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Abstract 
In this paper, a mathematical model that describes the flow of gas in a pipe is formulated. The 
model is simplified by making some assumptions. It is considered that the natural gas flowing in a 
long horizontal pipe, no heat source occurs inside the volume, transfer of heat due to heat conduc-
tion is dominated by heat exchange with the surrounding. The flow equations are coupled with 
equation of state. Different types of equations of state, ranging from the simple Ideal gas law to the 
more complex equation of state Benedict Webb Rubin Starling (BWRS), are considered. The flow 
equations are solved numerically using the Godunov scheme with Roe solver. Some numerical re-
sults are also presented. 
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1. Introduction 
The purpose of this paper is to describe the flow of natural gas in a pipeline by employing the full set of diffe-
rential equations along with different types of equations of states(EOS), ranging from the simple Ideal gas law to 
the more complex equation of state, Benedict Webb Rubin Starling (BWRS). The flow equations are derived 
from the physical principles of conservation of mass, momentum, and energy. More detailed discussion of con-
servation laws can be found in [1]-[4]. The natural gas is inviscid and compressible. The gas flows in along a 
horizontal pipe, and then can be considered as one-dimensional flow. It is assumed no heat source occurs inside 
the pipe and transfer of heat due to the heat conduction is much less than the heat exchange with the surround-
ing. 

In this paper, the results obtained by solving the flow equations along with different types of EOS are compared 
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[5]. The ideal gas equation works reasonably well over limited temperature and pressure ranges for many sub-
stances. However, pipelines commonly operate outside these ranges and may move substances that are not ideal 
under any conditions. The more complicated EOS will approximate the real gas behavior for a wide range of 
pressure and temperature conditions.  

The Godunov scheme with Roe solver [3] is used to solve the Euler equations numerically. The Godunov 
scheme for conservation laws is known for its shock-capturing capability.  

The rest of the article is organized as follows. In Section (2) we review the set of partial differential equations 
which describe the flow of gas in a pipe. Several equations of states are discussed in this section. In Section (3) a 
thermodynamical relationships among the physical quantities are presented. One can refer [6] for more thermo-
dynamical relationships. Section (4) contains the discussion of the numerical method used to solve the flow equ-
ations together with different types equation of states. Some numerical results are given in this section. Conclu-
sions are deferred to Section (5). 

2. Governing Equations of Real Gas Flow in a Pipe 
Let us consider a gas occupying a sub domain 0Ω  at time 0t = . Let ( ) 0, ,x tx x= Φ ∈Ω  describes the posi-
tion of the particle x  at time t. Then at time t the gas occupies the domain ( ){ }0, ,t tx xΩ = Φ ∈Ω . The ve-
locity of the gas at position x and time t is given by ( ) ( ), ,xu x t t

t
∂

= Φ
∂

. 

2.1. Transport Theorem 
Let [ ]: 0,tf tΩ × →   be some physical quantity transported by the fluid. The total amount ( )F t  of the 
quantity f contained in tΩ  a time t is given by ( ) ( ), d

t
F t f x t x

Ω
= ∫ . 

Notation: ( ) ( ), det ,x xJ t t= ∇Φ   
The rate of change of ( )F t  is given by:  

( ) ( )

( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )

0

0

0

d d , d
d d
d , , d
d

d d, , , , , d   using product rule
d d

, , , , , , , d

, , , d

,

t

t

t

F t
f x t x

t t

f t J t
t

f t J t f t t J t
t t
f t t u f t t J t f t t J u
t

f x t u f x t f x t

x x x

x x x x x

x x x x

u x
t
f x t f
t

x

Ω

Ω

Ω

Ω

Ω

Ω

=

= Φ

 = Φ + Φ 
 
 ∂  = Φ + ⋅∇ Φ + Φ ∇ ⋅  ∂  
∂ = + ⋅∇ + ∇ ⋅ ∂ 
∂

= +∇ ⋅
∂

∫

∫

∫

∫

∫

∫ ( ) ( ), du x t x 
 
   

Then we get the transport theorem: ( ) ( ) ( ) ( )d , d , , d
d t t

ff x t x x t fu x t x
t tΩ Ω

∂ = + ∇ ⋅ ∂ ∫ ∫ . The transport theorem  

is useful in the derivation of the governing equations. 

2.2. Conservation of Mass (The Continuity Equation) 
The total mass m in a volume tΩ  is given by ( ), d

t
x t xρ

Ω∫ . Mass is conserved during the deformation of  

0 tΩ →Ω  i.e. d 0
d
m
t
= , ( )d , d 0

d t
x t x

t
ρ

Ω
=∫  

( ) d 0
dt

u x
t
ρ ρ

Ω

∂ +∇ ⋅ = 
 ∫  (By transport theorem) 

( ) 0
d

u
t
ρ ρ∂
+∇ ⋅ =                               (1) 
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Since the above integral holds true for arbitrary region tΩ  

2.3. Conservation of Momentum (Equation of the Motion) 
The total momentum M of particles contained in tΩ  is given by dxtxutxM

t
),(),(= ρ∫Ω  

According to Newton’s second law: The rate of change of momentum equals the action of all the forces F 
applied on tΩ  

d
d
M F
t
=

 
( ) ( )d , , d

d t
x t u x t x F

t
ρ

Ω
=∫  

( ) d
t

u u u x F
t
ρ ρ

Ω

∂ + ∇ ⋅ ⊗ = ∂ ∫
 

We have two types of forces acting on tΩ : 
1) Volume forces vf , for example gravitation, which is given by  

( ) ( ), , d
t

vf x t g x t xρ
Ω

= ∫  
where g is the gravitational acceleration. 

2) Surface forces sf  acting on tΩ  through the boundary t∂Ω  of tΩ , such as pressure and inner friction 
forces. 

Surface forces are given by  

( ), d
t

sf x t sσ
∂Ω

= ∫ n
 

where σ  is the stress tensor defined as: 

11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ σ

σ σ σ

 
 =  
 
   

and n  is the outer normal. The total force v sF f f= + . Then, we have d
d v s
M f f
t
= +  

( ) ( ) ( ) ( )d , , d , d
t t t

u u u x x t g x t x x t s
t
ρ ρ ρ σ

Ω Ω ∂Ω

∂ + ∇ ⋅ ⊗ = + ∂ ∫ ∫ ∫ n
. 

By applying divergence theorem, the second term on the right side of the above equation can be transformed 
to integral over the domain tΩ  and then we get: 

( ) ( ) ( ) ( )d , , d , d
t t t

u u u x x t g x t x x t x
t
ρ ρ ρ σ

Ω Ω Ω

∂ + ∇ ⋅ ⊗ = + ∇ ⋅ ∂ ∫ ∫ ∫
 

( ) 0u u u g
t
ρ ρ ρ σ∂

+∇ ⋅ ⊗ − −∇ ⋅ =
∂  or 

( ) ( ) ( ) 0u u u u u g
t
ρ ρ ρ ρ σ∂

+ ⋅∇ + ∇ ⋅ − −∇ ⋅ =
∂  

For Newtonian fluid, the stress tensor depends linearly on the deformation velocity, u∇ , i.e. 

( ) 2pI p u I Dσ τ λ µ= − + = − + ∇ ⋅ +  
where τ  is the viscous part of σ , p is pressure, I is the identity matrix, λ  and µ  are friction coefficients, 
and D is the strain tensor given by  

( )( )1
2

tD u u= ∇ + ∇
  

For inviscid fluid, friction is neglected and then pIσ = −  
Therefore, the equation of motion for inviscid fluid becomes  
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( ) ( ) 0u u u u u g p
t
ρ ρ ρ ρ∂

+ ⋅∇ + ∇ ⋅ − + ∇ =
∂

                         (2) 

2.4. Conservation of Energy 
Conservation of energy accounts for effects of temperature variations on the flow or the transfer of heat with in 
the flow. The 1st Law of Thermodynamics states that: The total energy of a system and its surroundings re-
mains constant. 

Let   be the total energy of the fluid in tΩ  and Q be the amount of heat transfered to tΩ . The rate of 
change of the total energy of the fluid occupying tΩ  is the sum of powers of the volume force acting on the 
volume tΩ , powers of the surface force acting on the surface t∂Ω , and the amount of heat transmitted to tΩ , 
i.e. 

( ) ( ) ( ) ( ) ( )d , , , d , , d
d t t

x t g x t u x t x x t u x t s Q
t

ρ σ
Ω ∂Ω

= + +∫ ∫ n

 

where ( ) ( ), , d
t

x t E x t xρ
Ω

= ∫  and 
2

2
u

E e= +  is the density of energy (per unit mass), e is internal energy  

density, and 
2

2
u

 is the density of kinetic energy.  

