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Abstract 
We compare several approximations for second derivatives with Smoothed 
Particle Hydrodynamics (SPH). A first-order consistent approximation, de-
rived from the zeroth-order consistent Corrective Smoothed Particle Method 
(CSPM), is proposed. The accuracy of the new method (ICSPM) is similar to 
that of the Finite Particle Method (FPM) and Modified Smoothed Particle 
Hydrodynamics (MSPH), but it is computationally less expensive. We dem-
onstrate the accuracy of our method by studying heat conduction in a slab 
with discontinuous conductivity coefficients. We use both uniformly and 
pseudo-randomly distributed particles. 
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1. Introduction 

Smoothed Particle Hydrodynamics (SPH) is a spatial discretisation method to 
solve partial differential equations. It is a mesh-free, Lagrangian method in 
which the system is represented by a finite set of particles. SPH was originally 
developed to solve astrophysical problems [1] [2], but many advantages of the 
method compared to conventional methods for specific types of problems made 
it attract attention in other areas, such as fluid and solid mechanics. For instance, 
with SPH, free surfaces are very easy to deal with [3]. Also, SPH is quite 
straightforwardly applicable to multiphase flows [4] [5] [6], flows with fluid- 
structure interaction [7] [8], and so on. 

As opposed to the astrophysical problems that SPH was initially applied to, 
most fluid and solid mechanics problems have solid/physical domain boundaries. 
As a consequence, the support domain of particles close to these boundaries 
overlaps with the empty area behind it, which has a major negative influence on 
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the accuracy of the SPH approximations. Consistency is also lost if particles are 
not uniformly distributed, which is the case in most simulations. Restoring the 
consistency for functions and first-derivative approximations is fairly straight- 
forward and can be achieved by using correction terms as in, e.g. [9]. An exten-
sive comparison between correction methods can be found in [10]. Correcting 
second-derivative approximations, however, is more complicated. 

Second derivatives (or the Laplacian) appear in viscous terms, conduction eq-
uations and in the pressure Poisson equation that is used in incompressible SPH. 
Flebbe et al. [11] straightforwardly computed the second-derivative terms by 
first computing the gradient of the unknown variable and then computing the 
divergence of the result. This sometimes led to non-physical oscillations in the 
solution [12]. Originally, approximations for second derivatives included second 
derivatives of the kernel function, which are sensitive to particle disorder [13] 
[14]. Therefore, several ways to restore the consistency have been proposed in 
the literature. Many researchers have suggested to use expressions based on first 
derivatives of the kernel function rather than the second derivatives, because 
they are less sensitive to the particle distribution [13] [14]. However, these ex-
pressions do not solve the consistency problem near boundaries. Some re- 
searchers have therefore proposed to include boundary terms in the approxima-
tion [15] [16]. Also, there is quite some literature available on Reproducing 
Kernel Particle Methods (RKPM) and similar approaches [17] [18] [19], which 
are designed to give approximations up to a desired order of consistency. They 
can lead, however, to partially negative, non-symmetric and non-monotonically 
decreasing smoothing functions and are therefore not preferred for hydro-dy- 
namic simulations [20]. A different approach was followed by Chen and Beraun 
[21], who present a method in which an estimate for the leading error term is 
subtracted from the approximation. Other researchers use methods in which a 
function and all of its desired derivatives are solved simultaneously [22] [23] 
[24]. These methods have higher accuracy, but are also computationally expen-
sive. 

In this work we only consider methods that use conventional smoothing func-
tions. This excludes the previously mentioned RKPM. We describe the original 
SPH method to approximate second derivatives, as well as the methods by Chen 
and Beraun [21] and Zhang and Batra [23]. We also propose an improvement to 
the estimate by Chen and Beraun. Our method is computationally only slightly 
more expensive than the method by Chen and Beraun, but its accuracy is similar 
to that of the method by Zhang and Batra. We compare numerical results in one 
and two dimensions for both uniformly and non-uniformly distributed particles, 
but are especially interested in the latter, because it most accurately resembles 
particle distributions from actual simulations. Initial results have been presented 
in [25] [26].  

