveration is considered distinct from 
motor or motivational deficits and is considered an indicator of impaired cogni-
tion. Such impairments, when found, are associated with a disruption in the 
ability to flexibly change behavior(s) as task demands change. As such, response 
perseveration involves a maladaptive change in executive function [29]. 

Although the available evidence is considerable, most of the measures of be-
havioral performance occur within the confines of a short-term investigation or 
cross-sectional comparison [30]. In humans, both cross-sectional and, more 
rarely, longitudinal studies have suggested MDMA associated deficits on a va-
riety of assessments of learning and memory performance [13]. Reported 
MDMA-associated impairments involve multiple cognitive domains, including 
executive function and planning, working memory, and retrospective as well as 
prospective memory [11] [31]-[37]. Unfortunately, when considered from a 
methodological viewpoint, definitive conclusions derived from this body of re-
search are problematic [30]. Indeed, the quasi-experimental nature of most of 
the reports are limited by the issues associated with the use of pre-existing 
groups, selection biases, and such confounding variables as polydrug use. For 
example, there are reports of equivalent cognitive deficits when ecstasy and non- 
ecstasy drug users are matched by other types of drug use for comparison [38] 
[39] [40]. Nonetheless, other researchers have reported greater cognitive deficits 
among ecstasy users [35] [41]. Thus, given the legal (i.e., US DEA Schedule I) 
and ethical constraints (US HHS, 45 C.F.R. §46, 2009, [42]) associated with ad-
ministering MDMA and other club drugs to humans, animal models allow for 
the critical assessment of the neurotoxic effects these compounds without the 
methodological shortcomings associated much of the work with humans [43].  

Rat adolescence is defined as the period from the 21st postnatal day (PND) 
until about PND 60 [44]. Further, rat adolescence can be subdivided into mid 
adolescence (PNDs 34 to 46) and late adolescence (PNDs 46 to 59). The two de-
velopmental periods are considered analogous to periadolescence and late ado-
lescence/early adulthood [44]. Using this framework as a model of neuropsy-
chological development, comparative evaluation and extrapolation to humans is 
possible [7]. Thus, the use of adolescent rats permits the examination into the 
developmental consequences associated with two drugs of abuse at various 
points in biological and neurocognitive development. 

Developmental investigations of the effects MDMA, suggest the age of expo-
sure to be a critical variable [45]. For example, Broening and colleagues found 
that rats exposed to MDMA on PND 1 through 10 were unimpaired when tested 
on sequential and spatial learning tasks as adults. However, MDMA exposure on 
PND 11 through 20 resulted in dose-dependent learning and memory deficits 
when tested on a series of tasks at PNDs 59 through 82 [46]. Such results are 
consistent with other reports suggesting that the neurotoxic effects of neonatal 
or perinatal MDMA exposure generally are less severe than that observed in 
adult animals [47] [48] [49] [50] [51]. Generally, a long-term decrease in the le-
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vels of 5-HT and 5-HIAA is seen after adolescent exposure of MDMA alterations 
in cognitive performance have been reported in the absence of definitive altera-
tions to serotonergic systems (see [45] [52], for reviews). 

Despite efforts to reduce the use MDMA, including the introduction of more 
effective restrictions in precursor control [53], the drug remains an issue of con-
cern [54]. Indeed, a decline in perceived risk of harm has been observed in a 
survey of teens [55]. Further, although a slight decline since 2003 has been ob-
served, in 2015 roughly 7% of adults have used MDMA, with peak use during 
early (i.e., 18 - 25) adulthood [56]. Noteworthy, reports of the consequences of 
recreational use of ecstasy point to severe toxicity, symptoms of which include 
impairments of prospective and retrospective memory [12] and a variety of phy-
siological effects such as hyperthermia and hypertension [57] [58].  

While the studies discussed here are suggestive, only limited data exists on the 
long-term consequences associated with MDMA or Foxy use, with little infor-
mation available that longitudinally tracks the effects of these compounds across 
an extended period of time. Generally, the use of assessments having occurred at 
a specific time point in the life of the research subject, and using different me-
thodologies, make age-related progression of deterioration associated with these 
compounds, if any, a challenge. Although there is evidence of persistent deficits 
following adolescent exposure of these two compounds [24] [27], including a 
few reports of MDMA or Foxy associated deficits in a rodent rave paradigm [28] 
[59], no research has extended the testing period beyond a few months following 
the drug exposure period. As noted earlier, although a number of cross-sectional 
and some longitudinal investigations with humans as subjects suggest lingering 
deficits in cognitive performance following MDMA abuse [13], such studies 
typically have substantial methodological limitations [30]. Our protocol involved 
repeated doses of either MDMA or Foxy during the period defined as adoles-
cence in rats (i.e., PNDs 34 - 59), followed by the use of four series of learning 
and memory tasks repeated at different points in the rodent lifespan. Therefore, 
the goal of the present investigation was to examine further the effects of 
MDMA or Foxy on cognitive processes associated with adolescent exposure 
across the lifespan. Specifically, here we considered whether the reported effects 
following adolescent exposure resolved in early adulthood or continued 
throughout life.  