( ) ( ) ( ) ( ) ( ), , d , d , d
t t t

Q x t q x t x q x t x s q x t xρ
Ω Ω Ω

= − +∫ ∫ ∫n
 

where q is the density of heat sources (per unit mass), and  
q  is the heat flux (transfer of heat by conduction). 
The transfer of heat by conduction is given by Fourier’s law: 
q Tκ= − ∇  where T is the absolute temperature and 0κ ≥  is the coefficient of thermal conductivity of the 

fluid. 
q  is the density of heat transfered from the surrounding and is given by: 

( )surface areaL outq k T T= × × −  where Lk  is the total heat transfer coefficient and outT  is the temperature 
of the surrounding. 

Then the energy equation for inviscid gas flow becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d , , d , , , d , d
d

, , d , d , d
t t t

t t t

x t E x t x x t g x t u x t x pI u x t s
t

x t q x t x q x t s q x t x

ρ ρ

ρ

Ω Ω ∂Ω

Ω ∂Ω Ω

= + −

+ − +

∫ ∫ ∫

∫ ∫ ∫

n

n
 

By applying the transport and divergence theorems to the above equation we obtain the following equation:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , d , , , d d

t t t

E
x t Eu x t x x t g x t u x t x pu x

t
ρ

ρ ρ
Ω Ω Ω

∂
+ ∇ ⋅ = + ∇ ⋅

∂∫ ∫ ∫
 

( ) ( ) ( ), , d d , d
t t t

x t q x t x q x q x t xρ
Ω Ω Ω

− ∇ ⋅ +∫ ∫ ∫  

( ) ( ) ( )surface area
volumeL out

E Eu gu pu q q k T T
t
ρ ρ ρ ρ∂

+∇ ⋅ = −∇ ⋅ + −∇ ⋅ + −
∂ . 

( ) ( ) ( ) ( )surface area
volumeL out

E Eu gu pu q T k T T
dt
ρ ρ ρ ρ κ∂

+∇ ⋅ = −∇ ⋅ + + ∇ ⋅ ∇ + −             (3) 

There fore, from the equations (1), (2), (3) we get the following system of equations.  

( )

( ) ( )

( ) ( ) ( ) ( )

0

0

surface area
volumeL out

u
t
u u u u u g p
t
E Eu gu pu q T k T T
t

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ κ

∂ +∇ ⋅ = ∂
∂ + ⋅∇ + ∇ ⋅ − + ∇ = ∂
∂ + ∇ ⋅ − + ∇ ⋅ − −∇ ⋅ ∇ = − ∂

           (4) 
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2.5. Simplifications 
In practice the form of mathematical model varies with the assumptions made as regards of operation conditions 
of the pipeline. Simplified models are obtained by neglecting some terms in the basic equations. In our case, we 
consider natural gas (Methane) flowing in a long horizontal pipeline. Hence we can consider the flow as a one 
dimensional flow. By assuming the pipe is horizontal, we can neglect the contribution of the gravitational force.  

Assume also no heat source occurs inside the volume. For a cylindrical pipe, 
surface area 4

volume D
=  where D is the  

diameter of the pipe. By applying the assumptions we made, (4) is reduced to 

( ) ( )

2

2

2

0

0

4 L
out

u
t x
u u p
t x

E p u kE T T T
t x Dx

ρ ρ

ρ ρ

ρρ

∂ ∂ + = ∂ ∂
∂ ∂ + + = ∂ ∂

 ∂ +∂ ∂
+ − = − ∂ ∂ ∂

                      (5) 

Furthermore, Methane gas has the following properties. The specific heat capacity [ ]2165 J kg Kpc = ⋅ , 
thermal conductivity [ ]0.030 W m Kκ = ⋅ , dynamic viscosity [ ]1.02 5 kg m sEµ = − ⋅ . Typical values for the 
overall heat transfer coefficient Lk  are 20.6 W m K ⋅   for 0.5 m diameter insulated and buried in soil. If the 
pipe is exposed on the air Lk  is 219 W m K ⋅  . 

Prandtl number (Pr), defined as pc
Pr

µ
κ

= , describes the relative strength of viscosity (the diffusion of  

momentum) to that of heat. It is entirely a property of the fluid not the flow. In our case the value of Pr is about 
0.7, this enables us to regard the flow as inviscid flow. For gas flow typical values of Pr are between 0.7 and 1. 
Another dimensionless constant we can use to simplify our system of equations is the Nusselt number (Nu). The  

Nusselt number is defined as Lk DNu
κ

= , where D is a characteristic width of a flow, for example the diameter  

of the pipe. The Nusselt number compares convection heat transfer to fluid conduction heat transfer. 
For Methane gas flowing through an insulated pipe of diameter 0.5 m buried underground, the value of Nu is 

approximately 10. If the pipe is exposed to air, it will be around 300. Therefore, the term included in the energy  

equation due to heat conduction 
2

2
T

x
 ∂
 ∂ 

 can be neglected in favor of the term due to heat exchange with the 

surrounding ( )4 L
out

k T T
D

 − 
 

. Incorporating these assumptions to Equation (5) yields: 

( ) ( )

( )

2

0

0

4

,

L
out

u
t x
u u p
t x

E p u kE T T
t x D

p p T

ρ ρ

ρ ρ

ρρ

ρ

∂ ∂ + = ∂ ∂
∂ ∂ + + = ∂ ∂

 ∂ +∂
+ = −

∂ ∂
 =

                       (6) 

where ( ),p p Tρ=  is an equation of state used to complete the system of conservation laws. In the next chap-
ter we will solve Equation (6) with different equation of state numerically.  

2.6. Equation of State (EOS) 
An equation of state is a relationship between state variables, such that specification of two state variables per-
mits the calculation of the other state variables. For an ideal gas, the equation of state is the ideal gas law. More 
complicated EOS have been formulated by several workers to try to model the behavior of real gases over a 
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range of pressures and temperatures. This includes Van der Waals (VDW), Sovae Redlich Kwong (SRK), Peng 
Robinson (PR), and Benedict Webb Rubin Starling (BWRS). 

2.6.1. Ideal Gas law 
The ideal gas law is given by  

p RTρ=                                    (7) 

where p is the pressure, ρ  is the density, R is the gas constant, and T is the absolute temperature. 
The ideal gas law is derived based on two assumptions: 
 The gas molecules occupy a negligible fraction of the total volume of the gas. 
 The force of attraction between gas molecules is zero. 

The ideal gas equation works reasonably well over limited temperature and pressure ranges for many sub-
stances. However, pipelines commonly operate outside these ranges and may move substances that are not ideal 
under any conditions. Hence, we need to look for equation of state with wider validity. 

2.6.2. Van der Waals (VDW) EOS 
It was observed that the ideal gas law didn’t quite work for higher pressures and temperatures. The first assump-
tion works at low pressures. But this assumption is not valid as the gas is compressed. Imagine for the moment 
that the molecules in a gas were all clustered in one corner of a cylinder, as shown in the figure below. At nor-
mal pressures, the volume occupied by these particles is a negligibly small fraction of the total volume of the gas. 
But at high pressures (when the gas is compressed), this is no longer true. As a result, real gases are not as com-
pressible at high pressures as an ideal gas. The volume of real gas is therefore larger than expected from the 
ideal gas equation at high pressures. Van der Waals proposed that we correct for the fact that the volume of real 
gas is too large at high pressures by subtracting a term from the volume of the real gas before we substitute it in 
to the ideal gas equation. He therefore introduced a constant b in to the ideal gas equation that was equal to the 
volume actually occupied by the gas particles. When the pressure is small, and the volume is reasonably large, 
the subtracted term is too small to make any difference in the calculation. But at high pressures, when the vo-
lume of the gas is small, the subtracted term corrects for the fact that the volume of a real gas is larger than ex-
pected from the ideal gas equation. 