2. Smoothed Particle Hydrodynamics 

There are two approaches to derive the SPH equations for fluid flows in the lite-
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rature. The first one is primarily concerned with choosing a density estimate. 
Substituting this estimate into the Lagrangian then leads to a system of equations 
conserving both linear and angular momentum. This approach is explained in 
detail by Price [14]. The second approach considers SPH to be a spatial discreti-
sation scheme which can be applied to any set of equations, e.g. the Navi-
er-Stokes equations. In this paper we adopt the latter view on SPH. A short de-
rivation of the SPH equations will follow. For more details we refer to, e.g. 
[27]. 

2.1. The Kernel Approximation 

Consider a function f , defined on a domain Ω . Then the value of f  at an 
arbitrary point x∈Ω  can be written as:  

( ) ( ) ( )d .f x f x x x xδ
Ω

= −∫                     (1) 

Here, ( )δ ⋅  is the Dirac delta distribution:  

( )
if    0,

0 otherwise.
z

zδ
∞ =

= 


                   (2) 

In SPH, ( )δ ⋅  is replaced by a continuous function ( ),K h⋅ , with 0h >  a 
smoothing parameter. K  is called the smoothing or kernel function and should 
converge to the Dirac delta distribution as h  goes to zero. Preferably it is also 
radially symmetric, has compact support and satisfies the unity condition for all 
x∈Ω :  

( ), d 1.K x x h x
Ω

− =∫                       (3) 

Not satisfying the unity condition—to be more precise, its discrete equiva- 
lent—is the main reason for inaccurate approximations. This will be explained 
in more detail later. Replacing the Dirac delta function by K  leads to the fol-
lowing approximation:  

( ) ( ) ( ), d ,f x f x K x x h x
Ω

≈ −∫                   (4) 

which is called the kernel approximation of f . Note that it is a weighted aver-
age over the values of f  at all points x∈Ω , including x  itself. 

2.2. The Particle Approximation 

To get a numerically useful expression, a quadrature rule is applied to (4). This 
results in a partitioning of the (computational) domain Ω  by a finite number 
of so-called particles. The summation for a particular particle is limited to those 
particles that are within the support domain of the particle. This is illustrated in 
Figure 1. Here, H  is the support radius. Defining iS  as the set of particles 
within the support domain of particle i , (4) is approximated by:  

: ,
i

i j ij j
j S

f f K V
∈

=∑                   (5) 

where  jV  i s  the volume of  part ic le  j ,  jf  denotes  ( )jf x  and 

( ): ,ij i jK K x x h= − . The approximation in (5) is called the particle approxima-  
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Figure 1. Support domain of a particle illustrated in two dimensions. 

 
tion of f . When applied to a physical problem, the volume of a particle is 
usually replaced by the ratio of its mass and density, j j jV m ρ= , but since this 
is not necessary for our derivations we will stick to the notation in (5). 

2.3. Derivatives in SPH 

Approximations for derivatives are found by replacing f  by its derivatives in 
(4). For instance, substituting f∇  leads to:  

( ) ( ), d .if f x K x x h x
Ω

∇ ≈ ∇ −∫                     (6) 

Integrating by parts gives:  

( ) ( )( ) ( ) ( ), , , d ,i xf B f x K x x h f x K x x h x
Ω∂Ω

∇ ≈ − − ∇ −∫ 

           (7) 

where B  is a function depending on f  and K  and ∂Ω  denotes the 
boundary of Ω . The first term on the right-hand side of (7) is a boundary term 
that is usually neglected, since it is zero for particles sufficiently far away from 
the boundaries. Hence, only the second term on the right-hand side remains and, 
after discretising, we find:  

: .
j

i
i j x ij j

j S
f f K V

∈

∇ = − ∇∑                    (8) 

Similarly, we can derive an approximation for the Laplacian by substituting 
2 f∇  for f  in (4). Integrating by parts twice, neglecting boundary terms and 

discretising leads to:  
2 2: .

j
i

i j x ij j
j S

f f K V
∈

∇ = ∇∑                    (9) 

Note that in both the approximation for the gradient and the Laplacian the de-
rivative operator has switched from f  to K . Since K  is known, these ex-
pressions can be computed. 

