Non-Negative Integer Solutions of Two Diophantine Equations $2^x + 9^y = z^2$ and $5^x + 9^y = z^2$

Md. Al-Amin Khan, Abdur Rashid, Md. Sharif Uddin

Department of Mathematics, Jahangirnagar University, Dhaka, Bangladesh
Email: alamin.khan@juniv.edu

Received 7 October 2015; accepted 24 April 2016; published 27 April 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).

Abstract
In this paper, we study two Diophantine equations of the type $2^x + 9^y = z^2$, where p is a prime number. We find that the equation $2^x + 9^y = z^2$ has exactly two solutions (x, y, z) in non-negative integer i.e., \{(3,0,3),(4,1,5)\} but $5^x + 9^y = z^2$ has no non-negative integer solution.

Keywords
Exponential Diophantine Equation, Integer Solutions

1. Introduction
Recently, there have been a lot of studies about the Diophantine equation of the type $a^x + b^y = c^z$. In 2012, B. Sroysang [1] proved that $(1,0,2)$ is a unique solution (x, y, z) for the Diophantine equation $3^x + 5^y = z^2$ where x, y and z are non-negative integers. In 2013, B. Sroysang [2] showed that the Diophantine equation $3^x + 17^y = z^2$ has a unique non-negative integer solution $(x, y, z) = (1,0,2)$. In the same year, B. Sroysang [3] found all the solutions to the Diophantine equation $2^x + 3^y = z^2$ where x, y and z are non-negative integers. The solutions (x, y, z) are $(0,1,2), (3,0,3)$ and $(4,2,5)$. In 2013, Rabago [4] showed that the solutions (x, y, z) of the two Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$ where x, y and z are non-negative integers are $\{(1,0,2),(4,1,10)\}$ and $\{(1,0,2),(2,1,10)\}$, respectively. Different examples of Diophantine equations have been studied (see for instance [5]-[11]).

In this study, we consider the Diophantine equation of the type $p^x + 9^y = z^2$ where p is prime. Particularly, we show that $2^x + 9^y = z^2$ has exactly two solutions in non-negative integer and $5^x + 9^y = z^2$ has no
non-negative integer solution.

2. Main Results

Theorem 2.1. (Catalan’s Conjecture [12]) The Diophantine equation \(a^x - b^y = 1 \), where \(a, b, x \) and \(y \) are integers with \(a, b, x, y > 1 \), has a unique solution \((a, b, x, y) = (3, 2, 2, 3) \).

Theorem 2.2. The Diophantine equation \(2^x + 1 = z^2 \) has a unique non-negative integer solution \((x, z) = (3, 3) \).

Proof: Let \(x \) and \(z \) be non-negative integers such that \(2^x + 1 = z^2 \). For \(x = 0 \), \(z^2 = 2 \) which is impossible. Suppose \(x \geq 1 \). Then, \(2^x = z^2 - 1 = (z + 1)(z - 1) \) and \((z + 1) = 2^i \) and \((z - 1) = 2^j \), where \(\eta < \xi, \xi + \eta = x \).

Thus, \(2^i - 2^j = 2 \) or, \(2^j(2^i - 1) = 2 \). Now we have two possibilities.

Case-1: If \(2^i = 2 \), then \(2^{i-1} - 1 = 1 \). These give us \(\eta = 1 \) and \(\xi = 2 \). Then \(x = 3 \) and \(z = 3 \). Thus \((x, z) = (3, 3) \) is a solution of \(2^x + 1 = z^2 \).

Case-2: If \(2^i = 1 \), then \(2^{i-1} - 1 = 2 \). These give us \(\eta = 0 \) and \(\xi = 3 \) which is impossible.

Hence, \((x, z) = (3, 3) \) is a unique non-negative integer solution for the equation \(2^x + 1 = z^2 \).

Theorem 2.3. The Diophantine equation \(p^x + 1 = z^2 \), where \(p \) is an odd prime number, has exactly one non-negative integer solution \((x, z, p) = (1, 2, 3) \).

Proof: Let \(x \) and \(z \) be non-negative integers such that \(p^x + 1 = z^2 \), where \(p \) be an odd prime. If \(x = 0 \), then \(z^2 = 2 \). It is impossible. If \(z = 0 \), then \(p^x = 1 \), which is also impossible. Now for \(x, z > 0 \),

\[p^x + 1 = z^2 \]

or \(p^x = (z - 1)(z + 1) \).