2. Method 
2.1. Subjects 

Twenty-one male Long-Evans rats Wistar rats (~100 g at first injection) were 
used to assess the long-term effects of MDMA or Foxy. The rats were indivi-
dually housed in standard stainless-steel cages under standard laboratory condi-
tions of lighting (07:00-19:00 h), with an ambient temperature (19˚C - 21˚C) and 
humidity between 45% and 50%. Food and water were freely available through-
out the investigation. After a one week facility acclimation period and prior to 
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the beginning of the experiment, the animals were randomly assigned to one of 
two drug treatment conditions or a saline control group. From 35 to 45 days of 
age, the rats were exposed to MDMA, Foxy, or a corresponding volume of saline. 
Behavioral testing occurred in adulthood when the rats were 111 days old and 
had been drug free for 66 days. Behavioral testing included four multi-day as-
sessment periods beginning at PNDs 111, 219, 327, and 435. Data collection was 
performed during the light period (12:00-15:00 h). All procedures were con-
ducted according to the guidelines approved by the Institutional Animal Care 
and Use Committee of Palm Beach Atlantic University utilizing standards out-
lined in the Guide for the Care and Use of Laboratory Animals [60]. 

2.2. Drugs and Drug Administration 

Drug exposure began when the rats were in the mid-adolescent period of devel-
opment (i.e., 35 days old). The rats received a total of six injections of MDMA (5 
mg/kg; Sigma-Aldrich, St. Louis, MO), Foxy (5 mg/kg; Biosynth International, 
Naperville, IL), or a corresponding injection volume of isotonic saline. Drugs 
were injected intraperitoneally (IP) at a constant volume of 2 ml/kg. The injec-
tions were delivered at a rate of one injection session every 48 hours. Initial be-
havioral testing occurred in adulthood when the rats were 111 days old and had 
been drug free for 66 days. 

2.3. Apparatus—Morris Water Maze (MWM) 

All variations of spatial and nonspatial assessments took place in a circular white 
acrylic plastic swimming pool 183 cm in diameter. Depending on the assess-
ment, different extra-maze cues and escape parameters were employed. With the 
exception of the cued water maze phase of the experiment (see following), the 
depth of the water was held constant at 30 cm and made an opaque white color 
using a nontoxic water-based paint (Sargant Art, Hazelton, PA). The swimming 
pool and associated cues were located in a quiet testing room approximately 
36.88 square meters in size. The number of external stimuli available to aid na-
vigation when viewed from the surface of the pool was limited by the use of 
white curtain panels that surrounded the pool and obscured distal cues on two 
of four walls. Except on probe trial tests, a flat white escape platform (15 cm × 15 
cm) was used throughout all phases of training and testing. The platform was 
located 18 cm from the wall of the swimming pool, thus necessitating that the rat 
swim away from the swimming pool wall in order to locate the platform. For the 
cued water maze task described below, the platform projected 15 mm above the 
surface of the water. For all other phases of the experiment, the escape platform 
was submerged to a depth of 15 mm below the surface of the water. 

2.4. Procedures 
2.4.1. Assessment of General Activity and Exploration 
Rodent general levels of activity were measured across two 5 min periods (one 
per day) in a 60.96 cm × 60.96 cm chamber consisting of alternating black and 
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white 10.16 cm squares. Activity measures included the number of squares 
crossed during the measurement period and the number of times the rats reared 
onto their hind legs. Lastly, motivational and sensorimotor deficits were assessed 
using a cued version of the MWM task described below. 

2.4.2. Step-Down Passive Avoidance Testing 
Step-down passive avoidance testing took place in a standard operant chamber 
(21-cm × 28-cm; Lafayette Model 84,022) with a stainless steel electrified grid 
floor. A 10.14-cm × 10.14 cm platform was located in the center of the chamber. 
Whenever the rat left the platform, physically touching the grid floor, a 4 mA 
current of foot shock was delivered. 

2.4.3. Water Maze Tasks 
Water maze protocols were employed to assess rodent learning and memory. 
For the cued place learning task, the platform was 15 mm above the water’s sur-
face; For the rest of the tasks, the platform was submerged to a depth of 15 mm 
below the surface of the water (the place & spatial learning set tasks). On a given 
trial during the spatial segments of the experiment, the rat was gently released 
into the pool at one of four compass points, labeled west, east, north, or south, 
and allowed a maximum of 60 sec per trial to reach the escape platform. The 
platform location was positioned at one of four compass positions—southwest, 
southeast, northeast, or northwest. Escape times to the platform were recorded 
with a stopwatch and errors, operationally defined as crossing one of four qua-
drants associated with the four cardinal compass points, were recorded. 

1) Simple (Cued) Place Learning 
The cued place learning MWM navigation task was administered the day after 

step-down passive avoidance testing. Using a visible escape platform, this phase 
allowed for the assessment of nonassociative influences—general swimming 
ability, motivational deficiencies, and nondeclarative memory ability—that could 
influence performance during the spatial place and learning set tasks. The task 
included two days with 10 trials per day with the escape platform located in one 
of four possible locations. After successfully navigating to the platform, the rats 
were allowed to rest on it for about 15 sec before the next trial. 

2) Spatial Water Maze Tasks  
The next two phases of the protocol were tests of spatial reference memory 

that varied in difficulty. The tasks involved learning the location of a submerged 
platform that remained constant across all trials within a given phase of the ex-
periment. Because often only minor deficits are typically seen using the standard 
(high cue) version of this test [61], two variations of the task were used. A more 
difficult version of the place-learning task was included, as the latter version 
used here is considered more sensitive to spatial learning/memory impairments 
following adolescent drug exposure to MDMA or Foxy [28]. 