The assumption that there is no force of attraction between the gas particles cannot be true. If it was, gases 
would never condense to form liquids. In reality, there is a small force of attraction between gas molecules that 
tends to hold the molecules together. This force of attraction has two consequences: (1) gases condense to form 
liquids at low temperatures and (2) the pressure of a real gas is sometimes smaller than expected for an ideal gas. 
To correct for the fact that the pressure of a real gas is smaller than expected from the ideal gas equation, Van 
der Waals added a term to the pressure in the ideal gas equation. This term contains a second constant a. The 
complete Van der Waals equation is written as follows:  

2

1
RTp a
b

ρ ρ
ρ

= −
−

                                   (8) 

Or in terms of molar volume  

( )2
ap v b RT
v

 + − = 
   

where 
2 227

64
c

c

R Ta
P

=
 

8
c

c

RTb
P

=
 

R is gas constant, cP  critical pressure, and cT  critical temperature Note that the values of the constants a 
and b differ from gas to gas. Even though, VDW EOS is better than Ideal gas law, still it is inadequate to 
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describe real gas behavior. 
We will consider three widely used equations of state that do work reasonably well near the dew point: So-

vae-Redlich-Kwong (SRK), Peng-Robinson (PR), and Benedict-Webb-Rubin-Starling (BWRS). In addition to 
covering a wide range of conditions, these equations also can be expressed in generalized forms with mixing 
rules that permit the calculation of the coefficients for different compositions. 

SRK and PR, along with VDW are called cubic equation of state, because expansion of the equations into a 
polynomial results in the highest order terms in density (or specific volume) being cubic. BWRS adds fifth and 
sixth power and exponential density terms. The cubic equation are all of the form 

2

21 1
RT ap

b A B
ρ ρ
ρ ρ ρ

= −
− + +

                                (9) 

2.6.3. The Sovae-Redlich-Kwong (SRK) EOS 
The SRK EOS of state is given by  

2

1 1
RT ap
b b

ρ ρ
ρ ρ

= −
− +

                                 (10) 

where  

( )( )2

1 1 1w ra a f T= + −
 

2 2

1
0.42748 c

c

R Ta
P

=
 

20.48 1.5746 0.176wf w w= + −  
0.078664 c

c

RTb
P

=
 

w is the accentric factor which is a measure of the gas molecules deviation from the spherical symmetry, R is  

gas constant, cP  critical pressure, cT  critical temperature, and r
c

TT
T

=  is the reduced temperature. 

2.6.4. The Peng-Robinson (PR) EOS 
The PR EOS is defined as 

2

2 21 1 2
RT ap
b b b

ρ ρ
ρ ρ ρ

= −
− + −

                              (11) 

where 

( )( )2

1 1 1w ra a f T= + −
 

2 2

1
0.45724 c

c

R Ta
P

=
 

20.37464 1.54226 0.26992wf w w= + −  
0.07780 c

c

RTb
P

=
 

2.6.5. Benedict-Webb-Rubin-Starling (BWRS) EOS  
Probably because of its ability to cover both liquids and gases and the availability of coefficients and mixing 
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rules for many hydrocarbons in one place, BWRS is the most widely used equation of state for simulation of 
pipelines with high density hydrocarbons, or with condensation. 

Simplicity is not among the good qualities of the BWRS equation of state. The form of the equation is:  

( ) ( )

2 3
2 3 4

3
6 2 2

2 1 exp

C D E dp RT BRT A bRT a
TT T T

d ca
T T

ρ ρ ρ

ρα ρ γρ γρ

   = + − − + − + − −   
   

 + + + + − 
 

                  (12) 

where the eleven coefficients , , , , , , , , ,A B C D E a b c d α , and γ  are determined from , , ,c c cT Pρ  and ω  of 
the gas of interest and the universal constants iA  and iB  as follows. 

1 1
0

c

A BB ω
ρ
+

=
 

2 2
0

c

A BA RTcω
ρ
+

=
 

33 3
0

c

A BC RTcω
ρ
+

=
 

4 4
2
c

A B ωγ
ρ
+

=
 

5 5
2
c

A Bb ω
ρ
+

=
 

6 6
2
c

A Ba RTcω
ρ
+

=
 

7 7
3
c

A B ωα
ρ
+

=
 

38 8
2
c

A Bc RTcω
ρ
+

=
 

49 9
0

c

A BD RTcω
ρ
+

=
 

210 10
2
c

A Bd RTcω
ρ
+

=
 

( )11 11 5
0

exp 3.8

c

A B
E RTc

ω ω
ρ

+ −
=

 
where 

1 0.443690A =  1 0.115449B =  
2 1.28438A =  2 0.920731B = −  
3 0.356306A =  3 1.70871B =  
4 0.544979A =  4 0.270896B = −  
5 0.528629A =  5 0.349261B =  
6 0.484011A =  6 0.754130B =  
7 0.0705233A =  7 0.04448B = −  
8 0.504087A =  8 1.32245B =  
9 0.0307452A =  9 0.179433B =  
10 0.0732828A =  10 0.463492B =  
11 0.006450A =  11 0.022143B = −  

BWRS can be adapted for mixtures by the rules: 

0 0i iB x B= ∑  ( )0 0 0 1i j i j ijA x x A A k= −∑∑  

( )1 3
0 0 0 1i j i j ijC x x C C k= −∑∑  ( )31 3

i ixγ γ= ∑  

( )31 3
i ib x b= ∑  ( )31 3

i ia x a= ∑  

( )31 3
i ixα α= ∑  ( )31 3

i ic x c= ∑  

( )1 4
0 0 0 1i j i j ijD x x D D k= −∑∑  ( )31 3

i id x d= ∑  
( )1 5

0 0 0 1i j i j ijE x x E E k= −∑∑  
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where ix  is the mole fraction of the pure component i of the mixture, and ijk  are the binary interaction coef-
ficients. 

2.6.6. The Universal Gas Law 
The universal gas law is p Z RTρ=  where Z is called the compressibility factor (Real gas factor). It is a 
measure of how far the gas is from ideality. At atmospheric conditions, the value of Z is typically around 0.99. 
Under pipeline conditions, the value is typically around 0.9. A good equation of state can be selected by its abil-
ity to approximate the compressibility factor at critical conditions cZ . 

For example the experimental value of cZ  for Methane is 0.288. But its approximate value by VDW is 
0.3025, by SRK is 0.2904, by PR it is 0.2894, and by BWRS it is 0.2890. 

3. Thermodynamical Relations 
In this section we will briefly discuss thermodynamical relations that exist among different physical quantities. 
First law of thermodynamics states that 

d d de T s p v= −                                    (13) 

The specific total enthalpy is defined as h e pv= +  which implies  

d d dh T s v p= +                                    (14) 

Derivative relationships: 
Assume ( ),e e s v= , then d d d

v s

e ee s v
s v
∂ ∂   = +   ∂ ∂   

. Comparing the coefficients of this equation to that of 
Equation (13) we get 

,
v s

e eT p
s v
∂ ∂   = = −   ∂ ∂   

                               (15) 

Similarly, assuming ( ),h h s p=  we get  

d d d
p s

h hh s p
s p

 ∂ ∂ = +   ∂ ∂     
And comparing the coefficient of this equation with that of Equation (14) we get  

,
p s

h hT v
s p

 ∂ ∂  = =  ∂ ∂   
                               (16) 

Reciprocal relations involving internal energy e and entropy s: 
Consider the internal energy and entropy to be a function of temperature and specific volume, i.e, ( ),e e v T= , 

( ),s s v T= . 
Then 

d d d , d d d
T v T v

e e s se v T s v T
v T v T
∂ ∂ ∂ ∂       = + = +       ∂ ∂ ∂ ∂       

                    (17) 

The coefficient of dT, in the first equation, is by definition the heat capacity at constant volume, vc . Substi-
tute these two equations in (13) to get  

,
T T v v

e s e sT p T
v v T T
∂ ∂ ∂ ∂       = − =       ∂ ∂ ∂ ∂       

                         (18) 

Differentiating the first equation of (18) with respect to T and the second with respect to v gives us  
2 2

T v

e s s pT
v T v T v T
∂ ∂ ∂ ∂   = + −   ∂ ∂ ∂ ∂ ∂ ∂     

and 
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2 2e sT
v T v T
∂ ∂

=
∂ ∂ ∂ ∂  

T v

s p
v T
∂ ∂   ⇒ =   ∂ ∂   

                                  (19) 

Substituting (19) in the first equation of (18) yields  

T v

e pT p
v T
∂ ∂   = −   ∂ ∂   

                                 (20) 

One useful form involving internal energy is obtained by substituting vc  for the coefficient of dT in (20) for 
the coefficient of dv in the first equation of (17).  

d d dv
v

pe c T T p v
T

 ∂ = + −  ∂  
                              (21) 

Reciprocal relations involving enthalpy h 
Assume ( ),h h p T= , ( ),s s p T=  
Then 

d d d
pT

h hh p T
p T

 ∂ ∂ ⇒ = +   ∂ ∂  
                             (22) 

The coefficient of dT is by definition the heat capacity at constant pressure, pc . In a similar procedure as in 
the internal energy and entropy case, above we get the following relationships.  