Let \(z + 1 = p^y \) and \(z - 1 = p^z \), where \(\psi < \xi, \psi + \xi = x \). Then,

\[p^y - p^z = 2 \]

or \(\psi \left(p^y - p^z - 1 \right) = 2 \).

Thus, \(p^y = 1 \Rightarrow p^y = p^0 = \psi = 0 \) and \(p^y - 1 = 2 \Rightarrow p^z = 3 \), which is possible only for \(p = 3 \) and \(\xi = 1 \). So \(x = \psi + \xi = 0 + 1 = 1, z = p^y - 1 = 3^y - 1 = 2 \).

Therefore, \((x, z, p) = (1, 2, 3) \) is the solution of \(p^x + 1 = z^2 \). This proves the theorem.

Corollary 2.4. The Diophantine equation \(5^x + 1 = z^2 \) has no non-negative integer solutions.

Theorem 2.5. The Diophantine equation \(1 + 9^x = z^2 \) has no unique non-negative integer solution.

Proof: Suppose \(x \) and \(z \) be non-negative integers such that \(1 + 9^x = z^2 \). For \(x = 0 \), we have \(z^2 = 2 \). It is impossible. Let \(x \geq 1 \). Then \(1 + 9^x = z^2 \) gives us \(3^x = (z - 1)(z + 1) \). Let \(z + 1 = 3^{f_1} \) and \(z - 1 = 3^{f_2} \), where \(\Pi_2 < \Pi_1 \), \(\Pi_1 + \Pi_2 = 2x \). Therefore,

\[3^{f_1} - 3^{f_2} = 2 \]

or \(3^{f_1} (3^{f_1 - f_2} - 1) = 2 \).

Thus, \(3^{f_1} = 1 \) or \(\Pi_2 = 0 \) and \(3^{f_1 - f_2} - 1 = 2 \) or \(\Pi_1 = 1 \). So \(2x + 1 \Rightarrow x = \frac{1}{2} \), which is not acceptable since \(x \) is a non-negative integer. This completes the proof.

Theorem 2.6. The Diophantine equation \(2^x + 9^y = z^2 \) has exactly two solutions \((x, y, z) \) in non-negative integer i.e., \((3, 0, 3), (1, 4, 5) \).

Proof: Suppose \(x, y \) and \(z \) are non-negative integers for which \(2^x + 9^y = z^2 \). If \(x = 0 \), we have \(1 + 9^y = z^2 \) which has no solution by theorem 2.5. For \(y = 0 \), by theorem 2.2 we have \(x = 3 \) and \(y = 3 \). Hence \((x, y, z) = (3, 0, 3) \) is a solution to \(2^x + 9^y = z^2 \). If \(z = 0 \), then \(2^x + 9^y = 0 \) which is not possible for any non-negative integers \(x \) and \(y \).

Now we consider the following remaining cases.

Case-1: \(x = 1 \). If \(x = 1 \), then \(2 + 9^y = z^2 \) or \(2 = (z + 3^y)(z - 3^y) \). We have two possibilities. If \(z + 3^y = 1 \) and \(z - 3^y = 2 \), then \(2x = 3 \) or \(z = \frac{3}{2} \) but which is not acceptable. On the other hand, if \(z + 3^y = 2 \) and \(z - 3^y = 1 \) same thing is occurred.

Case-2: \(y = 1 \). If \(y = 1 \), then \(2^x + 9 = z^2 \) or \(2^x = (z + 3)(z - 3) \). Let \(z + 3 = 2^i \) and \(z = 3 = 2^i \), where \(\eta < \xi, \xi + \eta = x \). Then \(2^i - 2^j = 2.3 \) or \(2^j (2^i - 1) = 2.3 \). Thus, \(2^j = 2 \) and \(2^i - 1 = 3 \), then this implies...
that $\eta = 1$ and $\xi - 1 = 2$ or $\xi = 3$. So $x = 4$ and $z = 5$. Here we obtain the solution $(x, y, z) = (4, 1, 5)$.

