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Abstract 
Three (2 + 1)-dimensional equations—Burgers equation, cylindrical Burgers 
equation and spherical Burgers equation, have been reduced to the classical 
Burgers equation by different transformation of variables respectively. The 
decay mode solutions of the Burgers equation have been obtained by using the 

extended 
G
G
′ 

 
 

-expansion method, substituting the solutions obtained into 

the corresponding transformation of variables, the decay mode solutions of 
the three (2 + 1)-dimensional equations have been obtained successfully. 
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1. Introduction 

Many famous nonlinear evolution equations such as Korteweg-de Vries (KdV), 
Modified KdV (mKdV), Kadomstev-Perviashvili (KP), Coupled KP and Zakha-
rov-Kuznetsov (ZK) have been obtained by using the standard reductive pertur-
bation method in nonlinear propagation of dust-acoustic wave, especially, the 
dust-acoustic solitary wave (DASW) in space and laboratory plasma [1]-[7]. Re-
cent theoretical studies for ion-acoustic/dust-acoustic waves show that the 
properties of solitary waves in bounded nonplanar cylindrical/spherical geome-
try differ from that in unbounded planar geometry. The effects of dissipation on 
the propagation of soliton waves are scarcely discussed, especially, for nonplanar 
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waves [8]. A dissipative cylindrical/spherical KdV is obtained by using the stan-
dard reductive perturbation method in Ref. [8]. It is known that the transverse 
perturbations always exist in the higher-dimensional system. Anisotropy is in-
troduced into the system and the wave structure and stability are modified by 
the transverse perturbation. A spherical KP (SKP) equation is obtained by using 
the standard reductive perturbation method [9]. The cylindrical KP Equation 
(CKP) is also be introduced by Johnson [10] [11] to describe surface wave in a 
shallow incompressible fluid. 

Following the extension sense of the KP equation Ref. [12] developed the (2 + 
1)-Burgers equation in the form 

( ) 0,t x xx yyx
u uu vu uλ+ + + =                    (1) 

where v is a constant that defines the kinematic viscosity, λ  is a constant. If 
surface tension is weak compared to gravitational forces, then 0λ >  is used. 
However if surface tension is strong, then 0λ <  is used. The kink solutions 
and periodic solutions were obtained by using the tanh-coth method, N-soliton 
solutions were established by applying the powerful Hirota’s bilinear method in 
Ref. [12].  

In this work, following the extension sense of (2 + 1)-Burgers equation [12] 
and cylindrical KP equation [10] [11] [13] [14] the (2 + 1)-cylindrical Burgers 
equation can be developed in the form 

2
1 0,
2t x xx yy

x

u uu vu u u
t t

λ + + + + = 
 

               (2) 

where v is a constant that defines the kinematic viscosity, λ  is a constant. 
Following the (2 + 1)-Burgers equation and spherical KP equation [9], the (2 

+ 1)-spherical Burgers equation can be developed in the form 

2
1 1 0,t x xx yy y

x

u uu vu u u u
t yt

λ   + + + + + =  
   

            (3) 

where v is a constant that defines the kinematic viscosity, λ  is a constant. 
The nonlinear evolution equation can describe various motions. So it is im-

portant to study their exact solutions. There exist many kinds of solutions to 
some integrable equations such as soliton, complexiton, negaton, rational and 
periodic solutions [13]. Besides these solutions, there exists the decay mode so-
liton which was proposed by Nakamura [13] [15]. Physically, the only difference 
between soliton and decay mode is that soliton is absolutely stable while decay 
mode vanishes eventually as time passes. The decay mode solutions for the cy-
lindrical KP equation were obtained by the Backlund transformation and Hirota 
method in Ref. [13]. The solutions of the CKP in Ref. [13] were expressed in 
terms of the Airy functions. The 1-decay mode and 2-decay mode solutions of 
the CKP equation have been obtained in terms of the nonlinear transformation 
derived by using the simplified homogeneous balance method (SHB) [14] [16] 
[17] in Ref. [14]. 

In the present paper, the aim is to study the decay mode solutions of Equa-
tions (1), (2) and (3). The paper is organized as follows: In Section 2, making 
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transformation of variables, by which reduction of (2 + 1)-dimensional Burgers 
equation, cylindrical Burgers equation and spherical Burgers equation to the 
classical Burgers equation; In Section 3, the decay mode solutions of the classical  

Burgers equation are obtained by using the extended 
G
G
′ 

 
 

-expansion method 

(the original 
G
G
′ 

 
 

-expansion method can be found in Ref. [18]); In Section 4,  

using the results obtained in Section 3, the decay mode solutions of Equations 
(1), (2) and (3) can be obtained by using different transformations of variables, 
respectively; In Section 5, some conclusions are made.  