Substituting a Taylor series expansion for jf  around ix  in (9) reveals that 
the leading error term of this estimate can be subtracted to find the more accu-
rate estimate:  

( )2 2

SPH
: .

j
i

i j i x ij j
j S

f f f K V
∈

∇ = − ∇∑               (10) 

Here, the subscript “SPH” was added to indicate that this is the standard SPH 
equation used in Section 5. In practice, (10) is rarely used. The reason is that for 
most kernels the second derivatives have very steep gradients, making the ap-
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proximation very sensitive to irregularities in the particle distribution [13] [14]. 
An alternative expression is given by Brookshaw [13]:  

( )2
2Brookshaw

: 2 ,j

i

ij x ij
i j i j

j S ij

x K
f f f V

x∈

⋅∇
∇ = −∑            (11) 

where :ij i jx x x= − . This approximation uses first derivatives of the kernel func-
tion instead of second derivatives, which makes it less sensitive to changes in the 
particle distribution [13]. However, it has accuracy issues that are explained in 
the next section. 

2.4. Error Analysis 

The simple expressions in (10) and (11) have a downside: their accuracy de-
creases for particles close to boundaries or when the particle distribution is irre-
gular. This can be shown by substituting a Taylor series expansion for jf  
around ix . For (10), for instance, this gives:  

( ) ( )

( ) 

2 T T 3 2

T 2 T 2

1
2

1 ,
2

j j
i i

j j
i i

j i x ij j ji i ji f ji x ij ji
j S j S

ji i x ij j ji f ji x ij ji
j S j S

f f K V x f x H x h K V

x f K V x H x K V h

∈ ∈

∈ ∈

 − ∇ = ∇ + + ∇  

= ∇ ∇ + ∇ +

∑ ∑

∑ ∑




 (12) 

where fH  denotes the Hessian matrix of f . The term that we are approxi- 
mating, the Laplacian, is contained in the second term on the right-hand side of 
(12). 

The first term on the right-hand side of (12) is an ( )1h− -error term that 
vanishes in the ideal conditions of a uniform particle distribution and no boun-
daries, but it does not if a particle is close to a boundary or is surrounded by ir-
regularly located particles. A similar ( )1h− -error term can be found for (11). 

Furthermore, it is impossible to distill the exact Laplacian from the second 
term, because the separate second-derivative terms have different coefficients. 
This leads to an additional ( )1 -error, which also holds for (11). In the next 
section we discuss several methods that were designed to give more accurate ap-
proximations. 

3. Second Derivative Approximations with Higher Accuracy 

This chapter describes two methods that approximate the Laplacian with higher 
accuracy than the conventional estimate in (11). We discuss the Corrective 
Smoothed Particle Method (CSPM) and the Modified Smoothed Particle Hy-
drodynamics (MSPH) method. 

3.1. Corrective Smoothed Particle Method 

This method, described in various papers by Chen and his colleagues [21] [28] 
[29] [30] [31] starts from the Taylor series expansion of jf  around ix :  

( )T T 31 .
2 ij i ji i ji f jif f x f x H x O h= + ∇ + +               (13) 

In all derivations to come, we assume Ω  is a two-dimensional domain and x  
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and y  refer to the two independent spatial directions. We stress, however, that 
it is possible to extend everything in Sections 3 and 4 to three dimensions. To 
compute second derivatives, the first term on the right-hand side of (13) is first 
subtracted from both sides of the equation. The result is multiplied by the vector 

ijKh , with h  defined as:  

T2 2 2

2 2: , , .f
f f fh

x yx y
 ∂ ∂ ∂

=  ∂ ∂∂ ∂ 
                   (14) 

Multiplying (13) by jV  and summing over all the particles leads to:  

( ) ( ) ( ) ( )T T1 .
2ij ij

i i i
j i K j ji i K j ji f ji K ji ij

j S j S j S
f f h V x f h V x H x h V h

∈ ∈ ∈

− = ∇ + +∑ ∑ ∑    (15) 

In (15) and in the rest of this paper, the derivatives in 
ijKh  are taken with re-

spect to jx . The first term on the right-hand side of (15) is a ( )1h− -term. We 
wish to subtract it from both sides of the equation, but since if∇  is unknown 
we are forced to use an approximation for that as well. A derivation similar to 
the one that led to (15), but with 

jx ijK∇  instead of 
ijKh , gives:  

