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Abstract 
In this paper, a hibernation plankton-nutrient chemostat model with delayed 
response in growth is considered. By using the stroboscopic map and the 
theorem of impulsive delay differential equation, a plankton-extinction 
boundary periodic solution is obtained. The sufficient conditions on the per-
manence and globally attractive of the chemostat system are also obtained. 
Our main results reveal that the delayed response in growth plays an impor-
tant role on the dynamical behaviors of system.  
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1. Introduction 

The chemostat is an important experimental instrument used to provide a con-
trolled environment. Under this condition, the experimenter can adjust the pa-
rameters of system and get the final outcome. This chemostat model had been 
discussed by Smith and Waltman in [1]. In fact, the taken nutrient will not im-
mediately absorbed by microorganism. In other words, nutrients with transfor-
mation from the substrate to microorganism have a lag time. Many scholars [2] 
[3] [4] [5] make discussion about chemostat model with discrete time delay. 
However, the system will have some changes because of the influence of climate; 
these perturbations break the continuity of the system. So the impulsive diffe-
rential equations are considered into the system in [6] [7] [8] [9]. It is important 
for us to know more about ecology.  

In recent years, some authors pay more attention to the hibernation of the 
plankton. The hibernation has an important sense of adaptation in ecology. Due 
to unfavorable environmental conditions, the plankton enters a hibernation state 
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in advance. In order to save energy, plankton must maintain the weak life period 
overcoming the difficulties, such as drought stress, cold climate and tempera-
ture. The pressures elimination will restore growth. By hibernation, animals can 
reduce energy requirement and survive a few months in [10]. Some scholars also 
proposed that hibernation can make animals through hardship on cold envi-
ronments and limited availability of food in [11]. However, there are many fac-
tors of plankton movements in the lakes, such as currents and river diffusion. 
These researches are seen in Levin and Segel [12] and Okubo [13]. Ruan dis-
cussed Turing instability and the existence of travelling wave solutions in [14].  

Furthermore, it is necessary to study a chemostat model with hibernation and 
impulsive diffusion on nutrients. In [15], the author considered the dynamics of 
a plankton-nutrient chemostat model with hibernation and it was described by 
impulsive switched systems as follows 
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where [ )0,Rτ +∈ = ∞ , n Z+∈ , Z+  is the set of all positive integers; ( )1S t  and 
( )2S t  represent the concentration of the nutrient in the river and reservoir at 

time t  respectively. ( )x t  is the concentration of the plankton in the reservoir 
at time t . 0

1S  is the input nutrient concentration in the river. D  is the dilu-
tion rate. 1K  is the yield of plankton ( )x t  per unit mass of substrate. 1d  is 
the death rate of the plankton in the intervals of hibernation. ( )( )1S n L τ ++  and 

( )( )2S n L τ ++  are the concentration of the nutrient in the river and reservoir 
immediately after the n th diffusion pulse at time t nτ=  respectively, while 

( )( )1S n L τ+  and ( )( )2S n L τ+  are the concentration of the nutrient in the 
river and reservoir before the n th diffusion pulse at time ( )t n L τ= +  sepa-
rately. Due to the effect climate, the period of system is divided into two sections. 
That is normal seasons and drought seasons. In the normal seasons, the plank-
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ton grow regularly. The plankton is in hibernation in the drought seasons. 
( )t n L τ= +  are moments of torrential rain, the nutrient is diffusing between 

rivers and reservoir in moments of torrential rain. ( )1t n τ= +  are moments of 
rainy season. 1µ  and 2µ  are the amount of nutrients coming from surround-
ing soil in moments of rainy season.  