,
p pT T

h s h sT v T
p p T T

   ∂ ∂ ∂ ∂   = + =       ∂ ∂ ∂ ∂      
                         (23) 

By double differentiating we do get  

pT

h vv T
p T

 ∂ ∂ = −   ∂ ∂  
                                  (24) 

d d dp
p

vh c T v T p
T

 ∂ = + −  ∂   
                              (25) 

Heat capacities 
By equating the difference of (13) and (14) to the difference of (21) and (25) we get  

( )d d dp v
p v

v pc c T T p T v
T T
∂ ∂   − = +   ∂ ∂   

                         (26) 

Dividing by dT  and holding p constant gives  

( )p v
p v

v pc c T
T T
∂ ∂   − =    ∂ ∂   

                              (27) 

4. Numerical Methods: Godunov Scheme with Roe Solver 
In this section we will consider a numerical scheme to solve homogeneous Euler equation with initial condition 
by employing different EOS. The Euler equation in vector form: 

( )
( ) ( )0

0

,0
t xU F U

U x U x

 + =


=
                                 (28) 
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where 

( )
( )

2and
u

U u F U u p
p u

ρ ρ
ρ ρ

  
  = = +  

   +    
 

And ( ),p p Tρ=  
One of the methods to solve a 1D nonlinear hyperbolic systems is the Godunov scheme  

4.1. Godunov Scheme 
Suppose we have subdivided our domain [ ],a b  in to N subintervals with 1x a=  and 1Nx b+ = , so that  

b ax
N
−

∆ = . 

Let us define ( )
1
2

1
2

0
0

1: d
i

i

x

i x
U U x x

x
+

−

=
∆ ∫ . Assume n

iU  at time nt  is known and that n
iu  is piecewise constant 

on 1 1
2 2

,
i i

x x
− +

 
 
 

. Then we solve exactly the local Riemann problem for ( ) 0t xU F U+ =  on [ ] 1
1, ,n n

i ix x t t +
+  ×    

with initial condition  

( )
1
2

1 1
2

for
,

for

n
i i

n
n
i i

U x x
U x t

U x x

+

+
+

 <


= 
≥

  
Let us denote the solution by ( ),n

iw x t . Then the solution ( ),n
iw x t  of the local Riemann problems are used 

to define the global solution v as  

( )
( )

( )

1
1
2

1
1 1

2

,  if and
,

,  if and

n n n
i i i

n n n
i ii

w x t x x x t t t
v x t

w x t x x x t t t

+

+

+
−

−

 ≤ ≤ ≤ ≤


= 
≤ ≤ ≤ ≤

  
Then the solution 1n

iU +  is defined by 

( )
1
2

1
2

1 11 , d
i

i

x
n n
i x

U v x t x
x

+

−

+ +=
∆ ∫

 
Conservation form: 

Since v is an exact solution on 1 1
2 2

,
i i

x x
− +

 
 
 

, we have  

( ) ( )( )
1 11 1
2 2

1 1
2 2

, d d , d d 0
n ni i

n n
i i

x x
t t

t xt x t x
v x t x t F v x t x t

+ ++ +

− −

+ =∫ ∫ ∫ ∫
 

( ) ( )( )
1 1
2

1
2

1
1 1
2 2

, , d , , d 0
ni

n
i

x
tn n

x t i i
v x t v x t x F v x t F v x t t

++

−

+

+ −

       
 ⇒ − + − =                    

∫ ∫
 

( )1
1 1
2 2

0n n
i i i i

x U U t F U F U+

+ −

    
⇒ ∆ − + ∆ − =              

where 1 1
2 2

,
i i

U v x t
+ +

 
=   

 
 is constant for 1n nt t t +≤ ≤  
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1
1 1
2 2

n n
i i i i

tU U F U F U
x

+

+ −

    ∆
⇒ = − −        ∆       

With the numerical flux 

( )1 1
2

,i i i
g U U F U−

−

 
=   

   
This scheme is called Godunov scheme. 
Solving a Riemann problem exactly is not always an easy task. Then we may need to consider an approximate 

solution of the Riemann problem.  

4.2. Riemann Problem for a Linear System 
Suppose we have a linear system 0t xU AU+ =  with initial condition  

( )
 for 0

,0
 for 0

l

r

U x
U x

U x
<

=  ≥  
Let 1 2 3λ λ λ< <  are the eigenvalues and 1 2 3, ,r r r  are the corresponding eigenvectors. Define , 1, 2,3i iα =  

such that  
3

1
.r l i i

i
U U rα

=

− = ∑
 

Then the solution of the Riemann problem is given by  

( )

1

1

3

 for

,  for , 1, 2

 for

l

k k k

r

xU
t

xU x t U k
t

xU
t

λ

λ λ

λ

+

 <

= ≤ < =

 ≥  

where 

1

k

k l i i
i

U U rα
=

= +∑
 

A variety of approximate Riemann solvers have been proposed that can be applied more easily than the exact 
Riemann solver. One of the most popular Riemann solvers currently in use is due to Roe. 

Godunov scheme with Roe approximation. 
The idea is to replace the non-linear Riemann problem solved at each interface by an approximate one.  

( ), 0t l r xU A U U U+ =  
where lU  and rU  are the left and right values and ( ),l rA U U  satisfies  

( ) ( ) ( ) ( ),r l l r r lF U F U A U U U U− = −  
( ),l rA U U  is diagonalizable with real eigenvectors. 
( ) ( ),l rA U U F U′→  as ,l rU U U→   

Conservation form of the Roe scheme. 
The Roe scheme can be written in conservation form as  

( ) ( )1
1 1, ,n n n n n n

i i i i i i
tU U g U U g U U
x

+
+ −

∆  = − − ∆  
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where  

( ) ( ) ( )
3

1

1,
2 i i i

i
g u w F u F w rλ α

=

 = + − 
 

∑
 

where iλ  and ir  are the eigenvalues and eigenvectors of ( ),A u w  and 3
1 i iiw u rα
=

− = ∑ . 
The main task in the Roe scheme is the determination of the matrix of linearization A. 
Now let us consider our equation (28) together with an equation of state of the form ( ),p p Tρ= . 
Then we approximate this non-linear system with an approximate linear system as follows: 
Define ( ) ( ),l rA U U DF U=  where  

U u

ρ

ρ
 
 

=  
 
   

And 

l rρ ρ ρ=  

l l r r

l r

u u
u

ρ ρ
ρ ρ

+
=

+  

l l r r

l r

h h
h

ρ ρ
ρ ρ

+
=

+  

e ph
ρ
+

=  is the specific enthalpy. These averages are called the Roe mean values. ( ),l rA U U  satisfies the  

Roe conditions. 
To solve our problem with the Roe scheme, we need to calculate the eigenvalues and their eigenvectors of the 

Jacobian matrix ( )DF U  which are needed to compute the Roe flux. But for complex EOS the determination 
of these eigenvectors may not be simple. One way of determining the eigenvectors of this Jacobian is by ex-
pressing the Euler equation in terms of primitive variables ( ), , tV u Tρ= . We choose the temperature T as one 
of primitive variables than the pressure p, because in most equation of state p is expressed in terms of T. 

Let 0t xV BV+ =  be the Euler equation in terms of the primitive variables V and ( ) 0t xU F U+ =  be in 
conservative variables. The approximate linear system is ( ) 0t xU DF U U+ =   

( ) 0t x
U UV DF U V
V V
∂ ∂

⇒ + =
∂ ∂  

( )1 0t xV M DF U MV−⇒ + =
 

where 
UM
V
∂

=
∂

  

( )1B M DF U M−=
 

⇒ the matrices B and ( )DF U  have identical eigenvectors. 
Further more, if 1B P P−= Λ  then ( ) 1 1DF U MP P M− −= Λ . Then R MP=  is the right eigenvectors of 
( )DF U  

4.3. Solving Euler Equation Using the Ideal Gas Law 
In this section we solve one dimensional Euler equation with Ideal gas EOS. Consider the Euler equation (28) 
with the ideal gas law p RTρ= . 

Using (21), the change of internal energy is given by d dve c T=  which implies ve c T= , and the total energy  
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  is given by: 
2

2v
uc T ρρ= + . 

Now let us express (28) in terms of the primitive variables ( ), , tV u Tρ= , so that we can apply the Roe 
scheme easily. 

