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Abstract 
In this paper, we extend a descent algorithm without line search for solving 
unconstrained optimization problems. Under mild conditions, its global con-
vergence is established. Further, we generalize the search direction to more 
general form, and also obtain the global convergence of corresponding algo-
rithm. The numerical results illustrate that the new algorithm is effective. 
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1. Introduction 

Consider an unconstrained optimization problem (UP) 

( )min ,
nx

f x
∈ℜ

                             (1) 

where : nf ℜ →ℜ  is a continuously differentiable function. In general, the 
iterative algorithms for solving (UP) usually take the form: 

1 ,k k k kx x dα+ = +                           (2) 

where ,k kx α  and kd  are current iterative point, a positive step length and a 
search direction, respectively. For simplicity, we denote ( )kf x∇  by kg  and 
( )kf x  by kf . 
The main task in the iterative formula (2) is to choose search direction kd  

and determine step length kα  along the direction. There are many classic 
methods to choose search direction kd , such as the steepest descent methods, 
Newton-type methods, Variable metric methods (see [1]), and conjugate gradient 
methods 
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{
1

if 1,
if 2,

k
k

k k k

g kd g d kβ −

− == − + ≥                     (3) 

where kβ  is a parameter (see [2] [3] [4]). For step length kα , it is usually 
determined by line search procedure, such as exact line search, Wolfe line search, 
Armijo line search, and so on. However, these line search procedures may 
involve extensive computation of objective functions and its gradients, which 
often becomes a significant burden for large-scale problems. Evidently, it is a 
good idea that line search procedure is avoided in algorithm design in order to 
reduce the evaluations of objective functions and gradients. 

Based on the above consideration, some authors have started to study the 
algorithms without line search. Recently, some conjugate gradient algorithms 
without line search were investigated. In [5], Sun and Zhang studied some 
well-known conjugate gradient methods without line search, for instance, 
Fletcher-Reeves method, Hestenes-Stiefel method, Dai-Yuan method, Polak- 
Ribière method and Conjugate Descent method. In [6], Chen and Sun 
researched a two-parameter family of conjugate gradient methods without line 
search. In [7] [8], Wang and Zhu put forward to conjugate gradient path 
methods without line search. Shi, Shen and Zhou proposed descent methods 
without line search in [9] and [10], respectively. Further, Zhou presented the 
steepest descent algorithm without line search in [11]. 

Inspired by the above literatures, in this paper we will extend the descent 
algorithm without line search of [10] to more general case, and discuss its global 
convergence. The rest of this paper is organized as follows. In Section 2, we 
describe the extended descent algorithm without line search. In Section 3, we 
analyze its global convergence. Further, we generalize the search direction to 
more general form, and obtain global convergence of corresponding algorithm. 
Finally, numerical results are reported in Section 4. 

2. Extended Descent Algorithm 
To proceed, we first assume that [2] 

(H1) The function f has lower bound on ( ) ( ){ }1£ |nx f x f x= ∈ℜ ≤ , where 

1x  is available. 
(H2) The gradient g is Lipschitz continuous in an open convex set   that 

contains £ , i.e., there exists 0L >  such that 

( ) ( ) , , .g x g y L x y x y− ≤ − ∀ ∈                 (4) 

Now we give the extended algorithm. 
Algorithm 2.1. Given a starting point 1x , a positive constant  , three 

parameters 1 2,µ µ  and ρ  such that 1 2
10 1
2

µ µ< < < < , 1 1
2

ρ≤ < . Let : 1k = . 