Based on the above discussion, we consider the following a hibernation 
plankton-nutrient chemostat model with delayed response in growth  
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Suppose system (1.2) is connected by impulsive diffusion spread between riv-
ers and reservoirs. There is no nutrients input in reservoir. Nutrient input is 
thought to come from the upper stream. Where constant 1 0τ ≥  represents the 
time delay involved in the conversion of nutrient to plankton. Due to the che-
mostat outflow, 1e Dτ−  is the positive constant, since it is assumed that the cur-
rent change in biomass depends on the amount of nutrient consumed 1τ  units 
of time before time t  and that survive in the chemostat the 1τ  units of time 
assumed necessary to complete the nutrient conversion process. Other parame-
ters are the same as system (1.1). ( )x t  is continuous on ( )( ,n n Lτ τ+    
and ( ) ( )( , 1n L nτ τ+ +  , there exists ( )( ) ( ) ( )lim

t n L
x n L x t

τ
τ +
+

 → + 
+ =  and 

( )( ) ( ) ( )
1

1 lim
t n

x n x t
τ

τ +
+

 → + 
+ = .  

For system (1.2), we will discuss the sufficient and necessary conditions for 
the permanence and extinction. This paper can be summarized as follows. In 
Section 2, we present some preliminary results about system (1.2). Our results 
about extinction are stated and proven in Section 3. In Section 4, we study the 
permanence of system (1.2). Finally, we give a brief discussion and numerical 
analysis. 
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2. Preliminary Results 

In this part, we will give some lemmas which will be useful for our main results.  
Lemma 1. [16] Consider the following impulsive differential system  
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Lemma 2. [17] Consider the following delay differential equation:  
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where ,a b  and 1τ  are all positive constants and ( ) 0x t >  for [ ]1, 0t τ∈ − . 
a) If 1 2r r< , then ( )lim 0t x t→∞ = ; 
b) If 1 2r r> , then ( )limt x t→∞ = ∞ .  
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The proof of Lemma 3 is simple so we omit it here. 

3. Extinction 

The solution of system (1.2) corresponding to ( ) 0x t =  is called plankton-ex- 
tinction periodic solution. For system (1.2), if we select ( ) 0x t ≡ , then system 
(1.2) becomes the following model  
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Integrating and solving the system (3.1) equations between pulses, we have  
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Consider the stroboscopic map of system (3.1), from the third, fourth, seventh 
and eighth equations of system (3.1) we have:  
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where 2Ŝη ε= + . From the second equation of (1.2) we have ( ) ( )S t DS t≤ − .  
Consider the following equations with pulse  

( ) ( )( )
( ) ( )

( )(

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )( )
( ) ( )

( ) ( )(

( ) ( )

( ) ( )
( )

1 0 1

2 2

1 1 1

2 2 1

1 0 1

2 2

1 1 1

2 2 2

   , ,

,
,

,

,
  , 1 ,

,

,
      1 .

.

Z t D S Z t
t n n L

Z t DZ t

Z t Z t dZ t
t n L

Z t Z t dZ t

Z t D S Z t
t n L n

Z t DZ t

Z t Z t
t n

Z t Z t

τ τ

τ

τ τ

µ
τ

µ

+

+

+

+

 = −  ∈ +   = − 
 = −  = + = +  


= −  ∈ + +  = −  


= +  = + 
= + 









       (3.9) 

From(3.6) and (3.9) we have that ( ) ( ) ( ) ( )1 1 2 2,  S t Z t S t Z t≤ ≤  and  
( ) ( ) ( ) ( )

1 1 2 2,  Z t S t Z t S t→ →  as t →∞ . Therefore, there exist a integer 1n  
and an arbitrary positive parameter ε , such that  

( )2 2
ˆ :S t S ε η≤ + =                      (3.10) 

for all 1t nτ≥ , where ( ) ( )* *
2 2 1 0

ˆ e e e e e 1D DL D D DLS S dS dSτ τ τ τ τ− − − −= + + + − . For 

1 1t nτ τ> + , from (3.10) and the second equation of (1.1), we have  

( ) ( ) ( )
1

1
e .

Dmx t x t Dx t
K

τ η τ
η

−

≤ − −
+

  

Consider the following impulsive differential equation  

( ) ( ) ( )
1

1
e .