A more simple (high cue) version of the place-learning task lasted two days 
and consisted of training the rats for 10 trials per day. As earlier, the rats were 
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allowed to remain on the platform for 15 sec at the completion of each trial. 
Further, a test of retention was conducted through the use of a probe trial on the 
second day. This assessment consisted of removing the escape platform and 
testing the subject for a 60 sec “free swim” not less than two hours after the last 
place learning trial. Time spent swimming in the target quadrant and the num-
ber of crossings over the former platform location were recorded. 

The subsequent phase began the following day. A low-cue version of the 
place-learning task, considered to be more difficult, was accomplished through a 
reduction in the availability of extra-maze cues to aid navigation. The rats were 
trained during four consecutive trials per day Task difficulty was increased by 
placing a white curtain around the water maze as well as a single 60-watt red 
light bulb, located beyond the curtain and below the horizon of the pool, ap-
proximately three meters from the water maze. This effectively left the rat with 
few visual cues to aid navigation. After successfully locating the platform, the 
rats were allowed to remain and rest for 15 sec. Lastly, a daily probe trial was 
administered not less than two hours after the last trial of the daily four-trial se-
ries. 

3) Spatial Learning Set 
A final phase of testing, learning set acquisition, required the animals to learn 

a new escape platform location daily for five consecutive days. All animals re-
ceived four consecutive trials per day. Since this task requires the animal to recall 
its response on the immediately preceding trial, the averaged performance on 
Trial 2 of each day was used as an index of working (short-term) memory. As 
before, the rats were allowed to sit on the platform for 15 sec at the completion 
of each trial.  

2.5. Assessment of Brain Dopamine and Serotonin Levels 

One week after the completion of the last behavioral testing phase of the experi-
ment, the animals were sacrificed by cervical fracture. Immediately thereafter, 
the brains were removed, the hippocampus, prefrontal cortex and striatum were 
dissected from 1 mm coronal sections, frozen on dry ice and stored at −80˚C. 
Subsequently, the tissue samples were homogenized in cold 0.2 N perchloric acid 
(Fisher Scientific) with the resulting homogenates centrifuged for 5 minutes at 
14,000 rpm. In an analysis of biogenic amines, the supernatant was divided into 
aliquots for the analysis of biogenic amines dopamine and 5-HT. The aliquots of 
the supernatant were injected onto a C-18 reverse phase column connected to an 
LC amperometric detector (Bioanalytical Systems, West Lafayette, IN) fitted 
with a glassy carbon target electrode. The mobile phase for the separation of do-
pamine and 5-HT consisted of the following—100 mM citric acid, 75 mM so-
dium phosphate, 50 mg/l disodium ethylenediamine tetraacetate, 176 mg/l oc-
tane sulfonic acid sodium salt, 15% methanol (pH 4.2), pumped at a flow rate of 
0.8 ml/min. Peak height determinations were recorded with an integrator, with 
calculations of the quantities of dopamine and 5-HT determined on the basis of 
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known standards. Statistical analysis of tissue dopamine and 5-HT concentra-
tions were considered in units expressed in ng/mg. 

2.6. Data Analysis Plan 

For the step-down passive avoidance task, step-down latencies were analyzed for 
the two-day period. For all MWM tasks, escape latencies and navigation errors 
were the two primary measures of performance. Owning to the fact that optimal 
swim path distances differed depending on the various start and escape loca-
tions, the recorded escape latencies for the four start locations were normalized. 
Normalization was accomplished by computing the ratio of the minimum swim 
distance in cm for each of the two longer swim paths to the escape platform (e.g., 
a south start location and a northeast goal location) to the minimum swim of the 
two shorter swim paths (e.g., a north start location and a northeast goal location) 
trials in cm. 

Statistical analyses involved mixed analysis of variance (ANOVAs), with drug 
group as the between-subjects factor and days, or blocks of trials and days as 
within-subjects factors. In order to meet the ANOVA assumptions, the time data 
were transformed using the reciprocal transformation. Post-hoc analyses were 
performed using TukeyHSD or paired t-tests with a Bonferroni correction to con-
trol for multiple comparisons. A priori alpha level for acceptance was set at p < 
0.05 and the data analyzed using SPSS [62].  

3. Results 
3.1. General Activity 

Assessment of the activity data revealed no group differences in the number of 
squares traversed or in the number of rearings during the measurement period. 

3.2. Step-Down Passive Avoidance 

The step-down passive avoidance data for each measurement period is presented 
in Figure 1. In the first assessment period, main effects of drug group, F(2, 18) = 
6.50, p < 0.001, 2

pη  = 0.419, and day of testing were found, F(1, 18) = 34.30, p < 
0.001, 2

pη  = 0.656, suggesting that stepdown latencies differed by drug group 
and day. Pairwise comparisons of the three groups revealed group differences in 
escape latency between the two drug groups and the saline-treated rats; but 
overall, the stepdown latencies of the two drug groups were comparable. More 
importantly, a significant drug group × day interaction, F(2, 18) = 6.50, p < 0.01, 

2
pη  = 0.419, was also found. Decomposition of the interaction revealed that 

while stepdown latencies were comparable across groups on the first day, the sa-
line-treated rats remained on the safe platform significantly longer than either 
drug group. In addition, unlike the MDMA rats, the Foxy-treated animals re-
mained on the safe platform significantly longer on day two. 