Step 1. If kg <  , then stop; otherwise go to Step 2. 
Step 2. Compute 

( )

2

2 T
1

, 1,

, 2.
1

kk

k k k

k
gs k

g g d

ρ
ρ

ρ ρ −

=
=  ≥
 + −

                (5) 
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Step 3. Set search direction 

( )1 1
1

1 1

, 1,

1 1 , 2.
1 1

k k

k k k k k
k k

k k

s g k

d s sg d kα α
ρ ρ

α α
− −

−
− −

− =


 =  − − + − ≥   + +   

         (6) 

Step 4. Compute step length by the following rule. When 1k = , kα  is 
determined by Wolfe line search, i.e., it satisfies that 

( ) T
1 ,k k k k k k kf x d f g dα µ α+ − ≤                     (7) 

( )T T
2 .k k k k k kg x d d g dα µ+ ≥                      (8) 

When 2k ≥ , 
T

2 ,k k
k

k k

g d
L d

α = −                           (9) 

where kL  satisfies that k kL L m Lρ ≤ ≤  and { }, 1, 2,km k =   is a positive 
sequence which has a sufficient large upper bound. 

Step 5. Set next iterative point 

1 .k k k kx x dα+ = +                        (10) 

Step 6. Set : 1k k= + , and go to Step 1. 
Remark 2.1. Note that the formula of ks  and kd  in Algorithm 2.1 are the 

generalized forms of those in [10]. 

3. Global Convergence 

Lemma 3.1. If Algorithm 2.1 generates an infinite sequence { }, 1, 2,kx k =  , 
then all search directions kd  are descent, and 2k∀ ≥ , it holds that 

2
T

1

.
1

k
k k

k

g
g d

ρ
α −

− ≥
+

                       (11) 

Proof. If 1k = , it is obvious that 2T
1 1 1 0g d gρ− = > . If 2k ≥ , by (5) and 

(6), we have 

( )

( )

( )

2T T1 1
1

1 1

2 2 T1
1

1

2 2 T1
1

1
2

1

1 1
1 1

1
1

1
1

.
1

k k k k
k k k k k

k k

k k
k k k k

k

k k
k k k k

k

k

k

s sg d g g d

sg g g d

sg g g d

g

α α
ρ ρ

α α
α

ρ ρ ρ
α

α
ρ ρ ρ

α

ρ
α

− −
−

− −

−
−

−

−
−

−

−

 
− = − + − 

+ + 

 = − − − +

 ≥ − + − +

=
+

        (12) 

This completes the proof.                                          
Lemma 3.2 (Mean value theorem, see [1]). Suppose that the objective 

function ( )f x  is continuously differentiable on an open convex set  , then 

( ) ( )1 T

0
d ,k k k k k kf x d f g x t d d tα α α+ − = +∫             (13) 
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where ,k k kx x dα+ ∈ , n
kd ∈ℜ . If ( )f x  is twice continuously differentiable 

on  , then 

( ) ( )1 2
0

d ,k k k k k kg x d g f x t d d tα α α+ − = ∇ +∫             (14) 

and 

( ) ( ) ( )1T 2 T 2
0

1 d .k k k k k k k k kf x d f g d t d f x t d d tα α α α+ − = + − ∇ +∫    (15) 

Lemma 3.3. 2k∀ ≥ , 
2 22

1
3 .k i

i k
d gρ

≤ ≤

≤ ⋅ ∑                     (16) 

Proof. Where 2k ≥ , it holds that ( ) ( ) 2T
11 1k k k k ks g d s gρ ρ−− = −  by (5). 

Then 2k∀ ≥ , we have 

( )

( ) ( )

( )

( )

2
2 1 1

1
1 1

2
22 1 1

1 1

2
22T1 1

1 1
1 1

2 22 T
1 1

2 22 2
1

1 1
1 1

1 2 1
1 1

1 1
1 1

2 1

2 1

k k k k
k k k

k k

k k k k
k

k k

k k k k
k k k

k k

k k k k k

k k k k

s sd g d

s sg

s sg d d

g s g d d

g s g d

α α
ρ ρ

α α

α α
ρ ρ

α α

α α
ρ ρ

α α

ρ ρ ρ

ρ ρ

− −
−

− −

− −

− −

− −
− −

− −

− −

−

 
= − + − 

+ + 

   
= − + −   

+ +   

 
⋅ − ⋅ + −  

+ + 

≤ + − +

= + − + 2 2 22
13 .k kg dρ −≤ +

 