Case-3: $z = 1$. If $z = 1$, then $2^t + 9^r = 1$ which is not possible for any for any non-negative integers x and y.

Case-4: $x, y, z > 1$. Now

\[2^t + 9^r = z^2 \quad \text{or} \quad 2^t = (z + 3^r)(z - 3^r).\]

Let $z + 3^r = 2^\eta$, and $z - 3^r = 2^\xi$, where $\Pi_1 < \Pi_1, \Pi_1 + \Pi_2 = x$. So $2^\eta - 2^\xi = 2^t$ or $2^\eta (2^\eta - 2^\xi - 1) = 2^t$.

Thus, $2^\eta = 2$ and $2^\eta (2^\eta - 2^\xi - 1) = 3^r$ then these imply that $\Pi_2 = 1$ and $2^\eta - 1 = 3^r$.

So we get

\[2^\eta - 1 = 3^r = 1 \quad (1)\]

The Diophantine Equation (1) is a Diophantine equation by Catalan’s type $a^t - b^t = 1$ because for $y > 1$, the value of Π_1 must be greater than 1. So by the Catalan’s conjecture Equation (1) has no solution. This proves the theorem.

Theorem 2.7. The Diophantine equation $5^t + 9^r = z^2$ has no non-negative integer solution.

Proof. Suppose x, y and z are non-negative integers for which $5^t + 9^r = z^2$. If $x = 0$, we have $1 + 9^r = z^2$ which has no solution by Theorem 2.5. For $y = 0$ we use corollary 2.4. If $z = 0$, then $5^t + 9^r = 0$ which is not possible for any for any non-negative integers x and y.

Now we consider the following remaining cases.

Case-1: $x = 1$. If $x = 1$, then $5^t + 9^r = z^2$ or $5 = (z + 3^r)(z - 3^r)$. We have two possibilities. If $z + 3^r = 5$ and $z - 3^r = 1$, it follows that $2z = 6$ or $z = 3$ and $3^r = 2$, a contradiction. On the other hand, $z + 3^r = 1$ and $z - 3^r = 5$, it follows that $2z = 6$ or $z = 3$ and $3^r = 2$ which is impossible.

Case-2: $y = 1$. If $y = 1$, then $5^t + 9^r = z^2$ or $5^t = (z + 3^r)(z - 3^r)$. Let $z + 3^r = 5^t$ and $z - 3^r = 5^r$, where $\eta < \xi, \xi + \eta = x$. Then $5^t - 5^r = 2.3$ or $5^t (5^t - 5^r - 1) = 2.3$. Thus, $5^t = 1$ and $5^t - 5^r - 1 = 6$, this implies that $\eta = 0$ and $5^t = 7$, a contradiction.

Case-3: $z = 1$. If $z = 1$, then $5^t + 9^r = 1$ which is not possible for any for any non-negative integers x and y.

Case-4: $x, y, z > 1$. Now

\[5^t + 9^r = z^2 \quad \text{or} \quad 5^t = (z + 3^r)(z - 3^r).\]

Let $z + 3^r = 5^\eta$, and $z - 3^r = 5^\xi$, where $\Pi_1 < \Pi_1, \Pi_1 + \Pi_2 = x$. So $5^\eta - 5^\xi = 2.3$ or $5^\eta (5^\eta - 5^\xi - 1) = 2.3$. Thus, $5^\eta = 1$ and $5^\eta - 5^\xi - 1 = 2.3$ then these imply that $\Pi_2 = 0$ and $5^\eta - 1 = 2.3$.

Since $5 \equiv 1 (\text{mod} \ 4)$, it follows that $5^\eta \equiv 1 (\text{mod} \ 4)$ i.e., $5^\eta - 1 \equiv 0 (\text{mod} \ 4)$. But we see that $2.3 \equiv 0 (\text{mod} \ 4)$. This is impossible.

3. Conclusion

In the paper, we have discussed two Diophantine equation of the type $p^t + q^r = z^2$, where p is a prime number. We have found that $(3, 0, 3)$ and $(4, 1, 5)$ are the exact solutions to $2^t + 9^r = z^2$ in non-negative integers. On the contrary, we have also found that the Diophantine equation $5^t + 9^r = z^2$ has no non-negative integer solution.

References