Dmy t y t Dy t
K

τ η τ
η

−

= − −
+

  

According to lemma 2 and condition (3.8), we obtain that ( )lim 0t y t→∞ = . 
Since ( ) ( ) 0X s y s= >  when [ ]1, 0s τ∈ − , by the impulsive delay differential 
equation and the nonnegative of the solutions, we obtain ( ) 0x t →  as t →∞ . 
Without loss of generality, for all 0t ≥ , we may suppose that ( )0 x t ε< <  . By  
the second equation of the system (1.2), we have  

( ) ( )2 2
mS t D S t

K
ε

δ
 ≥ − + 
 

  

Consider the following comparison system with pulse  



J. Ma, M. Rehim 
 

51 

( ) ( )( )

( ) ( )
( )(

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )( )
( ) ( )

( ) ( )(

( ) ( )

( ) ( )
( )

3 0 3

4 4

3 3 3

4 4 3

3 0 3

4 4

3 3 1

4 4 2

,
, ,

,
 ,

,

,
    , 1 ,

,

,
         1 .

.

Z t D S Z t
t n n LmZ t D Z t

K

Z t Z t dZ t
t n L

Z t Z t dZ t

Z t D S Z t
t n L n

Z t DZ t

Z t Z t
t n

Z t Z t

τ τε
δ

τ

τ τ

µ
τ

µ

+

+

+

+

 = −
  ∈ +   = − +     
 = −  = + = + 
 = −  ∈ + +   = − 
 = +  = +

= + 













      (3.11) 

The system (3.11) has a positive solution ( ) ( )( )3 4,Z t Z t , where ( ) ( )( )3 4,Z t Z t  
are expressed as follows  

( )

( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

( )

( )
( )

( )( ) ( )( ) ( ) ( )

*
0 0 1

3 *
0 0 0 0 1

*
4

4
* *
4 0 0 1

e , ,

1 e e , 1 ,

e , ,

e e e , 1 .

D t n

D t n LDL

mD t n
K

mD L D t n LDLK

S S S n t n L
Z t

S S d S S S n L t n

Z n t n L
Z t

Z d S S S n L t n

τ

ττ

ε τ
δ

ε τ ττδ

τ τ

τ τ

τ τ

τ τ

− −

− − +−

 − + − 
 

 − +  − − +− 

  − − < ≤ + =   − − − − − + < ≤ +  
  < ≤ +

=   + − − + < ≤ +   







 (3.12) 

In which  

( )

( )

*
4

1 1 e e
0

1 e 1 1 e

D D

m LD
DK

B d Ad
Z

d

τ τ

ε τ
τδ

− −

 − +  − 

 − − + = >
 

  − − −  
 

          (3.13) 

and ( ) ( ) ( ) ( ) ( )1 1
0 11 e 1 e 1 eD L D L DA d d Sτ τ τ µ− − − − − = − + − − − +  ,  

( )( )1
0 2e eD L DB dS τ τ µ− − −= − + . For arbitrary 0ε > , there exists a constant 

1 0T > , such that, for all 1T T> ,  

( ) ( ) ( ) ( ) ( ) ( )

3 1 1 1 1 4 1 2 2 1,  .Z t S t S t Z t S t S tε ε ε ε− < < + − < < +  

Let 0ε → , we obtain  

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 2 1 2 2 1,   S t S t S t S t S t S tε ε ε ε− < < + − < < +    (3.14) 

For t →∞  and 1 0ε → , ( ) ( )

1 1S t S t→  and ( ) ( )

2 2S t S t→ . The proof of 
Theorem 1 is completed. 

4. Permanence 

In this section we shall study the permanence of system (1.2). 
Theorem 2. System (1.2) is permanent, if  

1 2

2

e .D mS D
K S

τ− >
+



                      (4.1) 
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where ( )
* *
1 1

* *
2 6 1 0e e e e e 1

mm mm LD L D
K K D D DLS Z dS dS

τ τ
δ δ τ τ τ

   
   − + − +    − −   

 
 = + + + +  
 



, *
1S  and 

*
6Z  are given in (3.4) and (4.8) respectively.  