With a few exceptions, the results in the second test period were similar to 
that in the first period. Once again, main effects of drug group, F(1, 18) = 43.67, 
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p < 0.001, 2
pη  = 0.708, and day of testing were found, F(2, 18) = 5.49, p < 0.025, 

2
pη  = 0.379, but post hoc examination of the drug group means indicated that 

only the MDMA latencies differed from those of the saline-treated rats. Finally, 
the drug group × day interaction was significant, F(2, 18) = 5.60, p < 0.025, 2

pη  
= 0.379. Post hoc examination of the means (see Figure 1, Period 2) revealed 
that the saline- and Foxy-treated rats remained on the safe platform significantly 
longer on trial 2 than on trial 1, while stepdown latencies across trials were 
comparable in the MDMA-treated rats. 

When the animals were assessed for the 3rd period, as before, the main effects 
of days, F(1, 18) = 186.19, p < 0.001, 2

pη  = 0.912, and drug groups, F(2, 18) = 
17.56, p < 0.001, 2

pη  = 0.661, as well as drug group X days interaction, F(2, 18) 
= 20.80, p < 0.001, 2

pη  = 0.698, were all significant. Simply, stepdown latencies 
were longer on day 2 and stepdown latencies of the MDMA-treated rats were 
significantly different from that of both the Foxy- and saline-treated animals, 
with the latter two not significantly different. However, unlike at earlier assess-
ment periods, all three groups remained on the escape platform significantly 
longer on day 2, although, as suggested by the interaction, escape latencies on 
this day were significantly longer for the saline- and Foxy-treated animals than 
rats in the MDMA group (see Figure 1, Period 3). 

It should be noted that three rats, one from each group had died during the 
period between the 3rd and 4th assessment periods. As is evidenced by the group 
and drug group × days interaction, both nonsignificant, no drug associated ef-
fects were found at the fourth measurement point. Only the main effect of days 
was significant, with stepdown latencies consistently longer on day 2 for all 
groups, F(1, 15) = 228.24, p < 0.001, 2

pη  = 0.927.  

3.3. Cued Place Learning 

For the cued place learning data, the escape latencies were analyzed using 3 
(drug groups) × 2 (blocks of trials) × days (of testing) mixed ANOVAs, with the 
latter two factors as within-subjects effects. An examination of Period 1 revealed 
a main effect of blocks, F(1, 18) = 34.72, p < 0.001, 2

pη  = 0.659, with latencies 
improving by the second block of training. Similarly, the main effect of days was  

 

 
Figure 1. Step-down passive avoidance learning for the MDMA, Foxy, an control groups. *significant change (p < 0.05) in step- 
down latency on day 2. +significantly different latency from that of the control group (p < 0.05).  
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significant, F(1, 18) = 51.23, p < 0.001, 2
pη  = 0.740, as was the drug group X 

days, F(2, 18) = 11.57, p < 0.01, 2
pη  = 0.562. The remaining interactions were 

nonsignificant. Closer examination of the group X days interaction revealed that 
latencies between the saline- and Foxy-treated rats differed on day two of the 
first assessment period.  

By the 2nd assessment period, all differences among the three groups and evi-
denced by the lack of either a drug main effect or interaction (i.e., all ps > 0.05). 
As the main effect of blocks, smallest F(1, 15) = 12.97, p < 0.01, 2

pη  = 0.464, and 
days, smallest F(1, 15) = 17.96, p < 0.001, 2

pη  = 0.545, suggested, the animals 
generally performed better on latter trials and days of training.  

3.4. Easy Place Learning 

When the easy place learning data were considered, drug effects, if any, resolved 
over assessment periods. During the first phase of testing, only the main effects 
of days, F(1, 18) = 19.59, p < 0.001, 2

pη  = 0.521, and blocks, F(1, 18) = 27.22, p 
< 0.001, 2

pη  = 0.602 were significant, each suggestive of improvements as a 
function of the number of trials. However, assessment of the probe trial data re-
vealed a significant drug effect, F(2, 18) = 10.28, p < 0.01, 2

pη  = 0.533. Subse-
quent TukeyHSD tests revealed that the saline rats spent significantly more time in 
the target quadrant (M = 33.15 sec) than either of the drug groups both of which 
spent similar amounts of time in the target quadrant (Ms = 21.99, Foxy & 22.59, 
MDMA). 

Reviewing the 2nd assessment phase, with the exception of a significant effect 
of drug group, F(2, 18) = 14.38, p < 0.001, 2

pη  = 0.615, no additional main ef-
fects or interactions were found. Interestingly, consideration of the main effect 
revealed that escape times were significantly higher in the Foxy group (M = 3.91 
sec) than in the MDMA and saline groups. Here, the escape times of the latter 
two groups were comparable (Ms = 2.82 & 2.68). Nonetheless, probe trial as-
sessment of time spent in the target quadrant differed by drug group, F(2, 18) = 
27.64, p < 0.001, 2

pη  = 0.754 and, once again, TukeyHSD tests revealed that the 
saline rats spent significantly longer in former escape platform quadrant (M = 
38.01) than either drug group (Ms = 24.21 & 21.26, MDMA & Foxy).  