( ) ( ) ( )T
j j

i i
j i x ij j ji i x ij j

j S j S
f f K V x f K V h

∈ ∈

− ∇ = ∇ ∇ +∑ ∑            (16) 

( ), ,i if h∇= Γ ∇ +                     (17) 

where ,i ∇Γ  is the normalisation matrix defined by:  

T
, : .

j
i

i x ij j ji
j S

K V x∇
∈

Γ = ∇∑                      (18) 

Multiplying (16) by the inverse of ,i ∇Γ  leads to a first-order accurate approxi-
mation for the gradient:  

( ) ( )1
,CSPM

: .
j

i
i i j i x ij j i

j S
f f f K V f h−

∇
∈

∇ = Γ − ∇ = ∇ +∑           (19) 

The gradient approximation in (19) is substituted for if∇  in (15). Subtracting 
the first term on the right-hand side gives:  

( ) ( ) ( ) ( )T T
CSPM

1 .
2ij ij i ij

i i i
j i K j ji i K j ji f ji K j

j S j S j S
f f h V x f h V x H x h V h

∈ ∈ ∈

− − ∇ ≈ +∑ ∑ ∑  (20) 

It can be shown that the first term on the right-hand side of (20) can be written 
as , ii h fhΓ , where ,i hΓ  is the normalisation matrix defined by:  

T
,

1: ,
2 ij

i
i h K j ij

j S
h V ξ

∈

Γ = ∑                      (21) 

with T
ijξ  the following vector:  

( ) ( ) ( ) ( )( )2 2T : , 2 , .ij i j i j i j i jx x x x y y y yξ = − − − −        (22) 

Multiplying the left-hand side of (20) by the inverse of ,i hΓ  gives the final 
CSPM approximation for second derivatives:  

( ) ( )1 T
, CSPMCSPM

: .
i ij ij

i i
f i h j i K j ji i K j

j S j S
h f f h V x f h V−

∈ ∈

 
= Γ − − ∇ 

 
∑ ∑    (23) 
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By using an approximation for if∇  in (15), an error was introduced, as indi-
cated by the approximation symbol in (20). As a result, normalising the first 
term on the right-hand side of (20) does not lead to the desired first-order accu-
rate approximation. Instead, the first-order error of the gradient estimate makes 
that the approximation in (23) is zeroth-order accurate, i.e.:  

( )
CSPM

1 .
if fi

h h= +                   (24) 

In Section 4 we show how this approximation can be improved to be first- order 
accurate. 

3.2. Modified Smoothed Particle Hydrodynamics 

Zhang and Batra [23] [32] describe a different approach to compute second de-
rivatives. In their method, a vector iϕ  is computed that consists of an approx-
imation of f  itself, all its first-order derivatives and all its second-order deriv-
atives:  

( )TTT: , , .
ii i i ff f hϕ = ∇                 (25) 

This is achieved by multiplying (13) by ijK , ijK∇  and 
ijKh , leading to six equ-

ations for six unknowns (in two dimensions) for each particle. Because all un-
knowns are put in one single vector, this method requires the inversion of 6 6× - 
matrices. This is computationally expensive, but it leads to more accurate results 
than with the method described in Section 3.1. In fact, if we isolate 

if
h  from 

iϕ , we find:  

( )
MSPH

.
i if fh h h= +                   (26) 

It is possible to achieve similar accuracy without using these larger matrices. For 
that we need only one adjustment to CSPM. This is described in Section 4. 

4. Improved CSPM: A First-Order Accurate Estimate  
for Second Derivatives 

4.1. Improving the Normalisation Matrix 

In Section 3.1 we showed that the CSPM approximation for second derivatives is 
zeroth-order consistent. The crucial step in improving the accuracy is keeping 
the first-order terms in (16) separate from the second and higher-order terms. 
This gives:  

( ) ( ) ( ) ( )T T 21 ,
2j j i j

i i i
j i x ij j ji i x ij j ji f ji x ij j

j S j S j S
f f K V x f K V x H x K V h

∈ ∈ ∈

− ∇ = ∇ ∇ + ∇ +∑ ∑ ∑ 

      (27) 

so that, instead of (19), we find:  