Continuity equation: 

( ) 0t xuρ ρ+ =  

t x xu uρ ρ ρ⇒ + +  
Momentum equation: 

( ) ( )2 0t x
u u pρ ρ+ + =

 

0x
t x

pu uu
ρ

⇒ + + =
 

Now using x x x
p pp T

T
ρ

ρ
∂ ∂

= +
∂ ∂

, 
p RT
ρ
∂

=
∂

, and p R
T

ρ∂
=

∂
, the momentum equation in terms of the primi-

tive variables is  

0t x x x
RTu uu RTρ
ρ

+ + + =
 

Energy Equation: 

( )( ) 0t x
p u+ + = 

 

( ) 0t t t x x x x xu T u u T p p u
u T u T

ρ ρ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
⇒ + + + + + + + + = ∂ ∂ ∂ ∂ ∂ ∂ 

     


 

( ) ( ) ( ) ( ) 0t x x t x x t xu p u u uu up T uT
u T

ρ ρ
ρ
∂ ∂ ∂

⇒ + + + + + + + + =
∂ ∂ ∂
  


 

( ) ( ) ( ) 0x
x x x t x

pu p u up T uT
u T

ρ
ρ ρ

− ∂ ∂ ∂
⇒ − + + + + + + = ∂ ∂ ∂ 

  


 

( )1 0x x t xp u u p T uT
u T

ρ
ρ ρ

   ∂ ∂ ∂
⇒ − + + + − + + + =   ∂ ∂ ∂   

  
                   (29) 

Now, using 
2

2v
uc T

ρ
∂

= +
∂
 , u

u
ρ∂

=
∂
 , and vc

T
ρ∂

=
∂
 , the coefficient of xu  in Equation (29) becomes 

RTρ   
and the coefficient of xp  is 0. 

Then equation (29) reduces to  

0t x x
v

RTT uT u
c

+ + =                                  (30) 

Then the Euler equation in primitive variables is written as  

0

0

0
t x

v

u
RTu u R u

T T
RT u
c

ρρ ρ

ρ

 
 
    
    + =    
    

    
 
 

                            (31) 
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Or in vector form 

0t xV BV+ =  
Eigenvalues and eigenvectors of the coefficient matrix B of (31) are computed as follows.  

0

0

0
v

u
RTI B u R

RT u
c

λ ρ

λ λ
ρ

λ

− −

− = − − − =

− −
 

( ) ( ) ( )
2

2 0
v

R T RTu u u
c

λ λ ρ λ
ρ

    
⇒ − − − + − − =    

      

( )
2

2 or 0
v

R Tu u RT
c

λ λ
 

⇒ = − − − = 
   

1 2 3, , andu c u u cλ λ λ= − = = +  
where the local speed of sound c is given by  

2 v

v

R cc RT RT
c

γ+
= =

 

The matrix of the corresponding eigenvectors is: 

1 1 1

0

v v

c cP

RT RTRT
c c

ρ ρ

ρ ρ

 
 
 
 

= − 
 
 

− 
   

To compute the eigenvectors of the Jacobian ( )DF U  we need to compute the matrix UM
V
∂

=
∂

 where 
( ), , tU uρ ρ=   and ( ), , tV u Tρ=  

2

2v

u u
uc T

ρ ρ
ρ ρ

ρρ

 
      =      

   + 
 


  

Hence  

2

1 0 0
0

2v v

M u
uc T u c

ρ

ρ ρ

 
 
 

=  
 
 + 
   

The matrix R of eigenvectors of ( )DF U  is given by:  
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( )
2 2 2

1 1 1

1
2 2 2v v v

R MP u c u u c
u u uc T uc RT c T c T uc RTρ

 
 
 

= = − + 
 
 + − + − + + + + 
   

Since the total specific enthalpy h is given by 
2

2v
uh c T RT= + +  we can write the eigenvectors in terms of h 

as 

( )
2

1 1 1

1
2v

R u c u u c
uh uc c T h ucρ

 
 
 

= − + 
 
 − − + + 
   

4.4. Solving Euler Equation Using the Van der Waals (VDW) EOS 
Here we solve one dimensional Euler equation with VDW EOS. Consider again the euler equation (28) with  

VDW EOS 2

1
RTp a
b

ρ ρ
ρ

= −
−

 where 
2 227

64
c

c

R Ta
P

=  and 
8

c

c

RTb
P

= , R is gas constant, cP  critical pressure, cT  

critical temperature, and r
c

TT
T

=  is the reduced temperature. 

Again using (21), the change of internal energy is given by: 

2
1d d dv

pe c T T p
T ρ

ρ
ρ

 ∂ = − −  ∂     

Here, 
1

p R
T bρ

ρ
ρ

∂  = ∂ − 
, 

1
p RTT
T bρ

ρ
ρ

∂  = ∂ − 
, and 2pT p a

T ρ

ρ∂  − = ∂ 
. 

Integrating the above differential equation gives the internal energy ve c T aρ= − . 
The total energy   is given by:  

2
2

2v
uc T a ρρ ρ= − +

 
Now let us express (28) in terms of the primitive variables ( ), , tV u Tρ=  
Continuity equation: 

( ) 0t xuρ ρ+ =  

t x xu uρ ρ ρ⇒ + +  
Momentum equation:  

( ) ( )2 0t x
u u pρ ρ+ + =

 

0x
t x

pu uu
ρ

⇒ + + =
 

Here, x x x
p pp T

T
ρ

ρ
∂ ∂

= +
∂ ∂

, 
( )2 2
1

p RT a
b

ρ
ρ ρ
∂

= −
∂ −

, and 
1

p R
T b

ρ
ρ

∂
=

∂ −
. 

Hence the momentum equation is reduced to  
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( )2 2
11

t x x x
RT Ru uu a T

bb
ρ

ρρ ρ

 
 + + − +
  −−   

Energy Equation: 

( )( ) 0t x
p u+ + = 

 

( ) 0t t t x x x x xu T u u T p p u
u T u T

ρ ρ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
⇒ + + + + + + + + = ∂ ∂ ∂ ∂ ∂ ∂ 

     


 

( ) ( ) ( ) ( ) 0t x x t x x t xu p u u uu up T uT
u T

ρ ρ
ρ
∂ ∂ ∂

⇒ + + + + + + + + =
∂ ∂ ∂
  


 

( ) ( ) ( ) 0x
x x x t x

pu p u up T uT
u T

ρ
ρ ρ

− ∂ ∂ ∂
⇒ − + + + + + + = ∂ ∂ ∂ 

  


 

( )1 0x x t xp u u p T uT
u T

ρ
ρ ρ

   ∂ ∂ ∂
⇒ − + + + − + + + =   ∂ ∂ ∂   

  
                   (32) 

Using 
2

2
2v

uc T aρ
ρ
∂

= − +
∂
 , u

u
ρ∂

=
∂
 , and vc

T
ρ∂

=
∂
 . 

The coefficient of xu  in (32) becomes  

1
RT
b

ρ
ρ−  

and the coefficient of xp  is 0. 
Then (32) reduces to 

( )
0

1t x x
v

RTT uT u
c bρ

+ + =
−

                                 (33) 

The Euler equation is written as  

21 23

32

0
0

0t x

u
u a u a u
T a u T

ρ ρ ρ    
    + =    

    
    

                              (34) 

where 
( )21 2 2
1
RTa a

bρ ρ
= −

−
, 23 1

Ra
bρ

=
−

, and 
( )32 1v

RTa
c bρ

=
−

. 

Eigenvalues and eigenvectors of the coefficient matrix B of (34) are computed as follows.  

21 23

32

0
0

0

u
I B a u a

a u

λ ρ
λ λ

λ

− −
− = − − − =

− −  

( ) ( ) ( ) ( )2
23 32 21 0u u a a u aλ λ ρ λ ⇒ − − − + − − =     

( )2
23 32 21  or 0u u a a aλ λ ρ ⇒ = − − − =   

1 2 3, andu c u u cλ λ λ= − = = +  
where the local speed of sound c is defined as 
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2
23 32 21c a a aρ= +  

The matrix of the corresponding eigenvectors is: 

32 3221

23

1 1 1

0c cP

a aa
a

ρ ρ

ρ ρ

 
 
 
 

= − 
 
 

− 
   

To compute the eigenvectors of the Jacobian ( )DF U  we need to compute the matrix UM
V
∂

=
∂

 where 
( ), , tU u eρ ρ=  and ( ), , tV u Tρ=  

2
2

2v

u u
uc T a

ρ ρ
ρ ρ

ρρ ρ

 
      =   
  

   − + 
 



  
Hence  

2

1 0 0
0

2
2v v

M u
uc T a u c

ρ

ρ ρ ρ

 
 
 

=  
 
 − + 
   

The matrix R of eigenvectors of ( )DF U  is given by:  

32 3221
31 33 31 33 31 33

23

1 1 1
R MP u c u u c

a aam uc m m m m uc m
aρ ρ

 
 
 
 = = − +
 
 − + − + 
   

where 
2

31 2
2v

um c T aρ= − +  and 33 vm cρ=  

Since the total specific enthalpy h is given by 32
31 33

a
h m m

ρ
= +  we can write the eigenvectors in terms of h 

as  

23

1 1
R u c u u c

h uc r h uc

 
 = − + 
 − + 

 

where 21
23 31 33

23

ar m m
a

= − . 