By the 3rd assessment period, all group differences associated with either main 
effects or interactions were absent. In addition, as evidenced by similar times 
spent in the target quadrant, probe trial performances were comparable. This 
pattern persisted in the 4th assessment period as well. 

3.5. Hard Place Learning 

Data from the four hard place learning assessment periods are presented in Fig-
ure 2. For the hard place learning data, the escape latencies were analyzed using 
3 (drug groups) × 5 days (of testing) mixed ANOVAs. An examination of the 
data from the first assessment period revealed little of interest. Only the main 
effect of days was significant, F(4, 72) = 9.22, p < 0.001, 2

pη  = 0.339, suggesting  
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Figure 2. Hard place learning results. The data reflects escape performance over the 5 test days for each assessment period. Ver-
tical bars represent the standard error of the mean. 
 

an improvement in escape latencies across the assessment period. In addition, 
escape latencies were comparable on the probe trials. 

A drug-related divergence in performance began to emerge in the 2nd assess-
ment period. Here, the main effect of days was significant, F(4, 72) = 7.80, p < 
0.001, 2

pη  = 0.302, as was the main effect of drug group, F(2, 18) = 7.58, p < 
0.01, 2

pη  = 0.457. As seen in Figure 2, Period 2, performance generally im-
proved across the early test days and then stabilized by the fourth test day. More 
importantly, as seen in Figure 2, Period 2, the performance of the saline-treated 
rats (M = 0.382) was superior to that of both drug groups while performance of 
the drug-treated rats was comparable (Ms = 0.331 & 0.236, MDMA & Foxy, re-
spectively). Last, assessment of the probe trial data revealed a significant drug 
effect as well, F(2, 18) = 10.67, p < 0.01, 2

pη  = 0.543. Subsequent TukeyHSD tests 
revealed that the saline rats spent significantly more time in the target quadrant 
(M = 0.026) than either of the drug groups, both of which spent similar amounts 
of time in the target quadrant (Ms = 0.052 & 0.047, MDMA & Foxy-treat rats, 
respectively). 

As seen in Figure 2, Period 3, the patterns of group performance largely con-
tinued. Although the main effect of days was nonsignificant, a main effect of 
drug group was found, F(2, 15) = 10.67, p < 0.01, 2

pη  = 0.477. Once again, the 
performance of saline-treat rats (M = 0.263) was superior to that of both MDMA 
(M = 0.140) and Foxy-treated rats (M = 0.171). Similarly, assessment of the 
probe trial data revealed a significant drug effect, F(2, 15) = 5.72, p < 0.05, 2

pη  = 
0.389, with the saline-treated rats spending significantly more time in the target 
quadrant (M = 0.031) than the MDMA- (M = 0.061) but not the Foxy-treated 
(M = 0.046) rats. 

Although drug effects were detected in the 2nd and 3rd assessment periods, 
no drug associated effects were found in the 4th assessment period and only 
the main effect of days was significant, F(4, 56) = 5.76, p < 0.01, 2

pη  = 0.291, 
(see Figure 2, period 4). In addition, examination of the probe trial data re-
vealed that the time spent in the target quadrant was comparable across all 
groups.  
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Figure 3. Graphical representation of the spatial learning set task for the four assessment periods. The data represent the perfor-
mance on trial one versus trial two collapsed across the 5-day test period. *Significant difference between trial one and trial two 
escape latencies (p < 0.05). **Significantly different from saline rats (p < 0.05). Vertical bars represent the standard error of the 
mean. 

3.6. Spatial Learning Set 

The results associated with the four assessment periods of Learning set perfor-
mance are presented in Figure 3. Here, the data were analyzed using 3 (drug 
groups) × 2 trials (1 vs. 2) mixed ANOVAs, with trials as a within-subjects ef-
fect.  

Considering the 1st assessment period, although the main effect of drug group 
was nonsignificant, a main effect of trials, F(1, 18) = 56.15, p < 0.001, 2

pη  = 
0.757, and a group X trials interaction, F(2, 18) = 4.50, p < 0.05, 2

pη  = 0.333, 
were found. Thus, the rats typically found the platform more quickly on trial 2 
than trial 1; but when considered within each trial, escape latencies differed 
across the groups. Post hoc examination of the groups revealed that on trial 2, 
the saline-treated rats found the platform significantly faster than the MDMA- 
but not the Foxy-treated rats. 

The second assessment period revealed a somewhat similar pattern to that of 
the first assessment. While the main effect of drug group was nonsignificant, a 
main effect of trials was found, F(1, 18) = 18.94, p < 0.001, 2

pη  = 0.513. More 
important, the group X trials interaction remained significant during this as-
sessment phase, F(2, 18) = 6.00, p < 0.025, 2

pη  = 0.400. Subsequent TukeyHSD 
tests revealed that the saline-treated rats located the platform faster on trial 2 
than on trial 1. The performance of these animals was superior to that of the two 
drug-treated groups on this trial, whereas the trial 2 performances were compa-
rable (see Figure 3). However, the Foxy rats also found the escape platform 
more quickly on trial 2 than on trial 1. 