( ) ( )1 T 2
,CSPM

1 .
2 i j

i
i i i ji f ji x ij j

j S
f f x H x K V h−

∇
∈

∇ = ∇ + Γ ∇ +∑          (28) 

Accounting for the extra term in (28) leads to the adjustment of (20) to:  
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( ) ( )

( ) ( ) ( )

( )

T
CSPM

T T 1 T
,

T 1 T
, ,

1 1
2 2

1 ,
2

ij ij
i i

i ij i j ij
i i i

ij j i
i i

j i K j ji i K j
j S j S

ji f ji K j ji i ji f ji x ij j K j
j S j S j S

i h K ji i j x ij ij j f
j S j S

f f h V x f h V

x H x h V x x H x K V h V h

h x V K V h hξ

∈ ∈

−
∇

∈ ∈ ∈

−
∇

∈ ∈

− − ∇

 
= − Γ ∇ + 

 
 

= Γ − Γ ∇ + 
 

∑ ∑

∑ ∑ ∑

∑ ∑





(29) 

with ,i hΓ  and ijξ  as defined in (21) and (22), respectively. Note that the nor- 
malisation matrix ,i hΓ  is the normalisation matrix used in CSPM. We propose 
to use the following approximation for second derivatives instead of (23):  

( ) ( )1 T
, CSPMICSPM

: ,
i ij ij

i i
f i h j i K j ji i K j

j S j S
h f f h V x f h V−

∈ ∈

 
= Γ − − ∇ 

 
∑ ∑    (30) 

with ,i hΓ  the normalisation matrix:  

T 1 T
, , ,

1: ,
2ij

i i
i h i h K ji j i x ij ij jj

j S j S
h x V K Vξ−

∇
∈ ∈

Γ = Γ − Γ ∇∑ ∑           (31) 

which we designate as improved CSPM (ICSPM). This method is slightly more 
expensive than CSPM, but it requires the same effort regarding matrix inver-
sions. Yet, it follows directly from the definition of ,i hΓ  and (29) that this ap-
proximation is first-order accurate:  

( )
ICSPM

.
i if fh h h= +                    (32) 

In Section 5 we explore the behaviour of ICSPM and compare it with the stan-
dard SPH, CSPM and MSPH approximations described in Sections 3.1, 3.2 and 
2.3. 

4.2. Accuracy versus Computational Cost 

The methods described in Sections 3.1, 3.2 and 4 are more accurate, but also 
computationally more expensive than (11). Therefore, if the available computa-
tion time is limited, (11) is the approximation to go for. Also, if the domain has 
no boundaries, particles are distributed regularly, or if accuracy is simply not of 
great importance, (11) is a perfectly good estimate for the Laplacian. However, if 
accuracy is important and a somewhat higher computational cost is not an issue, 
CSPM, MSPH and ICSPM are attractive alternatives. Moreover, these methods 
give approximations for all second derivative-terms instead of just the Laplacian. 

The MSPH method by Zhang and Batra [23] [32] requires the inversion of 6 × 6- 
matrices (in two dimensions) and 10 × 10-matrices (in three dimensions). This 
makes the method computationally more expensive than CSPM, which splits the 
problem into smaller sets of equations, so that it only requires the inversion of 
2 × 2 and 3 × 3-matrices (in two dimensions) and 3 × 3 and 6 × 6-matrices (in 
three dimensions). MSPH, however, is more accurate, as it is first-order accurate 
(26), whereas CSPM is only zeroth-order accurate (24). 

With the improved normalisation step in Section 4, we have found a method 
that is computationally similar to CSPM—it only additionally requires the expli-
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cit computation of the sums in (31)—but which has the same order of accuracy 
as MSPH. We will verify this with numerical examples in Section 5. 

In principle it is possible to increase the accuracy to any order. This might not 
be obvious with CSPM, but it is quite straightforward with MSPH. However, 
every increment in order introduces a number of extra equations to solve (si-
multaneously), so that it is not worth the effort for any order higher than one. 
Hence, if accurate approximations for second derivatives are required, we rec-
ommend ICSPM (30). This method is more accurate than CSPM, while the extra 
computational effort is negligible. MSPH has a similar accuracy, but is computa-
tionally more expensive. 