4.5. Solving Euler Equation Using the Soave-Redlich-Kwong (SRK) EOS 
Let us consider (28) with SRK EOS  

2

1 1
RT ap
b b

ρ ρ
ρ ρ

= −
− +  
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where ( )( )2

1 1 1w ra a f T= + − , 
2 2

1
0.42748 c

c

R Ta
P

= , 20.48 1.5746 0.176wF w w= + − , 0.078664 c

c

RTb
P

= , w  

is the accentric factor R is gas constant, cP  critical pressure, cT  critical temperature, and rT  is the reduced 
temperature. 

The internal energy is given by: 

2
1d d dv

pe c T T p
T ρ

ρ
ρ

 ∂ = − −  ∂     

( )( )
2

1 1 1
1 1

w
w r

c

fp R a f T
T b b TTρ

ρ ρ
ρ ρ

 ∂  = + + −     ∂ − +     

( )( )
2

1 1 1
1 1 w r w r

p RTT a f T f T
T b bρ

ρ ρ
ρ ρ

∂ ⇒ = + + − ∂ − +   

( ) ( )( )

( )( ) ( )

2 2 2

1 1

2 2

1

(1 1 1 1
1 1

1 1 1
1 1

w r w r w r

w r w wl

pT p a f T f T a f T
T b b

a f T f af
b b

ρ

ρ ρ
ρ ρ

ρ ρ
ρ ρ

∂ ⇒ − = + − + + − ∂ + + 

= + − + =
+ +  

where 
( )

1
1 1

w
wl

w r

ff
f T
+

=
+ −

. 

After integrating the differential equation of the internal energy, we get 

( )log 1wl
v

afe c T b
b

ρ= + +
 

The total energy   is given by: 

( )
2

log 1
2

wl
v

a f uc T b
b
ρ ρρ ρ= + + +

 
Continuity equation: 

( ) 0t xuρ ρ+ =  
t x xu uρ ρ ρ⇒ + +  

Momentum equation: 

( ) ( )2 0t x
u u pρ ρ+ + =

 

0x
t x

pu uu
ρ

⇒ + + =
 

us ing x x x
p pp T

T
ρ

ρ
∂ ∂

= +
∂ ∂

,  
( )

( )
( )2 2

2
1 1

a bp RT
b b

ρ ρ
ρ ρ ρ

+∂
= −

∂ − +
,  and 

( ) ( )

2

1 1 1
w wl

c w

af fp R
T b b TT f

ρρ
ρ ρ

∂
= +

∂ − + +
 the  

momentum equation is written as  

( )
( )
( ) ( ) ( )2 2

2
1 1 11 1

w wl
t x x x

c w

a b af fRT Ru uu T
b b TT fb b

ρ ρρ
ρ ρρ ρ ρ

   +
 + + − + +    − + +− +     

Energy Equation: 

( )( ) 0t x
p u+ + =   
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( ) 0t t t x x x x xu T u u T p e p u
u T u T

ρ ρ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
⇒ + + + + + + + + = ∂ ∂ ∂ ∂ ∂ ∂ 

     

 

( ) ( ) ( ) ( ) 0t x x t x x t xu p u u uu up T uT
u T
ερ ρ

ρ
∂ ∂ ∂

⇒ + + + + + + + + =
∂ ∂ ∂
 


 

( ) ( ) ( ) 0x
x x x t x

pu p u up T uT
u T

ρ
ρ ρ

− ∂ ∂ ∂
⇒ − + + + + + + = ∂ ∂ ∂ 

  


 

( )1 0x x t xp u u p T uT
u T

ρ
ρ ρ

   ∂ ∂ ∂
⇒ − + + + − + + + =   ∂ ∂ ∂   

  
                  (35) 

( )
2

log 1
1 2

wl wl
v

af af uc T b
b b

ρρ
ρ ρ
∂

= − + − +
∂ +


 

u
u

ρ∂
=

∂


 

( )
( )

2

log 1
1

w wl
v

c w

af fc b
T b TT f

ρρ ρ∂
= + +

∂ +


 
The coefficient of xu  in Equation (35) becomes  

22

1 1 1
wlafRT a

b b b
ρρ ρ

ρ ρ ρ
− +

− + +  
And the coefficient of xp  is 0. 
Notations: Let 321a  denote the coefficient of xu  and 322a  denote the coefficient of tT  i.e. 

( )
( )

2

322 log 1
1

w wl
v

c w

af fa c b
b TT f

ρρ ρ= + +
+  

Then Equation (35) reduces to  

321

322

0t x x
aT uT u
a

+ + =                                  (36) 

The Euler equation is written as  

21 23

32

0
0

0t x

u
u a u a u
T a u T

ρ ρ ρ    
    + =    

    
    

                             (37) 

where, 

( )
( )
( )21 2 2

2
1 1

a bRTa
b b

ρ

ρ ρ ρ

+
= −

− +  

( ) ( )23 1 1 1
w wl

c w

af fRa
b b TT f

ρ
ρ ρ

= +
− + +  

321
32

322

aa
a

=
 

Eigenvalues and eigenvectors of the coefficient matrix A of Equation (37) are given as follows. 
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21 23

32

0
0

0

u
I B a u a

a u

λ ρ
λ λ

λ

− −
− = − − − =

− −  

( ) ( ) ( ) ( )2
23 32 21 0u u a a u aλ λ ρ λ ⇒ − − − + − − =     

( )2
23 32 21  or 0u u a a aλ λ ρ ⇒ = − − − =   

1 2 3, andu c u u cλ λ λ= − = = +  
where 

2
23 32 21c a a aρ= +  

The matrix of the corresponding eigenvectors is:  

32 3221

23

1 1 1

0c cP

a aa
a

ρ ρ

ρ ρ

 
 
 
 

= − 
 
 

− 
   

To compute the eigenvectors of the Jacobian ( )DF U  we need to compute the matrix UM
V
∂

=
∂

 where 
( ), , tU u eρ ρ=  and ( ), , tV u Tρ=  

( )
2

log 1
2

wl
v

u u
af uc T b

b

ρ ρ
ρ ρ

ρρ ρ ρ

 
      =      

   − + + 
 



  
Hence  

31 33

1 0 0
0M u

m u m
ρ
ρ

 
 =  
 
   

where ( )
2

31 log 1
1 2

wl wl
v

af af um c T b
b b

ρρ
ρ

= − + − +
+

  

And 
( )

( )
2

33 log 1
1

w wl
v

c w

af fm c b
b TT f

ρρ ρ= + +
+

 

The matrix R of eigenvectors of ( )DF U  is given by:  

32 3221
31 33 31 33 31 33

23

1 1 1
R MP u c u u c

a aam uc m m m m uc m
aρ ρ

 
 
 
 = = − +
 
 − + − + 
   

Since the specific enthalpy h is given by 32
31 33

ah m m
ρ

= +  we can write the eigenvectors in terms of h as  
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23

1 1
R u c u u c

h uc r h uc

 
 = − + 
 − +   

where 21
23 31 33

23

ar m m
a

= − . 

4.6. Solving Euler Equation Using the Peng-Robinson (PR) EOS 
Let us consider (28) with PR EOS. 

2

2 21 1 2
RT ap
b b b

ρ ρ
ρ ρ ρ

= −
− + −  

where ( )( )2

1 1 1w ra a f T= + − , 
2 2

1
0.45724 c

c

R Ta
P

= , 20.37464 1.54226 0.26992wF w w= + − ,  

0.07780 c

c

RTb
P

= , w is the accentric factor R is gas constant, cP  critical pressure, cT  critical temperature, and  

rT  is reduced temperature. 
The internal energy is given by: 

2
1d d dv

pe c T T p
T ρ

ρ
ρ

 ∂ = − −  ∂     
Here, 

( )( )
2

12 2 1 1
1 1 2

w
w r

c

fp R a f T
T b b b TTρ

ρ ρ
ρ ρ ρ

 ∂  = + + −     ∂ − + −     

( )( )
2

12 2 1 1
1 1 2 w r w r

p RTT a f T f T
T b b bρ

ρ ρ
ρ ρ ρ

∂ ⇒ = + + − ∂ − + −   

( )( )

( )( )
( )( ) ( )

2

12 2

2 2

12 2

2

12 2

2

2 2

1 1
1 2

1 1
1 2

1 1 1
1 2

1 2

w r w r

w r

w r w

wl

pT p a f T f T
T b b

a f T
b b

a f T f
b b

af
b b

ρ

ρ
ρ ρ

ρ
ρ ρ
ρ
ρ ρ
ρ
ρ ρ

∂ ⇒ − = + − ∂ + − 

+ + −
+ −

= + − +
+ −

=
+ −  

where 
( )

1
1 1

w
wl

w r

f
f

f T
+

=
+ −

. 