Consideration of the 3rd assessment period data revealed the following: Main 
effects of both drug groups, F(1, 18) = 5.80, p < 0.025, 2

pη  = 0.392, and trials, 
F(1, 18) = 23.01, p < 0.001, 2

pη  = 0.561, were found. Here, escape latencies 
among the saline-treated rats were superior to the drug-treated rats; but the lat-
ter two did not differ, and escape latencies where faster on trial 2. As before, the 
group × trials interaction was significant, F(2, 18) = 8.30, p < 0.01, 2

pη  = 0.480. 
Decomposition of the interaction revealed that only the saline-treated rats found 
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the escape platform faster on trial 2 than on trial 1. In addition, the trial 2 per-
formance of the saline -treated rats was superior to that of both drug groups 
with the latter two again performing similarly.  

By the 4th assessment period, a different pattern emerged (see Figure 3, Period 
4). Here, although at first glance the escape latencies appeared different across 
trials, neither main effects were significant. However, a drug group X trials inte-
raction was found, F(2, 15) = 6.27, p < 0.025, 2

pη  = 0.455. Decomposition of the 
interaction revealed the following: The escape latencies of the MDMA-treated 
rats were significantly higher on trial 2 than on trial 1, while no trial 1 vs. trial 2 
differences were observed among rats in the other two groups. Thus, MDMA- 
treated rats were impaired when the expected platform location was changed on 
trial 2. This observation is further supported by between-group comparisons of 
trial 2 performance. Here, MDMA group latencies were significantly higher than 
those of both the saline- and Foxy-treated rats, neither of which differed from 
the other. Here, the latter two groups did appear to be impaired as a result of the 
trial 2 shift in platform location (see Period 4). 

3.7. Assessment of Brain Dopamine and Serotonin Levels 

Examination of cortical or subcortical dopamine and serotonin levels revealed 
no significant differences between the saline and two drug groups or between the 
MDMA and Foxy-treated animals (all ps > 0.05). 

4. Discussion 

While cost-effective, cross-sectional research designs comparing animals of dif-
ferent ages are limited by the possibility of flawed conclusions about changes 
that occur across time [60]. Often such limitations are discussed in context of 
research on age-related changes in memory performance [63]. On the other hand, 
longitudinal designs permit the examination of changes in memory function 
across a definable period of time, allowing for the examination of time-related 
change as well as physiological and neural changes [64] [65]. Thus, investiga-
tions employing rodent animal models for longitudinal assessment are valuable 
when examining the long-term effects following exposure to potentially neuro-
toxic compounds. Additionally, longitudinal research designs permit the empir-
ical examination of pertinent research questions in time frames that are not 
feasible using longitudinal studies with human adolescents (see [52] for review). 
Here, we were able to assess two such compounds, MDMA and Foxy, using an 
animal model with a significantly shorter lifespan than that of humans. 

One unexpected result of the present experiment, was the persistent difference 
in day two stepdown latencies between the saline and MDMA-treated animals. 
While an improvement in the day two performance of the MDMA-treated ani-
mals was seen across assessment periods, the saline-treated animals remained on 
the platform significantly longer than the MDMA-treated rats. While specula-
tive, a number of reports have implicated MDMA in long-term impairments to 
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cognition, including cognitive impulsivity [11] [27] [33] [37]. 
Mammalian adolescence is a period marked by widespread maturational 

changes in the brain [21]. In humans, neurocognitive assessments clearly suggest 
that adolescent development consistently is associated with marked and contin-
ued improvement in both information processing speed and tasks that are asso-
ciated with executive function. Collectively, these tasks measure key executive 
domains including attention, working memory, decision-making, and inhibition 
of maladaptive responses [1]. Indeed, development continues throughout ado-
lescence with full maturation of prefrontal and associated cortices not occurring 
until early adulthood [1] [66] [67]. Further, a number of maturational changes 
during adolescence to 5-HT brain systems have been elucidated [68] [69]. Diffe-
rential expression of 5-HT receptors with age has also been reported [70]. As a 
consequence, the period of mammalian adolescent brain development is one 
marked by susceptibility to the neurotoxic effects of compounds such as MDMA 
or Foxy [3] [6] [7] [71]. Further, since it can alter dopaminergic activity [7] [72], 
adolescent exposure to drugs such as MDMA may well render the brain more 
vulnerable to subsequent noxious chemical exposure well after the exposure pe-
riod of this compound [3]. Foxy may well produce a similar vulnerability, albeit 
with a smaller effect. At any rate, there is evidence that MDMA can induce a va-
riety of neuroinflammatory responses in a number of brain regions [3]. For ex-
ample, adolescent exposure of MDMA is capable of inducing an increase in as-
troglia [73] as well as increasing both interleukin-1β (IL-1β) and the IL-1β pre-
cursor protein (pro-IL-1β) in the rat frontal cortex and hypothalamus [74].  