5. Numerical Experiments 

This section describes three numerical case studies to compare the various me-
thods that were discussed previously. The first one yields the computation of a 
one-dimensional second derivative. In the second and third case study we con-
sider a time-dependent problem on a two-dimensional domain. In all three ex-
periments we use the Wendland 2C  kernel, which, in one-dimension, is given 
by:  

( ) ( ) ( )3
1

5, 1 3 1 ,
4DW R H R R

H +
= − +               (33) 

where ( ) ( ): max ,0
+

⋅ = ⋅  and H  is the radius of the support domain. As sug-
gested by Dehnen and Aly [33], we choose the smoothing length equal to twice 
the standard deviation, so that ( )21 8H h= . In two dimensions, the 2C  
Wendland kernel has a different form:  

( ) ( ) ( )4
2 2

7, 1 4 1 ,
πDW R H R R

H +
= − +             (34) 

with ( )18 5H h= . In our test cases we use these kernels with R  the ratio 
between particle distance and H . 

5.1. Second Derivative on a One-Dimensional Domain 

We start with a one-dimensional domain [ ]0,1Ω = , on which we compute the 
second derivative of the given function ( ) ( )40.5f x x= − . This test case was al-
so performed by Zhang and Batra [23]. The analytical solution is available and is 
equal to ( ) ( )212 0.5f x x′′ = − . Therefore, we can calculate the exact error, for 
which we use the infinity norm:  

1, ,
max ,i ii N

E f f
=

′′ ′′= −


                   (35) 

where N  is the total number of particles. We use 1.5h x= ∆ , with x∆  the 
(uniform) inter-particle distance, equal to that of Zhang and Batra [23]. The two 
left panels of Figure 2 show the results with 21N =  particles. The particles are 
distributed both uniformly (top) and pseudo-randomly (bottom), where in the 
latter case the boundary particles are kept on the boundary. As we can see in the 
figure, the particle distribution has no great effect on the results, except for the 
standard SPH discretisation. 



S. P. Korzilius et al. 
 

177 

 
(a)                                       (b) 

 
(c)                                       (d) 

Figure 2. Approximating a second derivative with uniformly and pseudo-randomly dis-
tributed particles. A comparison between the analytical solution and four estimates. (a) 
Estimates (uniform); (b) Errors (uniform); (c) Estimates (random); (d) Errors (random). 
 

We also calculate the errors according to (35) for several values of N . These 
are shown in the two right panels of Figure 2. They clearly show the ( )1h− - 
convergence of SPH, the ( )1 -convergence of CSPM and the ( )h -conver- 
gence of MSPH and ICSPM. Note that the error plots for MSPH and ICSPM 
coincide. 

5.2. Heat Conduction on a Two-Dimensional Domain 

Next, we compute the time-dependent temperature distribution on a two-di- 
mensional domain [ ]20,1Ω = , a test case by Cleary and Monaghan [34]. The 
equation governing the conduction process is:  

2 ,v
Tc T
t

ρ κ∂
= ∇

∂
                      (36) 

with parameter choices 10ρ =  and 1vc κ= = . Initially, we have the following 
temperature distribution:  

( ) ( ) ( ), , 0 sin π sin π ,T x y x y=                 (37) 

which is shown in Figure 3. We assume four isothermal walls with 0T = . The  
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Figure 3. The initial temperature distribution. 
 
analytical solution of this problem is known and reads:  

( ) ( ) ( ) 22π, , sin π sin π ,tT x y t x y e α−=               (38) 

where ( )vcα κ ρ= . Since our main interest is the comparison between the 
various spatial discretisations, it is sufficient to use the explicit Euler time step-
ping scheme. The time step used depends on the spatial discretisation distance 
and is chosen as 20.25 xyt∆ = ∆ , where refxy V∆ = , with refV  the reference vo-
lume, equal to the volume of an interior particle. 