Proof. Suppose ( ) ( ) ( )( )1 2, , S t S t x t  is any positive solution of system (1.2) 
with ( ) ( ) ( )1 20 0,   0 0,   0 0S S x> > > . We may rewrite the second equation of 
the system (1.2) as follows  

( ) ( )
( ) ( ) ( ) ( )

( )
1

1

1

2 2

2 2

e de d .
d

D
tD
t

m S t S X
x t D x t m

K S t t K S

τ
τ

τ

θ θ
θ

θ

−
−

−

 
= − −  + + 

∫   (4.2) 

Define  

( ) ( ) ( ) ( )
( )

1

1

2

2

e d .
tD
t

S X
V t x t m

K S
τ

τ

θ θ
θ

θ
−

−
= +

+∫  

Derive ( )V t  along with solution of system (1.2), we obtain  

( ) ( )
( )( ) ( )

1
2

2

e
1 .

Dm S t
V t D x t

D k S t

τ− 
= − 

+  
                (4.3) 

Set  

( )* 12 e
*
1

1 ln .

DS m D

KKm D
m

τ

δ
τ

− − 
 = −
 
  

 

From (4.4) we obtain *
1 0m > . We may select a positive integer 1ε  small 

enough, such that  

( )
1e 1,

Dm
D K

τ β
β

−

>
+

                       (4.4) 

where ( )
* *
1 1

* *
6 1 0 1e e e e e 1 .

mm mm LD L D
K K D D DLZ dS dS

τ τ
δ δ τ τ τβ ε

   
   − + − +    − −   

 
 = + + + + −  
 

 For  

any nonnegative integer 0t , we claim that inequality ( ) *
1x t m<  is not hold for 

all 0t t≥ . Otherwise, there exists a positive parameter 1T , such that ( ) *
1x t m<  

for all 1t T> . From the system (1.2) we obtain  

( ) ( )( )

( ) ( )
( )(

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )( )
( ) ( )

( ) ( )(

( ) ( )

( ) ( )
( )

1 0 1

*
1

2 2

1 1 1

2 2 1

1 0 1

2 2

1 1 1

2 2 2

,

, ,

,
   ,

,

,
     , 1 ,

,

,
         1 .

.

S t D S S t

t n n LmmS t D S t
K

S t S t dS t
t n L

S t S t dS t

S t D S S t
t n L n

S t DS t

S t S t
t n

S t S t

τ τ

δ

τ

τ τ

µ
τ

µ

+

+

+

+

 = −
  ∈ +    ≥ − +     


 = −  = +
= + 

= −  ∈ + +  
= − 

= +  = +
= + 





















      (4.5) 
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Consider the following impulsive differential equation  

( ) ( )( )

( ) ( )
( )(

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )( )
( ) ( )

( ) ( )(

( ) ( )

( ) ( )
( )

5 0 5

*
1

6 6

5 5 5

6 6 5

5 0 5

6 6

5 5 1

6 6 2

,

, ,

,
   ,

,

,
     , 1 ,

,

,
          1 .

.

Z t D S Z t
t n n LmmZ t D Z t

K

Z t Z t dZ t
t n L

Z t Z t dZ t

Z t D S Z t
t n L n

Z t DZ t

Z t Z t
t n

Z t Z t

τ τ

δ

τ

τ τ

µ
τ

µ

+

+

+

+

 = −
 

∈ +    = − +   
  

 = −  = +  = +  
= −  ∈ + +  = − 
= +  = +

= + 


















      (4.6) 

The system (4.6) has a unique globally asymptotically stable positive solution 
as follows  

( )

( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

( )

( )
( )

( )( ) ( )( ) ( ) ( )

*
1

*
1

*
0 0 1

5 *
0 0 0 0 1

*
6

6
* *
6 0 0 1

e , ,

1 e e , 1 ,

e , ,

e e e , 1

D t n

D t n LDL

mmD t n
K

mmD L
K D t n LDL

S S S n t n L
Z t

S S d S S S n L t n

Z n t n L

Z t
Z d S S S n L t n

τ

ττ

τ
δ

τ
δ ττ

τ τ

τ τ

τ τ

τ τ

− −

− − +−

 
 − + − 
 

 
 − +  − − +− 

 − − < ≤ +=   − − − − − + < ≤ +  

 < ≤ +=  
 + − − + < ≤ + 
  










   

 (4.7) 

where  

( )

( )
*
1

*
6

1 1 e e
0.