Integrating the above differential equation for internal energy we get 

2 1log
8 2 1
wl

v
af be c T

b b
ρ
ρ

+ −
= +

− +  
The total energy   is given by: 

22 1log
28 2 1

wl
v

af b uc T
b b

ρ ρρ ρ
ρ

+ −
= + +

− +
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Continuity equation: 

( ) 0t xuρ ρ+ =  
0t x xu uρ ρ ρ⇒ + + =  

Momentum equation: 

( ) ( )2 0t x
u u pρ ρ+ + =

 
Using the continuity equation, it is reduced to 

0x
t x

pu uu
ρ

⇒ + + =
 

Here, x x x
p pp T

T
ρ

ρ
∂ ∂

= +
∂ ∂

, 
( )

( )
( )2 22 2

2 1
1 1 2

a bp RT
b b b

ρ ρ
ρ ρ ρ ρ

+∂
= −

∂ − + −
, and  

( ) ( )

2

2 21 1 2 1
w wl

c w

af fp R
T b b b TT f

ρρ
ρ ρ ρ

∂
= +

∂ − + − +
. 

The momentum equation is written as  

( )
( )

( ) ( ) ( )2 2 2 22 2

2 1
1 1 2 11 1 2

w wl
t x x x

c w

a b af fRT Ru uu T
b b b TT fb b b

ρ ρρ
ρ ρ ρρ ρ ρ ρ

   +   + + − + +   − + − +− + −     
Energy Equation: 

( )( ) 0t x
p u+ + = 

 

( ) 0t t t x x x x xu T u u T p p u
u T u T

ρ ρ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
⇒ + + + + + + + + = ∂ ∂ ∂ ∂ ∂ ∂ 

     


 

( ) ( ) ( ) ( ) 0t x x t x x t x
eu p u u uu up T uT

u T
ρ ρ

ρ
∂ ∂ ∂

⇒ + + + + + + + + =
∂ ∂ ∂
 


 

( ) ( ) ( ) 0x
x x x t x

pu p u up T uT
u T

ρ
ρ ρ

− ∂ ∂ ∂
⇒ − + + + + + + = ∂ ∂ ∂ 

  


 

( )1 0x x t xp u u p T uT
u T

ρ
ρ ρ

   ∂ ∂ ∂
⇒ − + + + − + + + =   ∂ ∂ ∂   

  
                    (38) 

Using 
2

2 2
2 1log

21 28 2 1
wl

v wl
af b uc T af

b bb b
ρ ρρ

ρ ρ ρρ
∂ + −

= + − +
∂ + −− +


 

u
u

ρ∂
=

∂


 
And 

( )

2 2 1log ,
8 1 2 1

w wl
v

c w

af f bc
T b TT f b

ρ ρρ
ρ

∂ + −
= −

∂ + − +


 
The coefficient of xu  in (38) becomes  

22

2 2 2 21 1 2 1 2
wlafRT a

b b b b b
ρρ ρ

ρ ρ ρ ρ ρ
− +

− + − + −  



A. Atena, T. Muche 
 

 
1675 

And the coefficient of xp  is 0. 
Notations: Let 321a  denote the coefficient of xu  and 322a  denote the coefficient of tT  

( )

2

322
2 1log

8 1 2 1
w wl

v
c w

af f ba c
b TT f b
ρ ρρ

ρ
+ −

= −
+ − +  

Then (38) reduces to  

321

322

0t x x
aT uT u
a

+ + =                                  (39) 

The Euler equation is written as  

21 23

32

0
0

0t x

u
u a u a u
T a u T

ρ ρ ρ    
    + =    

    
    

                            (40) 

where, 

( )
( )

( )21 2 22 2

2 1
1 1 2

a bRTa
b b b

ρ

ρ ρ ρ ρ

+
= −

− + −
 

( ) ( )23 2 21 1 2 1
w wl

c w

af fRa
b b b TT f

ρ
ρ ρ ρ

= +
− + − +

 

321
32

322

aa
a

=
 

21 23

32

0
0

0

u
I B a u a

a u

λ ρ
λ λ

λ

− −
− = − − − =

− −  

( ) ( ) ( ) ( )2
23 32 21 0u u a a u aλ λ ρ λ ⇒ − − − + − − =     

( )2
23 32 21  or 0u u a a aλ λ ρ ⇒ = − − − =   

1 2 3, andu c u u cλ λ λ= − = = +  
where 

2
23 32 21c a a aρ= +  

The matrix of the corresponding eigenvectors is:  

32 3221

23

1 1 1

0c cP

a aa
a

ρ ρ

ρ ρ

 
 
 
 

= − 
 
 

− 
   

To compute the eigenvectors of the Jacobian ( )DF U  we need to compute the matrix UM
V
∂

=
∂

 where 
( ), , tU u eρ ρ=  and ( ), , tV u Tρ=  
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22 1log
28 2 1

wl
v

u u

af b uc T
b b

ρ ρ
ρ ρ

ρ ρρ ρ
ρ

 
 

   
   =      + −  + + 

− + 



 
Hence  

31 33

1 0 0
0M u

m u m
ρ
ρ

 
 =  
 
   

where 
2

31 2 2
2 1log

21 28 2 1
wl

v wl
af b um c T af

b bb b
ρ ρρ

ρ ρρ
+ −

= + − +
+ −− +

  

and 
( )

2

33
2 1log

8 1 2 1
w wl

v
c w

af f bm c
b TT f b
ρ ρρ

ρ
+ −

= −
+ − +

. 

The matrix R of eigenvectors of ( )DF U  is given by:  

32 3221
31 33 31 33 31 33

23

1 1 1
R MP u c u u c

a aam uc m m m m uc m
aρ ρ

 
 
 
 = = − +
 
 − + − + 
   

Since the specific enthalpy h is given by 32
31 33

ah m m
ρ

= +  we can write the eigenvectors in terms of h as  

23

1 1
R u c u u c

h uc r h uc

 
 = − + 
 − +   

where 21
23 31 33

23

ar m m
a

= − . 

4.7. Solving Euler Equation Using the Benedict-Webb-Rubin-Starling (BWRS) EOS  
Let us consider (28) with BWRS EOS. 

( ) ( )
3

2 3 6 2 2
2 3 4 2 1 expC D E d d cp RT BRT A bRT a a

T TT T T T
ρρ ρ ρ α ρ γρ γρ     = + − − + − + − − + + + + −     

       
The internal energy is given by: 

2
1d d dv

pe c T T p
T ρ

ρ
ρ

 ∂ = − −  ∂     
3

2 3 6 2 2
2 4 5 2 2 3

2 3 4 2( ) ( ) (1 ) exp( )p C D E d d cR BR bR
T T T T T T Tρ

α ρρ ρ ρ ρ γρ γρ∂  = + + − + + + − − + − ∂   

( ) ( )2 3 6 3 5 2
2 3 4 2

3 4 5 2 2 3 expp C D E d d cT p A a a
T T TT T T Tρ

ρ ρ α ρ ρ γρ γρ∂       ⇒ − = + − + + + − + − + −       ∂         
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( )
2 5 2

2
2 3 4 2

3 4 5 2 2 3 1 exp
2 5 2v

C D E d d ce c T A a a
T TT T T T

ρ ρ ρρ α γρ
γ

      ⇒ = − + − + − + + + − + −      
         

The total energy   is given by: 

( )
3 6 3 2

2 2
2 3 4 2

3 4 5 2 2 3 exp
2 5 2 2v

C D E d d c uc T A a a
T TT T T T

ρ ρ ρ ρρ ρ α γρ ρ
γ

      = − + − + − + + + − + − +      
       


 

Continuity equation: 

( ) 0t xuρ ρ+ =  

t x xu uρ ρ ρ⇒ + +  
Momentum equation: 