In this case study we use two expressions for the error. The first one is similar 
to (35), but looks at the temperature itself rather than the Laplacian:  

abs 1, ,
max .i ii N

E T T
=

= −


                  (39) 

The second one considers the relative errors at the positions of the particles in-
stead of the absolute errors:  

rel 1, ,
max .i i

i N
i

T T
E

T=

−
=



                  (40) 

We choose the smoothing length to be 1.2 xyh = ∆ , equal to that of Cleary and 
Monaghan [34]. We use pseudo-random particle distributions, so as to compare 
the methods with distributions that resemble realistic particle configurations. 
Starting with a uniform distribution, every particle is randomly shifted in both 
the horizontal and vertical direction, either to the left or to the right and up or 
down, with a maximum displacement of 2 5 xy∆  in either direction. Boundary 
particles are only shifted in one direction, such that they stay on the boundaries, 
while corner particles are entirely excluded from the shifting process. 

The results in the left panel of Figure 4 show the temperature distributions at 
0.5t =  for the various methods, which we generated with a 17 × 17 particle dis-

tribution. Clearly, the standard SPH scheme performs worse. Yet, approxima-
tions with similar behaviour are often used in the literature. The CSPM, MSPH 
and ICSPM solutions are very close and in this figure cannot by distinguished by 
the naked eye. The left panel in Figure 5 shows, however, that there is a differ-
ence in behaviour between CSPM on the one hand, and MSPH and ICSPM on 
the other hand. Although initially the three methods have comparable errors, for 
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(a)                                        (b) 

Figure 4. The temperature profile at 0.5t =  for the particles for which x y≈  and the 
particle distribution showing the volumes of particles, which form a Voronoi tessellation. 
(a) Temperature profile; (b) Particle distribution. 
 

 
(a)                                       (b) 

Figure 5. The absolute errors (39) and relative errors (40) for the heat conduction prob-
lem at 0.5t =  for several values of N . (a) Absolute errors; (b) Relative errors. 
 
larger N  the CSPM method is less accurate than both MSPH and ICSPM. 

The results in the right panel in Figure 5, for which we used the error in (40), 
show even more clearly that there is a significant difference in behaviour be-
tween CSPM and ICSPM (and MSPH). Clearly, the zeroth-order consistency of 
CSPM results in a zeroth-order convergence for the temperature as well, in con-
trast to ICSPM and MSPH, which are second-order convergent. MSPH is 
slightly more stable and accurate than ICSPM. 

5.3. Heat Conduction in Slabs with Discontinuous Parameters 

In the final test case we study the effect of discontinuous parameters. Cleary and 
Monaghan [34] describe the heat conduction in a slab of unit width which is pe-
riodic in the y -direction. The slab consists of two different materials, each with 
their own set of parameters, touching each other at the interface at 0.5x = . In-
itially, the left half of the slab has zero temperature, 0T =



, while the right half 
has temperature 1rT = . Since κ  is no longer constant on the whole domain, 
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in the approximations it is replaced with:  
2

: .i j
ij

i j

κ κ
κ

κ κ
=

+
                        (41) 

When the temperature variation of the outermost points is small, the analytical 
solution can be approximated by [34] [35]:  

( )
( ) ( )( )

( ) ( )( )

erfc 0.5 2 , for  0.5,

, ,
1 erf 0.5 2 , for  0.5.

r r

r
r r r

r

x t x
T

T x y t
x t x

α
κ α

κ ακ α κ α α
κ α

 − <
= 

+  + − >








 



 (42) 

We start with a discontinuity only in the conductivity. For the left half it is set to 
10κ =



, while for the right it is 1rκ = . The densities are 1000rρ ρ= =


 and 
1vc =  for both halves of the slab. We uniformly distribute 40 particles in the x - 

direction and 20 in the y -direction and we apply an explicit Euler time step-
ping scheme with time step size 2t x∆ = ∆ . Figure 6 shows the temperature dis-
tribution along the x -direction for the ICSPM derived in this work. The left 
panel shows the temperature at 0.2t = , while at the right 1t = . As time 
progresses, the errors become smaller. This is confirmed by the errors in Table 1, 
which shows the maximum relative errors (40) for the Brookshaw method used 
 

 
(a)                                       (b) 

Figure 6. Heat distribution along the x -direction. The conductivity of the left half of the 
slab is 10κ =



, while for the right it is 1rκ = . (a) Temperature at 0.2t = ; (b) Temper-
ature at 1t = . 
 
Table 1. Maximum relative errors for the particles for which 0.4x > , for various num-
ber of particles, when 10κ =



 and 1rκ = . (a) Errors at 0.2t = ; (b) Errors at 1t = . 