1 e 1 1 e

D D

mm LD
K D

B d Ad
Z

d

τ τ

τ
δ τ

− −

 
 − +  − 

 − − + = >
 
   − − −   
 

           (4.8) 

There exists 2 0 1T t τ≥ + , such that  

( )2 2 1 2: for all ,S t S t Tε β> − = >


              (4.9) 

where ( )
* *
1 1

* *
2 6 1 0e e e e e 1

mm mm LD L D
K K D D DLS Z dS dS

τ τ
δ δ τ τ τ

   
   − + − +    − −   

 
 = + + + +  
 



. 

Take { }*
1 2min ,t T T= . For any *t t≥ , from (4.3) and (4.9) we obtain  

( ) ( ) ( )
1e 1 .

DmV t D x t
D K

τ β
β

− 
> − + 

                (4.10) 

Let  

( )
* *

1,
min .

t t t
x x t

τ ∈ + 

=  

In what follows, we prove that ( )x t x<   for all *t t≥ . Otherwise, there exists 
a positive constant 3T , for any * *

1 3,t t t Tτ ∈ + +  , we have ( )x t x≥  ,  
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( )*
1 3x t T xτ+ + =   and ( )*

1 3 0x t Tτ′ + + ≤ . Therefore, according to the third 
equation of (1.2) and (4.10), we further obtain  

( ) ( ) ( ) ( ) ( )
1 1

*
1 3

e e 1 0
D Dm mx t T D x t D x t

K D K

τ τβ βτ
β β

− −   
′ + + > − = − >   

+ +      
 

which is a contradiction. So we have that ( ) 0x t x≥ >  for any *t t≥ . From 

(4.4) we have that ( ) ( )
1e 1 0

DmV t D x
D K

τ β
β

− 
> − > 

+  


  and from which we obtain  

( )V t → +∞  as t → +∞ . This contradict to ( ) ( )1
11 e DV t m Mττ −< + . Hence, 

for any nonnegative constant 0t  with 0t t≥ , the inequality ( ) *
1x t m<  is not 

hold. 
On the one hand, if ( ) *

1x t m>  always holds for t  large enough, then our 
target is obtained. Otherwise, suppose ( )x t  is oscillatory about *

1m . 
Let  

1
*

*1
1 1min , e .

2
Dmm m τ− 

=  
 

 

In what follows, we shall prove that ( ) 1x t m≥  for all 0t t≥ . There exist two 
positive integer t  and ω  such that  
( ) ( ) ( )* *

1 1and forx t x t m x t m t t tω ω= + = < < < +    . When t  is large 
enough, ( )S t β>  is hold true for any t t t ω< < +  . Since ( )x t  is uniformly 
continuous without impacted by pulse. Therefore, for any ( )3 1, 0T τ∈ −  and  

3t t t T≤ ≤ +  , we have ( ) ( ) ( )
1e 1

Dmx t D x t
D K

τ β
β

− 
′ > − + 

. By this, we have  

( ) ( )
1 *

* 1
1

ee 1 d :
2

Dt

t

mmx t m D v
D K

τ β
β

−  
> − =   +  

∫


 

for 3t t t T≤ ≤ +  . When 3Tω ≤ , our goal is obtained. When 3 1T ω τ< ≤ , we 
have from the third equation of (1.2) that ( ) ( )x t Dx t′ ≥ − . According to 
( ) *

1x t m= , we obtain ( ) ( ) 1 1*
1e eD Dx t x t mτ τ− −≥ =  for t t t ω< ≤ +  . Then 

( ) 1x t m≥  can hold true for t t t ω< ≤ +  . For 1ω τ≥  and 1t t t τ< ≤ +  , we 
obtain that ( ) 1x t m≥ . By above similar argument, we can show that ( ) 1x t m≥  
for 1t t tτ ω+ ≤ ≤ +  . Since the interval [ ],t t ω+   is arbitrarily chosen by us, 
we get that ( ) 1x t m≥  for t  large enough. In view of our above arguments, the 
choice of 1m  is independent of any solution of (1.2) which satisfies that 
( ) 1x t m≥  for t  large enough. So ( ) 1x t m≥  is hold true for t  large enough. 
For all 0t > , from lemma 3 we have that ( ) ( ) ( )1 2,  ,  S t M S t M x t M≤ ≤ ≤ . 