( ) ( )2 0t x
u u pρ ρ+ + =

 

0x
t x

pu uu
ρ

⇒ + + =
 

x x x
p pp T

T
ρ

ρ
∂ ∂

= +
∂ ∂  

( ) ( )

2
2 3 4

5 2 4 2 6 2
2

2 3

6 3 3 2 exp

p C D E dRT BRT A bRT a
TT T T

d ca
T T

ρ ρ
ρ

α ρ ρ γρ γ ρ γρ

∂    = + − − + − + − −   ∂    
 + + + + − − 
   

( ) ( )
3

2 3 6 2 2
3 4 5 2 2

2 3 4 2 1 expp C D E d d cR BR bR
T TT T T T T

ρρ ρ ρ α ρ γρ γρ∂      = + + − + + + − − + −     ∂        
Let  

( ) ( )

21 2 3 4

4 2 2 4 2
2

2 3

6 3 3 2 exp

p
RT C D E da BRT A bRT a

TT T T
d ca
T T

ρ ρ
ρ ρ

ρα ρ γρ γ ρ γρ

∂
∂    = = + − − + − + − −   

   
 + + + + − − 
   

( ) ( )

2
23 3 4 5 2

2
5 2 2

2 2

2 3 4

2 1 exp

p
C D E dTa R BR bR

T T T T
d c

T T

ρ ρ
ρ

α ρρ γρ γρ

∂
   ∂= = + + − + + +   
   

 − − + − 
   

The momentum equation is written as  

21 23 0t x x xu uu a a Tρ+ + + =  
Energy Equation: 

( )( ) 0t x
p u+ + = 

 

( ) 0t t t x x x x xu T u u T p p u
u T u T

ρ ρ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
⇒ + + + + + + + + = ∂ ∂ ∂ ∂ ∂ ∂ 
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( ) ( ) ( ) ( ) 0t x x t x x t xu p u u uu up T uT
u T
ερ ρ

ρ
∂ ∂ ∂

⇒ + + + + + + + + =
∂ ∂ ∂
 


 

( ) ( ) ( ) 0x
x x x t x

pu p u up T uT
u T

ρ
ρ ρ

− ∂ ∂ ∂
⇒ − + + + + + + = ∂ ∂ ∂ 

  


 

( )1 0x x t xp u u p T uT
u T

ρ
ρ ρ

   ∂ ∂ ∂
⇒ − + + + − + + + =   ∂ ∂ ∂   

  
                   (41) 

( )

2
2 3 4

2 2
5 4 2

2

3 4 5 3 22
2

6 2 3 1 exp
5 2 2

v
C D E dc T A a

TT T T

d c ua
T T

ρ ρ
ρ

ρα ρ γρ γρ
γ

∂    = − + − + − +   ∂    
  + + − − − − +  

   



 

u
u

ρ∂
=

∂


 

( )
3

2 3 6 2
3 4 5 2 2 3

6 12 20 2 6 exp
25v

C D E d d cc
T T T T T T T

α ρ ρρ ρ ρ ρ γρ
γ

 ∂  = + − + + − + + −  ∂    



 
The coefficient of xu  in Equation (41) becomes  

( ) ( )2 3 6 3 5 2
2 3 4 2

2 3 4 2 expC D E d d cRT BRT bRT
T TT T T T

ρ ρ ρ α ρ ρ γρ γ   + + − + + + − − + −   
     

and the coefficient of xp  is 0. 
Notations: Let 321a  denote the coefficient of xu  and 322a  denote the coefficient of tT  i.e, 322a

T
∂

=
∂


 
Then (41) reduces to  

321

322

0t x x
aT uT u
a

+ + =                                  (42) 

The Euler equation is written as  

21 23

32

0
0

0t x

u
u a u a u
T a u T

ρ ρ ρ    
    + =    

    
    

                           (43) 

where, 

321
32

322

aa
a

=
 

Eigenvalues and eigenvectors of the coefficient matrix B of Equation (43) are computed as follows. 

21 23

32

0
0

0

u
I B a u a

a u

λ ρ
λ λ

λ

− −
− = − − − =

− −  

( ) ( ) ( ) ( )2
23 32 21 0u u a a u aλ λ ρ λ ⇒ − − − + − − =     

( )2
23 32 21  or 0u u a a aλ λ ρ ⇒ = − − − =   

1 2 3, andu c u u cλ λ λ= − = = +  
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where 
2

23 32 21c a a aρ= +  
The matrix of the corresponding eigenvectors is: 

32 3221

23

1 1 1

0c cP

a aa
a

ρ ρ

ρ ρ

 
 
 
 

= − 
 
 

− 
   

To compute the eigenvectors of the Jacobian ( )DF U  we need to compute the matrix 
UM
V
∂

=
∂

 where 
( ), , tU u eρ ρ=  and ( ), , tV u Tρ=  

( )
3 6 3 2

2 2
2 3 4 2

3 4 5 2 2 3 exp
2 5 2 2v

u u

C D E d d c uc T A a a
T TT T T T

ρ ρ
ρ ρ

ρ ρ ρ ρρ ρ α γρ ρ
γ

 
 

   
   =              − + − + + + + + − + − +       

        



  
Hence 

31 33

1 0 0
0M u

m u m
ρ
ρ

 
 =  
 
   

where 

( )

2
31 2 3 4

2 2
5 4 2

2

3 4 5 3 22
2

6 2 3 1 exp
5 2 2

v
C D E dm c T A a

TT T T

d c ua
T T

ρ ρ

ρα ρ γρ γρ
γ

   = − + − + − +   
   

  + + − − − − +  
     

and ( )
3

2 3 6 2
33 3 4 5 2 2 3

6 12 20 6 exp
25v

c D E d d cm c
T T T T T T

α ρ ρρ ρ ρ ρ γρ
γ

  = + − + + − + + −  
   

 

The matrix R of eigenvectors of ( )DF U  is given by:  

32 3221
31 33 31 33 31 33

23

1 1 1
R MP u c u u c

a aam uc m m m m uc m
aρ ρ

 
 
 
 = = − +
 
 − + − + 
   

Since the specific enthalpy h is given by 32
31 33

ah m m
ρ

= +  we can write the eigenvectors in terms of h as  

23

1 1
R u c u u c

h uc r h uc

 
 = − + 
 − +   

where 21
32 31 33

23

ar m m
a

= − . 
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Figure 1. The results obtained by solving the homogeneous Euler equation by employing the ideal 
gas law and the other four equation of states. 

 

 
Figure 2. The results obtained by solving the Euler equation (including the source term) by em-
ploying the PR and BWRS EOS. 
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4.8. Application of the Roe solver 
Now to apply the Roe scheme on (28), on each cell [ ]1,i ix x + , we approximate the system by  

0t xU AU+ =  

( )
1
2

1 1
2

 for
,

 for

n
i i

n
n
i i

U x x
U x t

U x x

+

+
+

 <


= 
>

  
where ( )A D FU=  and U  is determined from the Roe averages. The solution is determined as:  

( ) ( )1
1 1, ,n n n n n n

i i i i i i
tU U g U U g U U
x

+
+ −

∆  = − − ∆  
where 

( ) ( ) ( )
3

1

1,
2 i i i

i
g u w F u F w rλ α

=

 = + − 
 

∑
 

where iλ  and ir  are the eigenvalues and eigenvectors of ( ),A u w  and 3
1 i iiw u rα
=

− = ∑ . 
The last equation is a system of simultaneous algebraic equations for the variables iα . 
The conservative variables ( ), ,uρ ρ   are determined by the scheme. The velocity is obtained from ρ  and 
uρ . But to determine the value of the temperature T we use an iteration method (especially for the cases of 

complex EOS). Then the pressure P is computed from the EOS 

4.9. Numerical Results 
In this section we present some numerical results. We consider a tube of length 1, filled by Methane gas, the ini-
tial discontinuity is located at 0 0.5x = . In our simulation the following initial data is used.  

3lρ = , 3lp = , 0lu =  for 0.5x ≤  
1rρ = , 1rp = , 0ru =  for 0.5x > . 

In Figure 1, we have plotted the density, pressure, velocity, temperature, and the real gas compressibility 
factor computed by using each of EOS we discussed. 

Figure 2 depicts results of (6), i.e, the Euler equation with the source term included, obtained by applying PR, 
and BWRS EOS. 

5. Conclusion 
The model that describes the flow of gas in a pipe is presented. Simplifications to the equations are made using 
appropriate assumptions. Several Equations of states that close the system of equations are examined and the 
results obtained for each equation of state are compared. 
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