2. Reduction of (2 + 1)-Dimensional Burgers Equation,  
Cylindrical Burgers Equation and Spherical  
Burgers Equation 

In Equation (1), assume that 

( ) ( ), , , ,u w t x q y tξ ξ= = −                    (4) 

where ( ),q q y t=  is to be determined later. Substituting Equation (4) into Eq-
uation (1), yields an equation as follows 

( ) ( )2 0.t yy y tw ww vw q w q q wξ ξξ ξ ξξλ λ
ξ
∂

+ + − + − =
∂

         (5) 

Setting the coefficients of wξ  and wξξ  to zero, yields 
20, 0.yy y tq q qλ λ− = − =                      (6) 

the system (6) admits a solution: 

( ) 2, ,q y t y tµ λµ= +                        (7) 

where µ  is a nonzero arbitrary constant. Using Equation (7) the expression (4) 
becomes 

( ) ( )2, , ,u w t x y tξ ξ µ λµ= = − +                   (8) 

and after integrating Equation (5) with respect to ξ  once and taking the con-
stant of integration to zero, Equation (5) becomes the classical Burgers equation 
for ( ),w w tξ=  

0.tw ww vwξ ξξ+ + =                       (9) 

From the discussion above, the conclusion can be made that the (2 + 1)-di- 
mensional Burgers Equation (1) for ( ), ,u u x y t=  is reduced to the Burgers 
Equation (9) for ( ),w w tξ=  by using the transformation of variables (8), if 
( ),w tξ  is a solution of Burgers Equation (9), substituting it into Equation (8), 

then the exact solution of the (2 + 1)-Burgers equation can be obtained. 
Similarly, the (2 + 1)-dimensional cylindrical Burgers Equation (2) for 

( ), ,u u x y t=  is reduced to Equation (9) for ( ),w w tξ=  by using the trans-
formation of variables  

( ) 2 21, , ,
4

u w t x y t yt tξ ξ µ λµ
λ

 = = − + + 
 

            (10) 
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where µ  is a nonzero arbitrary constant, if ( ),w tξ  is a solution of Equation 
(9), and substituting it into Equation (10), the exact solution of Equation (2) can 
be obtained. 

The conclusion can be made that the (2 + 1)-dimensional spherical Burgers 
Equation (3) for ( ), ,u u x y t=  is reduced to Equation (9) for ( ),w w tξ=  by 
using the transformation of variables  

( ) 21, , ,
4

u w t x y tξ ξ µ
λ

 = = − + 
 

               (11) 

where µ  is a nonzero arbitrary constant, if ( ),w tξ  is a solution of Equation 
(9), and substituting it into Equation (11), the exact solution of Equation (3) can 
be obtained. 

3. Decay Mode Solution of Burgers Equation 
Considering the homogeneous balance between wwξ  and wξξ  in Equation (9) 

( 2 1 2 1m m m+ = + → = ), according to the extended 
G
G
′ 

 
 

-expansion method,  

a suppose can be made that the solution of Equation (9) is of the form 

( ) ( )
( ) ( )1 0, , ,

G
w v t v t

G
ϕ

ξ ξ
ϕ

′
= +                    (12) 

where ( ) ( ) ( )1 1 0 0, , , , ,v v t t v v tξ ϕ ϕ ξ ξ= = =  are to be determined later (No-

ticed that in the original 
G
G
′ 

 
 

-expansion, 1 0,v v  are constants, x vtϕ ξ= = −  

is traveling waves), and ( )G G ϕ=  satisfies the second order LODE 

0,G Gδ′′ + =                           (13) 

where δ  is a constant to be determined later. 
When 0δ < , ODE (13) has general solution 

( ) ( ) ( )cosh sinhG A Bϕ δϕ δϕ= − + − , ,A B  are constants 

then 

( )
( )

( ) ( )
( ) ( )

sinh cosh
.

cosh sinh

A BG
G A B

δϕ δϕϕ
δ

ϕ δϕ δϕ

− + −′
= −

− + −
           (14) 

Choose 0B = , then 

( )
( ) ( )tanh .