(a) 

xN  Brookshaw ICSPM 

20 5.6286e−01 5.8289e−01 

40 3.5167e−01 3.7193e−01 

80 1.5544e−01 1.4564e−01 

(b) 

xN  Brookshaw ICSPM 

20 1.7908e−01 2.2687e−01 

40 4.5102e−02 6.3108e−02 

80 2.0079e−02 1.8011e−02 
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by Cleary and Monaghan and the ICSPM. To avoid dividing by small numbers 
we only consider particles for which 0.4x > . 

Next, we consider the case where both the conductivity and the specific heat 
are discontinuous. We choose 1cκ = =

 

, while 3r rcκ = = . The temperature 
distribution at 5t =  is shown in the left panel of Figure 7. Again, we find that 
the temperature distribution is captured very well. The maximum relative errors 
are shown on the left in Table 2. The Brookshaw solution decreases only margi-
nally when going from 40xN =  to 80xN = . For the case 80xN = , the error 
in the left table is one order lower for the ICSPM for these particular parameter 
choices. This behaviour seems to be coincidental, however, since the Brookshaw 
approximation and the ICSPM usually perform similarly in the infinite slab test 
case. 

Finally, we also take the density to be discontinuous at the interface. We 
choose 1cκ = =

 

 and 2000ρ =


, while 3rκ = , 1rc =  and 1000rρ = . The 
temperature distribution at 2t =  is shown in the right panel in Figure 7. The 
relative errors are shown on the right in Table 2. Just like in the previous cases, 
the temperature distribution is captured very well and the errors become smaller 
for increasing numbers of particles. Since the particles are uniformly distributed 
and there are no boundaries causing problems, both methods behave similarly. 
The test cases in this section show, however, that ICSPM can also handle discon-
tinuous parameters. 
 

 
(a)                                       (b) 

Figure 7. Heat distribution along the x -direction (a) at 5t =  when 3r rcκ = =  and 
(b) at 2t =  when 3rκ =  and 2000ρ =



. (a) Temperature; (b) Temperature. 

 
Table 2. Maximum relative errors for particles 0.4x >  (a) at 5t =  when 3r rcκ = =  
and (b) at 2t =  when 3rκ =  and 2000ρ =



 for various number of particles. (a) Er-
rors; (b) Errors. 

(a) 

xN  Brookshaw ICSPM 

20 6.4844e−02 5.8971e−02 
40 3.1786e−02 1.2137e−02 
80 2.4560e−02 2.4052e−03 

(b) 

xN  Brookshaw ICSPM 

20 1.3655e−01 2.5540e−01 
40 5.9399e−02 1.6845e−01 
80 5.1394e−02 6.5388e−02 
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6. Summary 

We studied approximations of second-derivative terms (or the Laplacian) in 
Smoothed Particle Hydrodynamics (SPH). Second derivatives appear in viscosity 
and conduction terms, and in Poisson equations. Traditionally, second deriva-
tives have been approximated with the second derivatives of the kernel function, 
but these showed to be sensitive to particle disorder. Therefore various other 
methods and improvements have been suggested in the literature. 

We proposed an improvement to the Corrective Smoothed Particle Method 
(CSPM) that increased the consistency of the estimates from zeroth-order to 
first-order. This method, called improved CSPM (ICSPM), was—together with 
several other methods—applied to one and two-dimensional test cases. The one- 
dimensional test case clearly showed the high accuracy of ICSPM compared to 
CSPM. In the first two-dimensional test case we solved the heat equation and 
compared errors of the temperature itself, rather than the Laplacian. With the 
absolute error, the difference between CSPM and ICSPM was already clearly 
visible, but when we considered the relative error the difference between the two 
methods was even more obvious. In the third test case we computed the temper-
ature distribution for an infinite slab consisting of two different materials. The 
results showed that our improved approximation is perfectly capable of handling 
discontinuous parameters.   

ICSPM is computationally only slightly more expensive than CSPM. Yet, its 
accuracy is similar to that of more expensive methods, such as the Finite Particle 
Method (FMP) and Modified Smoothed Particle Hydrodynamics (MSPH), al-
though MSPH proved to be a bit more stable in specific cases. 
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