When different time points in adolescent development are considered, there is 
convincing evidence that both neurotoxic and neurobehavioral changes normal-
ly associated with MDMA exposure are dependent on the age of exposure [75]. 
In addition, reductions in hippocampal, striatum, and cortical 5-HT levels 60 
days following the final MDMA exposure have been reported [76], a result that 
was consistent with other research [27]. Certainly, variables such as frequency 
and duration of drug exposure are important when considering the neurochem-
ical effects associated with MDMA use [45] [77]. Indeed, there is considerable 
evidence that exposure to a variety of compounds during childhood may con-
tribute to some neurodegenerative diseases processes in the adulthood [78]. For 
example, a number of neurodevelopmental processes, such as increases in neural 
connections and myelination, occur across periods lasting from pre-natal devel-
opment through late adolescence and early adulthood [79]. Given this, exposure 
to exogenous compounds during these periods could indeed adversely impact 
brain development. Yet, such consequences to exposure may not be seen until 
much later in the lifespan. The putative neurotoxic effects of MDMA include 
oxidative stress and oxidative stress and both are commonly associated with 
neurodegenerative disease processes [80] [81]. For example, in one recent report 
exploring such links, adolescent exposure to MDMA in APP/PS1 mice was asso-
ciated with a concomitant increase in Aβ plaques in the striatum in early adult-
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hood [79].  
Including the present investigation, when compared to MDMA, less data is 

available that is concerned with the specific effects and possible health costs as-
sociated with the use of the drug Foxy. Certainly, previous reports about the 
consequences associated with its use by humans [82] [83] and toxicological in-
vestigations [84] [85] [86] were a cause for concern. While relatively few in 
number, the reports using animal models to explore the central nervous system 
effects [24] [25] [26] [27] [87] [88] and sexual dimorphic effects [28] established 
a need to continue to examine the short- and long-term effects of this drug. 

While there is support for the contention that adolescent Foxy exposure is 
capable of producing long-term cognitive changes [26], the effects, when com-
pared to MDMA observed in the present study, are smaller and dissociable from 
the effects of MDMA [24] [28]. Skelton and colleagues suggested that the ob-
served differences in the behavioral effects associated with each drug is a reflec-
tion that MDMA and Foxy are not equipotent and/or do not exert the same level 
of CNS effects [24]. On the basis of the present study, this appears to have some 
validity. Nonetheless, future research is warranted, especially as behavioral defi-
cits were found, presumably long after any definitive alterations in 5-HT levels 
were detected. Indeed, the MDMA and, to a lesser extent, Foxy effects seem to 
persist for a substantial period following abstinence. 

One major finding of our study was a lack of group differences on any of our 
neurochemical measures. First, the drug effects do differ across species. In mice, 
MDMA has relatively selective neurotoxic effects on dopamine, while 5-HT 
concentrations are largely spared. Conversely, 5-HT neurotoxicity is commonly 
reported in studies employing the use of nonhuman primates or rats [89]. Past 
research has indicated that, depending on protocol and dose, MDMA is capable 
of inducing a reduction in 5-HT tissue concentration for up to 52 weeks post- 
exposure [90] [91] (see also, [92]). However, other investigations reported tran-
sient 5-HT deficits with recovery within several months [92] [93] [94] [95]. The 
bulk of the reported research appears to support the supposition that MDMA is 
capable of producing both alterations in the structure of 5-HT terminals as well 
as changes in a number of biochemical markers [96]. Conversely, direct evidence 
of MDMA-related damage to the soma of 5-HT neurons is largely absent [96]. 
As evidence of 5-HT neurotoxicity, this latter observation led to the supposition 
that MDMA is capable of producing a distal axotomy of 5-HT neurons [97] [98]. 
Generally, there is strong support for this from immunohistological studies re-
porting a profound loss of fine serotonergic axon terminals throughout the fo-
rebrain [99] [100].  

Consideration of a human longitudinal study [101] is instructive for the con-
sideration of the findings reported here and elsewhere. In the study, assessment 
of abstinent MDMA users’ memory performance suggested a continued im-
pairment, with no sign of improvement in tests of verbal memory even after over 
two and a half years of abstinence. Following reduced use of MDMA, SERT 
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availability approached that of normal levels and normal SERT availability was 
observed among ex-users—a finding consistent with that of others [102] [103].  

In addition, although further research needs to be done, the age of drug ex-
posure is instructive. Following MDMA exposure to rats from PNDs 35 to 60, 
Piper and Meyer [67] observed a deficit in non-spatial working memory, even 
with a mild reduction in 5-HT binding measured on PND 70. Further, the tim-
ing of exposure appears to be critical [45]. Klomp and colleagues found that, 
while MDMA exposure produced significant reductions in 5-HTT binding in 
areas of the brain, the reductions where considerably smaller in adolescent rats 
when compared to adult rats [49]. Further, the reported reductions were not 
consistent across all measured areas of the brain since the effect associated with 
the age of exposure was observed in the frontal cortex but not in the midbrain. 
Here, the effect is probably a result of the different points in brain development 
and maturation of the midbrain in rats [45]. While MDMA-induced 5-HT neu-
rotoxicity varies depending on the age of exposure, from largely absent during 
gestation to large effects in adulthood, decreased 5-HT or metabolite levels are 
observed following adolescent exposure and compromised cognitive function 
can be observed in the absence of discernable damage to 5-HT brain systems 
[42].  