From Theorem 1, we have ( )1 1 2
ˆS t S ε> −  and ( )2 2 2

ˆS t S ε> −  as t →∞  and 

2 0ε → , where  

( ) ( ) ( )( ) ( )1* *
1 0 0 1 0 0 0 0 1

ˆ e 1 e e D LDL DLS S S S S S d S S S ττ τ − −− − = − − + − − − − −    

and  

( )( ) ( )1* * *
2 2 2 0 0 1

ˆ e e e e D LDL DL DLS S S d S S S ττ τ τ − −− − − = + + − −   
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So ( )1S t  and ( )2S t  are permanent. The proof of Theorem 2 is completed.  
According to Theorem 1 and 2, we may derive the following conclusion.  
Corollary 
1) The plankton-extinction periodic solution ( ) ( )( )1 2, , 0S t S t  is globally at-

tractive if and only if  

( )
2

1
2

ˆ1 ln ,
ˆ

mS
D D K S

τ >
+

 

where these parametric are the same as the Theorem 1. 
2) The plankton ( )x t  of System (1.2) is permanent if and only if  

( )
2

1
2

1 ln ,
mS

D D K S
τ <

+





 

where ( )
* *
1 1

* *
2 6 1 0e e e e e 1 .

mm mm LD L D
K K D D DLS Z dS dS

τ τ
δ δ τ τ τ

   
   − + − +    − −   

 
 = + + + +  
 



 

5. Discussions and Numerical Analysis   
In this paper, we investigate the necessary and sufficient conditions for the 

plankton-extinction periodic solution ( ) ( )( )1 2, , 0S t S t  and permanence of sys- 

tem (1.2). If the time delay 1τ  exceeds a certain amount of time, the plankton 
of system (1.2) will become extinct. If the time delay 1τ  is under a certain 
amount of time, the plankton will be lasting survival in the system. So delay 
plays an important role in affecting the dynamic behavior of the system. Next, 
we use numerical simulation to illustrate our mathematical results. 

From Theorem 1, we consider dynamical behavior of the system (1.2) with 
1D = ,  0 2.5S = ,  0.5L = ,  1τ = ,  0.5d = ,  0.05δ = ,  1 2.1µ = ,  2 0.5µ = , 

1 0.5τ = ,  1k = ,  1m = ,  3.382A = ,  0.992B = ,  *
1 4.145S = ,  *

2 2.773S = ,  

2
ˆ 3.762S = . From (3.7) we obtain that 1 2

2

ˆ
0.479 e 1ˆ

D mS D
K S

τ−= < =
+

. The plan- 

kton-extinction solution ( ) ( )( )1 2, , 0S t S t  is globally attractive; the plankton of 

system (1.2) will become extinct in this case. 
From Theorem 2, we consider dynamical behavior of the system (1.2) with 

0.95D = , 0 4.21S = , 0.5L = , 1τ = , 0.56d = , 48δ = , 1 1.5µ = , 2 3.5µ = , 

1 0.3τ = ,  4.6k = ,  19.5m = ,  3.542A = ,  4.055B = ,  2 = 6.859S


,  

*
1 13.157m = . From (4.1) we obtain that 1 2

2

8.777 e 0.95D mS D
K S

τ−= > =
+




. The  

plankton ( )x t  of System (1.2) is permanent; the plankton will be lasting sur-
vival in the system. 

It is difficult to study the global attractivity of system (1.2) analytically. From 
the numerical simulation (Figure 1) we see that there has a unique T -period 
solution ( ) ( ) ( )( )* * *

1 2, , S t S t x t  of system (1.2) which is globally attractive. The 
numerical simulation (Figure 2) also shows that system (1.2) is permanent. In  
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(a)                                                            (b) 

 
(c)                                                            (d) 

Figure 1. The plankton-extinction solution of system (1.2) is globally attractive. 
 

 
(a)                                                            (b) 

 
(c)                                                            (d) 

Figure 2. The plankton ( )x t  of System (1.2) is permanent. 
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view of analytical results, we showed the possibility of establishing control strat-
egy of system (1.2) based on impulsive diffusion and time delay. 
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