Using induction principle and noting that 2 22
1 1d gρ= , it yields that 

2 2 2 2 22 2 2 2
1 2 13 3 3 .k k k kd g g g gρ ρ ρ ρ− −≤ + + + +  

Therefore (16) holds. The proof is completed.                          
Theorem 3.1. If (H1), (H2) hold, and Algorithm 2.1 generates an infinite 

sequence { }, 1, 2,kx k =  , then 

( )

4

2 2
2 1

1

;
1

k

k k i
i k

g

gα

+∞

= −
≤ ≤

< +∞
+

∑
∑

                   (17) 

and 

2

2 1

.
1

k
k

k k

gα
α

+∞

= −

< +∞
+∑                      (18) 

Proof. When 2k ≥ , from (13), (4), Lemma 3.1, Lemma 3.3 and 

k kL L m Lρ ≤ ≤ , it yields that 

( )

( )

( )

1 T
1 0

1 TT
0
1T
0

1 2 2T 2 T 2
0

d

d

d

1d
2

k k k k k k k

k k k k k k k k k

k k k k k k k k k

k k k k k k k k k k

f f g x t d d t

g d g x t d g d t

g d g x t d g d t

g d L t d t g d L d

α α

α α α

α α α

α α α α

+− = − +

 = − − + − 

≥ − − + − ⋅

≥ − − = − −

∫

∫

∫

∫
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( ) ( )( )

( )
( )

( )
( )

2 2T T

2 2 22

42

2 22 2
1

1
4

2 22
1

1

2 11 1
2 2

2 1

2 1 3

2 1
,

6 1

k k k k

k k k k k

k

k k i
i k

k

k k i
i k

g d g d

L L d Lm d

g

Lm g

g

Lm g

ρ

ρ ρ

α ρ

ρ

α

−
≤ ≤

−
≤ ≤

− 
= − ≥ 
 

− ⋅
≥

+ ⋅ ⋅

−
=

+

∑

∑

              (19) 

which implies that { }, 1, 2,kf k =   is a decreasing sequence. And it is clear that 
the sequence { }, 1, 2,kx k =   generated by Algorithm 2.1 is contained in   
by (H1), and there exists a constant *f  such that *limk kf f→∞ = . Therefore 

( ) ( ) ( ) *
1 1 2 1 2

2 2
lim lim .

N

k k k k NN Nk k
f f f f f f f f

+∞

+ + +→+∞ →+∞= =

− = − = − = −∑ ∑  

Thus 

( )1
2

,k k
k

f f
+∞

+
=

− < +∞∑  

which combining with (19) yields 

( )

4

2 22
2 1

1

.
1

k

k k k i
i k

g

m gα

+∞

= −
≤ ≤

< +∞
+

∑
∑

                  (20) 

Since { }, 1, 2,km k =   has an upper bound, (17) holds. 
On the other hand, by (9) and Lemma 3.1, we have 

( )( )

( )( ) ( )
( )

2T 2
1

TT
T

T 2

1

1
2

2

2 2

2 1 2 1
.

2 2 1

k k k k k k k

k k k kk k k
k k k

k k

k k k k k

k

f f g d L d

L L g dL g dg d
L L

g d g

α α

αα
α

ρ α ρ α
ρ α

+

−

− ≥ − −

−
= − + = −

− −
≥ − ≥

+

         (21) 

By the same analysis as the above proof, (18) holds. The proof is completed.  
Lemma 3.4 (see [12]). If the conditions in Theorem 3.1 hold and 

{ }1supk kα≥ < +∞ , then both the sequence { }, 1, 2,kg k =   and { }, 1, 2,kd k =   
have a bound. 