In addition, García-Cabrerizo and García-Fuster reported that MDMA effects 
produce impairments of the GABAergic system and neurofilament proteins, at 
least in the hippocampus [104]. In this study, the effects were observed inde-
pendently of the stage of development—adolescent or young adult. Such effects 
are in addition to the MDMA-associated degeneration of 5-HT terminals in 
multiple brain regions, including the cortex and hippocampus observed in both 
experimental animal models and research with humans [5] [12] [77] [105]. In a 
review of the literature, Teixeira-Gomes and colleagues [45] found substantial 
evidence of monoaminergic neurotoxicity associated with stimulants including 
MDMA exposure (see also, [106]). As noted earlier, MDMA is capable of pro-
ducing marked reductions in 5-HT levels [107] [108] [109] [110] including the 
induction of degenerative processes to nerve terminals [109] [111], and neuronal 
cell death in widespread areas of the brain [112] [113] [114]. Lastly, MDMA 
stimulates acetylcholine release, although this reported effect appears to be mi-
nor in comparison to its effects on 5-HT and dopaminergic receptors [115].  

Collectively, the MDMA studies clearly point to learning and memory deficits, 
with many of the deficits reflective of problems in higher level cognition [15]. 
Recently, it has been proposed that some of the memory impairments associated 
with MDMA could result from inhibition of hippocampal neurogenesis [104] 
during adolescent MDMA exposure [116]. As Nyberg [15] noted, a number of 
cognitive processes—contextual memory, spatial memory, and working memo-
ry—are directly regulated or influenced by adult hippocampal neurogenesis (see 
also, [117]). Additional factors that separately or collectively in complex ways 
may drive the cognitive effects reported here and elsewhere include alterations 
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in metabolic processes [118] [119], oxidative stress [120] [121], and inflamma-
tion [122]. 

To reiterate, much less is known about the effects of Foxy [26]. Foxy has ef-
fects on 5-HT systems in the brain, acting on the 5-HT2A receptor [123] as a 
SERT inhibitor [124]. An increase in corticosterone is associated with MDMA 
exposure in neonatal [125], young [126], and adult rats [127] [128]. Foxy, too, 
seems to increase corticosterone levels in preweaned and in adult rats [129] 
[130] but not if introduced during adolescence [129]. Such findings have impli-
cations for assessments of cognitive performance since alterations in cortisone 
and glucose levels can modulate memory [131]. 

Among the crucial variables that appear to drive the physiological effects as-
sociated these compounds, the dose of these compounds is a key consideration. 
While a discussion of this issue is beyond the scope of the present report, one 
investigation is illustrative. In this study, the effects of daily exposure of MDMA 
for four days over PNDs 38 to 41 were examined. An MDMA dose of 5 mg/kg 
had no effect on behavioral measures (e.g., anxiety, place conditioning) while a 
dose of 10 mg/kg dose produced a number of effects [5]. Further, the monoami-
nergic parameters were only affected at the 10 mg/kg dose and thus congruent 
with the behavioral effects. Last, 5-HT hippocampal levels were unchanged fol-
lowing the higher MDMA exposure but were reduced in the amygdala. 

While issues associated with interspecies scaling are a concern [132] [133], 
research using nonhuman primates strongly indicated that MDMA caused cor-
tical 5-HT neuron damage [134] [135], with a marked reduction in 5-HT axons 
observed seven years after exposure [134]. Similarly, a decrease in 5-HT synthe-
sis in the frontal cortex has been observed in humans who have abused MDMA 
[136]. However, as noted earlier, owing to the methodological issues associated 
with MDMA research with human subjects, such reports should be considered 
with caution. 

In summary, when considered alongside of previous research [24] [27] [28] 
[88] [125] [126] [130], our results indicate that MDMA and 5-MeO-DIPT cause 
acute but not lasting changes in 5-HT tissue concentrations. In particular, 
MDMA appears to contribute to a long-term cognitive impairment, even in the 
absence of lower measured 5-HT. When the literature is collectively considered, 
mainly 5-HT systems have been studied, although dopaminergic processes have 
been explored [45]. Indeed, this is especially true for MDMA, even with its con-
siderable literature. What clearly is needed, is an array of research activities that 
more broadly examine MDMA-induced neurotoxicity are needed [45]. Similarly, 
research consideration should apply to Foxy as well.  

Limitations 

Although the use of a longitudinal design in our study allowed for the examina-
tion of the long-term consequences of MDMA or Foxy following exposure in 
adolescence, there are still limitations that should be mentioned. First, the origi-
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nal sample size was less than optimal for a study lasting more than a year. Cer-
tainly, the loss of one animal in each group was a foreseeable yet undesirable 
consequence. Thus, the statistical power of the present study is limited. An addi-
tional limitation of the present study was the use only male rats. There continues 
to be concerns raised when including female animals such as an increase in data 
variability [137] usually justified by concerns of hormonal fluctuation in the fe-
male estrus cycle [138]. Given that such concerns are not necessarily supported 
by the evidence [138], the current guidelines of the National Institutes of Health 
encourage consideration of both sexes [139]. As such, the results here should be 
considered in light of this limitation, especially since sex differences in the effects 
of MDMA have been reported [28] [140] [141] [142] [143]. An additional con-
sideration is concerned with the housing of the subjects. Although standard 
stainless-steel rodent cages are still widely used, social housing is recommended 
[60]. While all three groups were housed and maintained under identical condi-
tions, there is evidence that individual housing is stressful to rodents triggering 
behavioral and physiological changes [144] [145]. Last, it might be of interest to 
conduct a longitudinal examination of Greek cross response learning perfor-
mance as both MDMA and Foxy appear to adversely affect performance on this 
task [25] [26] [27]. 
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