G
G

ϕ
δ δϕ

ϕ
′

= − −                    (15) 

Now our main goal is to determine ( ) ( ) ( )1 1 0 0, , , ,v v t t v v tξ ϕ ϕ ξ ξ= = =,  
and constant δ , such that expression (12) satisfies Equation (9).  

Substituting Equation (12) into the left side of Equation (9), collecting the 

coefficients of each power of 
iG

G
′ 

 
  ,

 ( 0,1, 2,3i = ), setting each coefficient to 

zero, the PDEs can be obtained for ( ) ( ) ( )1 1 0 0, , , , ,v v t t v v tξ ϕ ϕ ξ ξ= = =  as 
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follows 

( )
3

1 1: 2 0,G v v v
G ξ ξϕ ϕ
′  − − = 

 
                   (16) 

( )
2

1 1 0 1: 2 0,t
G v v v v v v
G ξ ξ ξ ξ ξξϕ ϕ ϕ ϕ
′  − − + − + = 

 
            (17) 

( )2 2
1 1 1 0 0 1 1: 2 0,t

G v v v v v v v vv
G ξ ξ ξ ξ ξξδ ϕ δϕ
′  − + + + + = 

 
         (18) 

( )
0

0 0 0 1 1 0 0: 2 0.t t
G v v v v v v v v vv
G ξ ξ ξ ξ ξξ ξξδϕ δ ϕ ϕ ϕ
′  + − − + + + = 

 
      (19) 

Simplifying Equations (16)-(19), then 

1 2 ,v v ξϕ=                             (20) 

( )02 0,tv v vξ ξ ξξϕ ϕ ϕ ϕ− + + =                    (21) 

( )02 0,tv v vξ ξξϕ ϕ ϕ
ξ
∂

+ + =
∂

                   (22) 

( ) ( )0 0 0 0 02 3 0.t tv v v vv v v vξ ξξ ξ ξ ξξδ ϕ ϕ ϕ ϕ+ + − + − =            (23) 

Noticed that in Equations (20)-(23), if  

0 ,v
t
ξϕ = =  then 1

22 ,vv v
tξϕ= =                  (24) 

Equations (20)-(23) are satisfied completely for arbitrary constant 0δ < .  
Substituting Equation (15) and Equation (24) into Equation (12), the decay 

mode solution for Equation (9) can be expressed as follows 

( ) 2, tanh , 0.vw t
t t t
δ δξ ξξ δ

 − −
= + <  

 
            (25) 

As far as we know, the solution (25) has never seen in early literatures. 

4. Decay Mode Solutions of (2 + 1)-Burgers Equation,  
Cylindrical Burgers Equation and Spherical  
Burgers Equation 

Substituting Equation (25) into Equation (8), the decay mode solution for Equa-
tion (1) can be obtained as follows 

( ) 2, , tanh ,vu x y t
t t t
δ δξ ξ − −

= +  
 

              (26) 

where 0δ <  and ( )2x y tξ µ λµ= − + .  
Substituting Equation (25) into Equation (10), the decay mode solution for 

Equation (2) can be obtained as follows 

( ) 2, , tanh ,vu x y t
t t t
δ δξ ξ − −

= +  
 

             (27) 

where 0δ <  and 2 21
4

x y t yt tξ µ λµ
λ

 = − + + 
 

.  
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Substituting Equation (25) into Equation (11), the decay mode solution for 
Equation (3) can be obtained as follows 

( ) 2, , tanh ,vu x y t
t t t
δ δξ ξ − −

= +  
 

             (28) 

where 0δ <  and 21
4

x y tξ µ
λ

 = − + 
 

.  

5. Conclusion 

In this paper, by making corresponding transformation of variables, the (2 + 1)- 
dimensional Burgers equation, (2 + 1)-dimensional cylindrical Burgers equation 
and (2 + 1)-dimensional spherical Burgers equation are all reduced to the clas- 

sical Burgers equation, which can be solved by using extended 
G
G
′ 

 
 

-expansion  

method to obtain a novel type of decay mode solution. Substituting the novel 
solution of the Burgers equation into the corresponding transformation of va-
riables, the decay mode solutions of the (2 + 1)-dimensional Burgers equation, 
(2 + 1)-dimensional cylindrical Burgers equation and (2 + 1)-dimensional 
spherical Burgers equation have been obtained for the first time, respectively. 
The analysis may be extended to other works to make further progress. 
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