Theorem 3.2. If the conditions in Theorem 3.1 hold, then 

liminf 0.k kg→+∞ =                       (22) 

Proof. Suppose liminf 0k kg→+∞ ≠ , then there exists a positive γ  such that  

, 1.kg kγ≥ ∀ ≥                       (23) 

In the following, we carry out our proofs in two cases. 
Case 1. We complete the proof by utilizing reduction to absurdity. Suppose 

that { }1supk kα≥ < +∞ . By (17), we have 
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4

2
2

1

k

k i
i k

g

g

+∞

=

≤ ≤

< +∞∑
∑

                       (24) 

From Lemma 3.4, we know that there exists 0M >  such that 
, 1kg M k≤ ∀ ≥ . Combining (23), we have 

4 4

2 2

1

.k

i
i k

g
k Mg
γ

≤ ≤

≥
⋅∑

 

It is known that 
4 4

2 2
2 2

1 ,
k k kk M M

γ γ+∞ +∞

= =

= = +∞
⋅∑ ∑  

So 
4

2
2

1

,k

k i
i k

g

g

+∞

=

≤ ≤

= +∞∑
∑

                     (25) 

which contradicts with (24). Therefore (22) holds. 
Case 2. When { }1supk kα≥ = +∞ , the proof is the same as that in [10] and here 

is omitted. 
It follows from the proofs of Case 1 and Case 2 that (22) holds. This completes 

the proof.                                                         
Remark 3.1. Search direction of Algorithm 2.1 can be extended to more 

general form as follows: 

( )( ) ( ) ( )1 1 1

, 1,
1 1 , 2,

k k
k

k k k k k k

s g k
d

s g s d kρ ϕ α ρ φϕ α− − −

− == − − ± − ≥
     (26) 

where the function ( )ϕ α  satisfies the following conditions(see [10]): 
a) It is continuous and strictly monotone increasing when [ )0,α ∈ +∞ ; 
b) ( ) ( )0

lim 0 0
α

ϕ α ϕ+→
= =  and ( )lim 1α ϕ α→+∞ = ; 

c) ( )( )1α ϕ α−  is continuous, strictly monotone increasing when 
[ )0,α ∈ +∞ , and 

( )( )lim 1 1.
α

α ϕ α
→+∞

− =  

Evidently, there are many functions satisfying the conditions (a)-(c). For 

example, 
1
α
α+

, 
2

21
α
α α+ +

, 
3

2 31
α
α α+ +

, etc (see [10]). We denote Algorithm 

2.1 in which kd  is determined by (26) as Algorithm 3.1. By using proof 
technique of above Theorem 3.2, it is easy to get its convergence theorem. 

4. Numerical Results 

In this section, we report some preliminary numerical experiments. The test 
problems and their initial values are drawn from [13]. 

In numerical experiment, we take the parameter 100kL = ,and stop the 
iteration if the inequality 510kg −≤  is satisfied. The detailed numerical results 
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Table 1. Numerical results. 

Problem Dim NI NF NG Problem Dim NI NF NG 

ROSE 2 8 10 11 TRID 3 66 67 68 

FROTH 2 6 7 8  50 84 85 86 

GAUSS 3 126 128 129  100 86 87 88 

BOX 3 1 51 52  200 85 87 89 

SING 4 20 21 22 BAND 3 22 23 24 

WOOD 4 6 7 8  50 27 28 29 

BD 4 5 7 9  100 23 25 27 

ROSEX 8 9 11 12  200 24 26 28 

 50 8 9 10 LIN 2 1 3 5 

 100 8 9 10  50 1 3 5 

SINGX 4 20 21 22  500 1 3 5 

PEN2 50 3 4 5  1000 1 3 5 

VARDI
M 

2 99 100 101 LIN1 2 18 19 20 

 50 4 5 6  10 1 3 5 

 
are reported in Table 1, in which NI, NF and NG denote the total number of 
iterations, the total number of function evaluations and the total number of 
gradient evaluations, respectively. From Table 1, we can see the extended 
algorithm has good numerical results. 

5. Conclusion 

In this paper, we extended the descent algorithm without line search of [10] to 
more general case, and got its global convergence. Compared with [10], the 
extended algorithm has more effective numerical perfermance, so it is effective. 
In the future, we will further research the descent algorithms without line search, 
and try to get some new descent algorithms without line search, which not only 
convergence globally, but also have good numerical results. 
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